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Abstract: The cost estimation of a product’s life cycle is a key factor in the product design process.
The research is based on an innovative model of artificial neural networks (ANNs) compared to a
parametric estimation. Introducing modern elements of information technologies in the area of cost
estimation for a production company is a vital element of its sustainability in the era of Industry 4.0.
The presented modern product life cycle cost estimation tool in the form of ANN is a reliable source
of forecast that is the basis for the product life cycle cost reduction program, which is a crucial element
of sustainability. Research shows that ANNs are a viable alternative to parametric cost estimation.
The percentage error between estimated and historical cost values is 8.05 times lower for ANN than
for the parametric approach. ANN is an adequate cost estimation model for technologically complex
products. The second contribution is using technical specifications required by the customer directly
to estimate the cost of a product’s life cycle automatically. This can translate both into a reduction of
the time needed to provide information to the client and the workload of engineers.

Keywords: cost estimation; artificial neural networks; case study

1. Introduction

According to the latest research, sustainability in the production industry strongly depends on the
use of information and communication technologies [1]. As it was indicated in [2], manufacturing firms
should focus more on real-time learning from large data and contextual decision making, which will
reduce the complexity of human decisions. Introducing elements of Industry 4.0 to a company can lead
to, inter alia, improved sustainability and time savings, as well as a significant reduction in costs (over
the entire product life cycle [3]) and physical stress [4]. Nowadays, unrestricted availability and high
competitiveness between products on global markets create high expectations for product engineers.
Newly implemented products must meet the needs of consumers in terms of technology, usability,
quality, and culture. Another important expectation for product engineers is to create products that
will be relatively easy to produce, and where the product life cycle cost will be commensurate with its
qualitative, functional, and technological parameters [5]. In the product concept and design phase,
several evaluations are carried out concerning the functionality, quality, and profitability of resulting
products [6,7]. The concept of a product life cycle enables the determination of costs related to its life
cycle and the formulation of cost strategies for new products and projects accordingly [8]. In order
to optimize the product design process, typical concurrent engineering is used [9]. An optimized
concurrent engineering environment provides an opportunity to substantially reduce the total cost of a
product’s life cycle. This is because integrated product teams containing members of various skilled
disciplines, contribute simultaneously to early product development and definition. Therefore, within
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a fully integrated product development cycle, multidisciplinary teams working together increase the
probability of a reduced life cycle cost by avoiding costly alterations in subsequent design phases [10].
The study considers the costs of the design phase, production, distribution, and marketing of the product
which is a common scope in the field of life cycle product costing (probabilistic approach) [11]. Due to
the long product life (reaching even several dozen years), the costs related to the disposal/recycling
phase are not in the scope of the production company and are transferred to the buyers. The borders of
the presented model correspond to the cradle-to-door approach which is one of the known practices in
the life cycle assessment area [12,13]. The cost estimation is the basis for the implementation of the
product life cycle cost reduction program (optimization of the resource usage is the value analysis)
to the target cost. ANNs represent the tool for precise estimations. This new approach constitutes
the novelty of the paper. It optimizes the product life cycle cost, i.e., minimizing the consumption
of resources related to the life of the product, according to the economic principles of sustainability
(see [14]). The level of life cycle costs is one of the basic factors influencing the success of a product in a
competitive market. Estimating the product life cycle costs is a fundamental determinant for technical
and business decisions made by product engineers related to the design and management of new
product costs [15,16].

The accuracy of a product life cycle cost estimation is a decisive factor in a product’s success at an
early stage of its operation on the market. When the product life cycle costs are estimated too high,
this may lead to the cancellation of a new product’s implementation, because the company may not
achieve the desired profit in the future [17]. Improved cost estimation techniques available to product
engineers make it easier to control the product life cycle costs during the design process. Despite the
great importance of cost estimation, it is neither a simple nor a straightforward task, because of a lack
of available information in the early project stages [18].

