Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Laboratory Analysis
2.3. Satellite Image Acquisition and Processing
2.4. Selection of the Optimal Spectral Index for Estimating Soil Salinity
2.5. Land Use Classification and Delineation of Paddy Land
3. Results
3.1. Descriptive Statistics of the EC Data
3.2. Relationship between EC and Spectral Reflectance Bands
3.3. Model Results
3.4. Distribution of Soil Salinity in Paddy Lands
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eswaran, H.; Lal, R.; Reich, P. Land degradation: An overview. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054028 (accessed on 8 October 2020).
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D.; Hermans, K.; Jobbagy, E.; Kurz, W.; Li, D. Land Degradation: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. In IPCC Special Report on Climate Change, Desertification, Land 5 Degradation, Sustainable Land Management, Food Security, and 6 Greenhouse gas fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019; p. 112. [Google Scholar]
- Schutter, O.D. Towards a Common Food Policy for the European Union. 2019. Available online: http://www.ipes-food.org/_img/upload/files/CFP_FullReport.pdf (accessed on 8 October 2020).
- Veerman, C.; Correia, T.P.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciala, E.; Emmett, B.; Frison, E.A.; Grand, A.; Filchev, L.H.; et al. Caring for Soil is Caring for Life—Ensure 75% of Soils are Healthy by 2030 for Healthy Food, People, Nature and Climate; European Commission: Luxembourg, 2020. [Google Scholar]
- Rengasamy, P. Soil Salinization. Oxford Bibliogr. 2014. [Google Scholar] [CrossRef]
- Imadi, S.R.; Shah, S.W.; Kazi, A.G.; Azooz, M.M.; Ahmad, P. Chapter 18—Phytoremediation of Saline Soils for Sustainable Agricultural Productivity. In Plant Metal Interaction; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 455–468. [Google Scholar]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene Expression Profiling of Plants under Salt Stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L. Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Adv. Remote. Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Borujeni, S.C.; Alaghmand, S.; Anderson, S.J.; Sutton, P.C.; Parvazian, S.; Beecham, S. Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands. Sustainability 2018, 10, 2826. [Google Scholar] [CrossRef] [Green Version]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Bannari, A.; El-Battay, A.; Bannari, R.; Rhinane, H. Sentinel-MSI VNIR and SWIR Bands Sensitivity Analysis for Soil Salinity Discrimination in an Arid Landscape. Remote Sens. 2018, 10, 855. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.; El-Hady, M.A.; Rahim, I. Soil salinity mapping utilizing sentinel-2 and neural networks. Indian J. Agric. Res. 2018, 52, 524–529. [Google Scholar]
- Farahmand, N.; Sadeghi, V. Estimating Soil Salinity in the Dried Lake Bed of Urmia Lake Using Optical Sentinel-2 Images and Nonlinear Regression Models. J. Indian Soc. Remote Sens. 2020, 48, 675–687. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Davis, E.; Wang, C.; Dow, K. Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina. Int. J. Remote Sens. 2019, 40, 6134–6153. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, J.; Yang, X.; et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total. Environ. 2020, 707, 136092. [Google Scholar] [CrossRef] [PubMed]
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Retrieval of soil salinity from Sentinel-2 multispectral imagery. Eur. J. Remote Sens. 2019, 52, 138–154. [Google Scholar] [CrossRef] [Green Version]
- Gorji, T.; Yildirim, A.; Hamzehpour, N.; Tanik, A.; Sertel, E. Soil salinity analysis of Urmia Lake Basin using Landsat-8 OLI and Sentinel-2A based spectral indices and electrical conductivity measurements. Ecol. Indic. 2020, 112, 106173. [Google Scholar] [CrossRef]
- Perera, M.; Ranasinghe, T.; Piyadasa, R.; Jayasinghe, G. Risk of seawater intrusion on coastal community of Bentota river basin Sri Lanka. Procedia Eng. 2018, 212, 699–706. [Google Scholar] [CrossRef]
- NWDB. Environmental Impact Assessment: Sri Lanka: Jaffna and Kilinochchi Water Supply Project, Additional Financing—Seawater Desalination Plant and Potable Water Conveyance System; National Water Supply and Drainage Board (NWDB) & Government of Sri Lanka (GoSL): Ratmalana, Sri Lanka, 2017.