As is the practice of manufacturing companies, product engineers regularly use parametric
estimations for the product life cycle costs [10]. The parametric approach focuses on the characteristics of
a product without its complete description to estimate its cost [19]. The main principle of the parametric
model estimation is utilizing the cost estimating relationship (CER) [20]. The parametric model enables
the efficient use of cost drivers for the purpose of estimating the product life cycle cost. The improvement
of techniques for parametric estimation of life cycle costs is not proportionate to changes in industrial
technologies, and their accuracy, complexity, and adequacy are insufficient. The relevance of the
parametric model depends on the correctness of the mathematical description of the relationship
between model variables and the set of data used for its construction. Niazi et al. [21] indicated
that inaccurate parameterization of the model leads to bias, especially in non-linear relationships
between variables (costs and their drivers). Parametric estimation is an excellent predictor of costs
when the correct procedures are followed; the data is meaningful and accurate, and assumptions are
clearly identified and carefully documented [22–24]. Modifications to the parametric estimation model
(e.g., feature-based costing) are being developed and implemented in order to adapt it to the shifting
industrial environment [25].

At the turn of the twentieth and twenty-first century, there was great interest from production
companies in modern techniques of product cost estimation, namely artificial neural networks—ANNs
(see [26,27]). Zhang et al. [28] have used this technique to estimate the cost of packaging products
by establishing a relation between their cost and cost-related features. Wang et al. [29] showed that
ANNs have the potential to overcome drawbacks and limitations of parametric product cost estimation.
They can be complex models of non-parametric forecasting of product costs, which is one of their main
advantages over the traditional approach—parametric forecasting. As early as 2002, Seo et al. [30]
conducted the first study on the estimation of a product’s life cycle cost using ANNs. In 1995, the
first comparative study between ANNs versus parameter-based applications was conducted by Garza
and Rouhana [31]. In 2004, Kim et al. [32] carried out a similar comparative study in the field of
construction projects. The research showed that ANNs could estimate product life cycle costs without
a need for the mathematical description of functional relations between independent variables (cost
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drivers) and dependent variables (project costs), or a need to define assumptions concerning the form
of costs. Ikeda and Hiyama [33] presented the use of four ANN models to estimate the production
costs of improved models of induction motors in the Department of Large Rotating Machinery, Toshiba
Mitsubishi-Electric Industrial Systems Corporation. Weckman et al. [34] showed that even with limited
data, the ANN model is able to produce a superior cost estimate in a fraction of the time required by the
parametric cost estimation process. This significant improvement over parametric cost estimation can
be attributed to the ANN’s ability to handle complex data sets with many inputs and few data points.
The most recent study on the use of ANN models in estimating flow time and cost estimation for
transformer orders was carried out in [35]. The authors of this study conclude that the input variables
in ANN are the technical specifications of the product set out by the consumer, which renders the ANN
model more useful than the parametric model. Similar statements have also been made in various
studies based on comparisons between ANN and parametric estimation [36–38]. These studies show
that ANN is more reliable and consistent for different types of estimation.

The aim of this study was both to compare the accuracy and effectiveness of two estimation
techniques (i.e., ANN and parametric models) in estimating product life cycle costs. The literature
review given in Section 1 indicates that there is no prior study that uses product specifications or
order specifications as required by the consumer to predict the product life cycle cost, other than using
the CER (parametric model). In other words, the product life cycle costs have not been predicted
by taking into account both the properties of the product and consumer specifications. Section 2.1
briefly describes the case study company. In Sections 2.2 and 2.3, the research methods are described.
In Section 3, the collected cost data are applied to the two approaches in question (the ANN and
parametric model), and the performance of the ANN vis-à-vis that of the parametric techniques is
compared. The empirical results are discussed in Section 4. The conclusions are summarized in
Section 5.

2. Materials and Methods

2.1. Production System of the Company

The source of empirical data used in this research is an induction motor production company
from Poland (company name withheld for proprietary trade secrets, data presented in the manuscript
in Section 2.2 is partially changed and narrowed down due to the same reason). Data used in the
research, which is referred to as the presented final results of estimation, are the original data from the
company and has not undergone any modification.

According to the organizational structure of the case study company, three main departments of
production can be distinguished: (i) production, (ii) support, and (iii) service. The production division
is directly responsible for the production of main induction motor parts. The support divisions produce
auxiliary products used in the production department, i.e., dioramas, tools, and machines. The name
“service departments” refers to divisions involved inter alia in processes such as transportation,
staff training, market research, research, and development (R&D). The production process (production
phase) in a simplified form is presented in Figure 1.
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Figure 1. The simplified and generalized process flow diagram of induction motors production phases
(source: own elaboration based on information obtained from the company).

2.2. Parametric Cost Estimation of the Product Life Cycle

The company produces a wide range of induction motors. These products have different
production standards depending on the parameters of a given induction motor. The company uses
standard costing, which is an element of the SAP-ERP information system. Standard costing generates
the necessary data on cost standards and the consumption of production resources. The standard data
(direct labor-hours per input unit, direct labor rate per hour, direct materials—kg per input unit, price
of input direct materials unit, machine-hours per output unit, variable and fixed overhead cost rates
per machine-hour, activities costs, and production volume) used in the parametric estimation of a
product’s life cycle was obtained from the company’s controlling SAP-ERP model database.

In the case study, we analyzed the induction motor type 4Sm412H-6-AT5 produced by a Polish
company. The product parameters are presented in Table 1.

Table 1. Induction motor type 4Sm412H-6-AT5 specification (source: own elaboration based on the
technical specification).

Type Rated
Power (kW)

Rated
Current 1 (A)

Rated
Voltage (V)

Rotational
Speed (rpm)

Pole
Number

Net
Weight (kg)

4Sm412H-6-AT5 250 442 400 990 6 2300
1 at rated voltage and full load.

Production lines used to build induction motors have a mass and repetitive character. This kind
of product can be analyzed successfully by the parametric product life cycle cost estimation
models—widely regarded as one of the most popular methods for estimating the cost of a product’s
life cycle, especially at the early stages of development. Using a simple mathematical formula, it is
possible to derive the relationship between technological parameters and the cost of a part or cycle
phase [17].

The CER can be present as a cost function derived from both (i) technological parameters (cost
drivers) and (ii) financial parameters (price/rate). The direct material cost, direct labor cost, and
overhead production cost present the relationships between the cost drivers (direct labor-hours per
input unit, direct materials—kg per input unit, machine-hours per output unit) and the price/rates
of these drivers (direct labor rate per hour, price of direct materials, overhead production cost rate
per machine-hour). The overhead production cost can be divided into (i) variable and (ii) fixed costs.
Standard costing can be realized through two approaches: (i) absorption and (ii) variable costing.
The former results in proportionalities of fixed overhead production costs in the product, similar to
the latter. Variable costing approach results in the fact that fixed overhead production costs in the
parametric estimation of a product’s life cost are allocated to the product in the same way as variable
overhead production costs (this approach is very often criticized by theorists, but in practice, it is
widely used by enterprises using ERP systems). The cost of the design, research, marketing, and
distribution phases is estimated according to the cost of activities for a given production volume [11].
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The CER for the production phase is defined as:

CER = CD × FP, (1)

where CD—cost driver, FP—financial parameter.
The CER for the design and the distribution and marketing phase is calculated as follows:

CER = FP/PV, (2)

where FP—financial parameter, PV—production volume until the product is withdrawn
from production.

Table 2 presents the estimated product life cycle costs by the parametric method.

Table 2. An example of the estimated product life cycle cost—induction motor type 4Sm412H-6-AT5
(source: own elaboration based on the financial data).

Phase Name Cost Estimating Relationship (CER)

I. Design phase 1324.08
Product design, process design, research and development,
orders and deliveries, testing, corrections of the project, etc.

II. Production phase 5267.69
Direct materials, direct labor, overhead production costs

(variable costs), and overhead production costs (fixed costs).

III. Distribution and marketing phase 634.23
Advertisements, fairs and exhibitions, marketing research, staff

training, transportations, packaging materials, after-sales
services, etc.

Product life cycle cost (I + II + III) 7226.00

Then the product life cycle cost is equal to 7226.00 USD—the sum of CER for all product life cycle
phases: design, production, distribution, and marketing.

According to the cost table (Table 2), the main component of the estimated cost structure of the
product’s life cycle is the production phase (Figure 2).