- Wijeyaratne, W.M.D.N.; Subanky, S. Assessment of the Efficacy of Home Remedial Methods to Improve Drinking Water Quality in Two Major Aquifer Systems in Jaffna Peninsula, Sri Lanka. Science 2017, 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gunaalan, K.; Manjula, R.; Vithanage, M. Assessing the Extent of Saltwater Intrusion at Vadamaradchchi Lagoon: In Jaffna Peninsula in Sri Lanka using GIS Techniques; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2015. [Google Scholar]
- Sivakumar, S. Reclamation of Land and Improve Water Productivity of Jaffna Peninsula of Northern Sri Lanka by Improving the Water Quality of the Lagoons. Int. Res. J. Sci. IT Manag. 2013, 2, 20–27. [Google Scholar]
- Gunaalan, K.; Ranagalage, M.; Gunarathna, M.; Kumari, M.; Vithanage, M.; Srivaratharasan, T.; Saravanan, S.; Warnasuriya, T.W.S. Application of Geospatial Techniques for Groundwater Quality and Availability Assessment: A Case Study in Jaffna Peninsula, Sri Lanka. ISPRS Int. J. Geo Inf. 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, T.; Kumar, L.; Mikunthan, T. Assessment of Spatial and Temporal Trend of Groundwater Salinity in Jaffna Peninsula and Its Link to Paddy Land Abandonment. Sustainability 2020, 12, 3681. [Google Scholar] [CrossRef]
- Mikunthan, T.; Vithanage, M.; Pathmarajah, S.; Arasalingam, S.; Ariyaratne, R.; Manthrithilake, H. Hydrogeochemical characterization of Jaffna’s aquifer systems in Sri Lanka. In Hydrogeochemical Characterization of Jaffna’s Aquifer Systems in Sri Lanka; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2013; p. 69. [Google Scholar]
- Rossel, R.A.V. Robust Modelling of Soil Diffuse Reflectance Spectra by “Bagging-Partial Least Squares Regression”. J. Near Infrared Spectrosc. 2007, 15, 39–47. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Khan, S.; Abbas, A. Using remote sensing techniques for appraisal of irrigated soil salinity. In Proceedings of the International Congress on Modelling and Simulation, Christchurch, New Zealand, 10–12 December; 2007; pp. 2632–2638. [Google Scholar]
- Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Nguyen, K.-A.; Liou, Y.-A.; Tran, H.-P.; Hoang, P.-P.; Nguyen, T.-H. Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam. Prog. Earth Planet. Sci. 2020, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gorji, T.; Tanik, A.; Sertel, E. Soil Salinity Prediction, Monitoring and Mapping Using Modern Technologies. Procedia Earth Planet. Sci. 2015, 15, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys. Chem. Earth Parts A/B/C 2013, 55, 43–52. [Google Scholar] [CrossRef]
- Hoang, T.M.L.; Tran, T.N.; Nguyen, T.K.T.; Williams, B.; Wurm, P.; Bellairs, S.; Mundree, S.G. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. Agronomy 2016, 6, 54. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS). Remote Sens. 2014, 6, 10813–10834. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ren, J.; Zhao, K.; Liang, Z. Correlation between Spectral Characteristics and Physicochemical Parameters of Soda-Saline Soils in Different States. Remote Sens. 2019, 11, 388. [Google Scholar] [CrossRef] [Green Version]
- Abuelgasim, A.; Ammad, R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sens. Appl. Soc. Environ. 2019, 13, 415–425. [Google Scholar] [CrossRef]
- Chandrajith, R.; Diyabalanage, S.; Premathilake, K.; Hanke, C.; Van Geldern, R.; Barth, J.A.C. Controls of evaporative irrigation return flows in comparison to seawater intrusion in coastal karstic aquifers in northern Sri Lanka: Evidence from solutes and stable isotopes. Sci. Total. Environ. 2016, 548, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Edirisinghe, E.; Karunarathne, G.; Tilakarathna, I.; Gunasekara, J.; Priyadarshanee, K. Isotope and chemical assessment of natural water in the Jaffna Peninsula in northern Sri Lanka for groundwater development aspects. Isot. Environ. Health Stud. 2020, 56, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Rajasooriyar, L.; Mathavan, V.; Dharmagunawardhane, A.H.; Nandakumar, V. Groundwater quality in the Valigamam region of the Jaffna Peninsula, Sri Lanka. Geol. Soc. Lond. Spéc. Publ. 2002, 193, 181–197. [Google Scholar] [CrossRef]
- Chhogyel, N.; Kumar, L.; Bajgai, Y. Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan. Sustainability 2020, 12, 4319. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Xing, A.; Zhuo, Z.; Zhang, S.; Zhang, Y.; Huang, Y. Spatial Prediction of Soil Salinity in a Semiarid Oasis: Environmental Sensitive Variable Selection and Model Comparison. Chin. Geogr. Sci. 2019, 29, 784–797. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Wang, C.; Zang, S.; Wu, C.; Luo, J.; Wu, Y. Mapping Soil Alkalinity and Salinity in Northern Songnen Plain, China with the HJ-1 Hyperspectral Imager Data and Partial Least Squares Regression. Sensors 2018, 18, 3855. [Google Scholar] [CrossRef] [Green Version]
- Farifteh, J.; Van Der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Brouwer, C.; Goffeau, A.; Heibloem, M. Irrigation Water Management: Training Manual No. 1-Introduction to Irrigation; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; pp. 102–103. [Google Scholar]
- Wallender, W.W.; Tanji, K.K. Agricultural Salinity Assessment and Management; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2011. [Google Scholar]
- Grattan, S.R.; Zeng, L.; Shannon, M.C.; Roberts, S.R. Rice is more sensitive to salinity than previously thought. Calif. Agric. 2002, 56, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Thiam, S.; Villamor, G.B.; Kyei-Baffour, N.; Matty, F. Soil salinity assessment and coping strategies in the coastal agricultural landscape in Djilor district, Senegal. Land Use Policy 2019, 88, 104191. [Google Scholar] [CrossRef]
- Barbiero, L.; Cunnac, S.; Mané, L.; Laperrousaz, C.; Hammecker, C.; Emaeght, J.-L. Salt distribution in the Senegal middle valley. Agric. Water Manag. 2001, 46, 201–213. [Google Scholar] [CrossRef]
- Nhan, D.K.; Phap, V.A.; Phuc, T.H.; Trung, N.H. Rice production response and technological measures to adapt to salinity intrusion in the coastal Mekong delta. 2012. Available online: http://www.mpowernetwork.org/Knowledge_Bank/Key_Reports/PDF/Research_Reports/Rice_response_to_salinity.pdf?tabid=34059 (accessed on 8 October 2020).