Sustainability 2020, 12, x FOR PEER REVIEW 5 of 14 

widely used by enterprises using ERP systems). The cost of the design, research, marketing, and 
distribution phases is estimated according to the cost of activities for a given production volume 
[11]. 
The CER for the production phase is defined as: 

CER = CD × FP, (1) 

where CD—cost driver, FP—financial parameter. 
The CER for the design and the distribution and marketing phase is calculated as follows: 

CER = FP/PV, (2) 

where FP—financial parameter, PV—production volume until the product is withdrawn from 
production. 

Table 2 presents the estimated product life cycle costs by the parametric method. 

Table 2. An example of the estimated product life cycle cost—induction motor type 4Sm412H-6-AT5 
(source: own elaboration based on the financial data). 

Phase Name 
Cost Estimating 

Relationship (CER) 
I. Design phase 1324.08 

Product design, process design, research and development, orders and 
deliveries, testing, corrections of the project, etc. 

 

II. Production phase 5267.69 
Direct materials, direct labor, overhead production costs (variable costs), 

and overhead production costs (fixed costs). 
 

III. Distribution and marketing phase 634.23 
Advertisements, fairs and exhibitions, marketing research, staff training, 

transportations, packaging materials, after-sales services, etc. 
 

Product life cycle cost (I + II + III) 7226.00 

Then the product life cycle cost is equal to 7226.00 USD—the sum of CER for all product life 
cycle phases: design, production, distribution, and marketing. 

According to the cost table (Table 2), the main component of the estimated cost structure of the 
product’s life cycle is the production phase (Figure 2). 

 

Figure 2. Estimated cost of the product life cycle—induction motor type 4Sm412H-6-AT5 (source: 
own elaboration based on the financial data). 

In the case study, the parametric cost estimation of the product life cycle was carried out for one 
induction motor only (Table 2) in order to present the parametric estimation methodology. For the 

Figure 2. Estimated cost of the product life cycle—induction motor type 4Sm412H-6-AT5 (source: own
elaboration based on the financial data).

In the case study, the parametric cost estimation of the product life cycle was carried out for one
induction motor only (Table 2) in order to present the parametric estimation methodology. For the
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remaining five induction motors, the estimated cost of the product life was calculated based on the
same methodology. Table 3 presents the test set data structure with example values.

Table 3. The test set data structure with example values used in the parametric estimation (source: own
elaboration based on the technical specification).

Case
Number

Rated
Power (kW)

Rated Current
1 (A)

Rotational
Speed (rpm)

Number of
Poles

Net Weight
(kg)

Shaft Diameter
(mm)

1 250.0 442.0 990 6 2300 92
2 90.0 162.0 1480 4 660 75
3 75.0 128.0 2960 2 570 65
4 150.0 251.0 2980 2 1100 65
5 5.5 10.2 2910 2 70 28

1 at rated voltage and full load.

2.3. Artificial Neural Networks in the Product Life Cycle Cost Estimation

The origins of ANNs date back to 1943. The principle of a single artificial neuron was presented
in [39]. Signals at the inputs of a neuron (equivalent to biological dendrites) are multiplied by real
numbers (so-called weights), constituting the total neuron stimulation. This value is then modified
by an activation function. In this role, the commonly used functions belong to logistic, hyperbolic
tangent, sine, and identity. The signal leaves the nerve cell via the output (which is equivalent to an
axon). The currently used networks have neurons grouped into structures called layers. A multilayer
perceptron (MLP) has three types of layers: input (neurons retrieve data from outside the ANN),
optional hidden (typically one or two layers), and output. MLP with a minimum of two hidden
layers—according to Kolmogorov’s theory—can model any continuous function [40].

A set of real historical data, which we used to estimate the product life cycle costs were used
in building the ANN model. The data contained 90 cases for different types of induction motors.
The historical data (hereinafter referred to as the expected cost of the product life cycle) was obtained
from the company’s SAP-ERP database controlling module. The expected cost of the product life cycle
contains real, historical cost values and was used in ANNs to train and evaluate the estimation of the
product life cycle cost (an ANN model output; out of sample estimation).

Table 4 presents the set of six explanatory (input) and one explained (output) variables used in
the research.

Table 4. The list of all variables used by ANNs (source: own elaboration).