- Gopalakrishnan, T.; Kumar, L.; Hasan, K. Coastal settlement patterns and exposure to sea-level rise in the Jaffna Peninsula, Sri Lanka. Popul. Environ. 2020, 42, 1–17. [Google Scholar] [CrossRef]
- Gopalakrishnan, T.; Hasan, K.; Haque, A.T.M.S.; Jayasinghe, S.L.; Kumar, L. Sustainability of Coastal Agriculture under Climate Change. Sustainability 2019, 11, 7200. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Ji, W.; Ma, Z.; Li, S.; Chen, S.; Zhou, L.-Q.; Shi, Z. Predicting total dissolved salts and soluble ion concentrations in agricultural soils using portable visible near-infrared and mid-infrared spectrometers. Biosyst. Eng. 2016, 152, 94–103. [Google Scholar] [CrossRef]
- Gopalakrishnan, T.; Kumar, L. Potential Impacts of Sea-Level Rise upon the Jaffna Peninsula, Sri Lanka: How Climate Change Can Adversely Affect the Coastal Zone. J. Coast. Res. 2020, 36, 951–960. [Google Scholar] [CrossRef]
Bands | Band Center (nm) | Band Width (nm) | Spatial Resolution (m) |
---|---|---|---|
Coastal aerosol | 433 | 20 | 60 |
Blue | 490 | 65 | 10 |
Green | 560 | 35 | 10 |
Red | 665 | 30 | 10 |
Vegetation Red Edge (Red Ed1) | 705 | 15 | 20 |
Vegetation Red Edge (Red Ed 2) | 740 | 15 | 20 |
Vegetation Red Edge (Red Ed 3) | 783 | 20 | 20 |
Near Infra-Red NIR | 842 | 115 | 10 |
NIR narrow (NIRn) | 865 | 20 | 20 |
Water Vapour | 945 | 20 | 60 |
Cirrus | 1380 | 30 | 60 |
Short Wave Infrared (SWIR1) | 1610 | 90 | 20 |
Short Wave Infrared (SWIR2) | 2190 | 180 | 20 |
Acronym | Spectral Index | Formula | Reference |
---|---|---|---|
SI1 | Salinity Index 1 | [30] | |
SI2 | Salinity Index 2 | [30] | |
SI3 | Salinity Index 3 | [31] | |
SI4 | Salinity Index 4 | [31] | |
SI5 | Salinity Index 5 | [32] | |
SI6 | Salinity Index 6 | [32] | |
SI7 | Salinity Index 7 | [32] | |
SI8 | Salinity Index 8 | [32] | |
SI9 | Salinity Index 9 | [32] | |
S10RED | Salinity index 10 red-edge 3 | [16] | |
SI11 | Salinity Index 11 | [16] | |
SI12 | Salinity Index 12 | [16] | |
NDSI | Normalized Differential Salinity Index | [33] | |
INN1 | Intensity Index 1 | [16] | |
INN2 | Intensity Index 2 | [16] |
Descriptive Statistics (dS m−1) | |
---|---|
Range | 0.05–34.1 |
Median | 0.58 |
Mean | 3.51 |
1st Qu | 0.21 |
3rd Qu | 4.39 |
SD | 5.8 |
CV (%) | 167.3 |
R2 | RMSE | |
---|---|---|
PLSR-PCC | 0.69 | 0.4830 |
PLSR-VIP | 0.66 | 0.5072 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopalakrishnan, T.; Kumar, L. Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka. Sustainability 2020, 12, 8317. https://doi.org/10.3390/su12208317
Gopalakrishnan T, Kumar L. Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka. Sustainability. 2020; 12(20):8317. https://doi.org/10.3390/su12208317
Chicago/Turabian StyleGopalakrishnan, Tharani, and Lalit Kumar. 2020. "Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka" Sustainability 12, no. 20: 8317. https://doi.org/10.3390/su12208317
APA StyleGopalakrishnan, T., & Kumar, L. (2020). Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka. Sustainability, 12(20), 8317. https://doi.org/10.3390/su12208317