No. Variable Name Unit

Input variables
1 Rated power kW
2 Rated current A
3 Rotational speed rpm
4 No. of poles –
5 Net weight kg
6 Shaft diameter mm

Output variable
7 Product life cycle cost USD

We divided the data randomly into three sets: training, validation, and test in the manner shown
in Figure 3. Such a division was related to the amount of available data (different types of induction
motors) and constituted a compromise between the desired high number of teaching resources (required
for more effective training and lower estimation errors) and the number of cases in test resources
(necessary for reliable evaluation of the model’s operation). It was also confirmed in the empirical
research described in [41].



Sustainability 2020, 12, 8353 7 of 14

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 14 

 
Figure 3. The data divided into three sets (source: own elaboration). 

Two types of ANNs, with unidirectional data flow, were tested: MLP and radial basis function 
(RBF) networks ([42,43]). Figure 4 shows a construction scheme of ANNs used in the research: the 
MLP with a single hidden layer and RBF model, respectively. 

 

Figure 4. Architecture of the (a) MLP and (b) RBF network (numbers of variables in accordance with 
Table 4, source: own elaboration). 

The scheme of the research method is presented in Figure 5. 

 

Figure 5. The block diagram of the research method based on artificial neural networks (ANNs) 
(source: own elaboration). 

The approach used in the research has the limitation connected with the necessity to optimize a 
lot of the models’ parameters. It can be done completely by a human or with the support of software. 
In both cases, the human factor plays an important role (when it comes to the final model precision) 

Figure 3. The data divided into three sets (source: own elaboration).

Two types of ANNs, with unidirectional data flow, were tested: MLP and radial basis function
(RBF) networks ([42,43]). Figure 4 shows a construction scheme of ANNs used in the research: the MLP
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The approach used in the research has the limitation connected with the necessity to optimize a
lot of the models’ parameters. It can be done completely by a human or with the support of software.
In both cases, the human factor plays an important role (when it comes to the final model precision) at
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the stages of its creation and optimization. However, such limitations do not exist at the stage of using
the previously optimized model i.e., during the estimation cost of the product life cycle.

3. Results

The number of tested ANNs surpassed 10,500, therefore only the most precise networks of both
types were presented in the study.

In the case of MLP, its relatively non-complex structure is the result of empirical research. Both the
increase and the decrease in the number of neurons in the hidden layer led to a decrease in the precision
of the model. Also, the enrichment of MLP with subsequent hidden layers resulted in an increase in
the estimation error. This is confirmed by the necessity of keeping the model as simple as possible
(avoiding its excessive complexity), a need often postulated in the literature [41].

Our studies have shown that MLP-type networks generate a significantly better cost estimation
for induction motors than RBF networks. The mean absolute percentage error (MAPE) for the best
MLP was 9.01% and 17.27% for the most precise RBF network. The training parameters and network
structure (Table 5) were selected automatically by the simulator to minimize the error function—the
sum of squares (SOS). Figure 6 presents estimation errors (for the data from the test set) generated by
the MLP and the RBF network (the development of [41]).

Table 5. Optimum network topology and its parameters (source: own elaboration).

Parameter Name Value

Multilayer perceptron (MLP)
Number of hidden layers 1

Number of neurons at the hidden layer 3
Number of neurons at the input layer 6

Number of neurons at the output layer 1
Activation functions of hidden layer neurons Logistic
Activation functions of output layer neuron Exponential

Learning algorithm Broyden-Fletcher-Goldfarb-Shanno (BFGS)
Error function Sum of squares (SOS)

Number of epochs 102

Radial basis function (RBF) network
Number of neurons at the hidden layer 14
Number of neurons at the input layer 6

Number of neurons at the output layer 1
Activation functions of hidden layer neurons Gaussian
Activation functions of output layer neuron Identity

Learning algorithm Reduced Breadth-First Search
Error function SOS

For both types of ANN, there is a noticeable increase in the estimation error for the lower-cost
engines. The reason for such a low precision can be an insufficient number of cases of the low cost
of the product life cycle in the training set. This may indicate an increased risk of unacceptable low
precision of estimation if the product’s cost strongly differs from the average value [41].
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3.1. Regression Analysis as a Comparative Model

The regression models were designed by the authors and used to investigate the strength and
type of relationship (linear, non-linear) between independent (given the technological parameters of
induction motors) and dependent variables (the expected cost of the product’s life cycle). The selection
of a non-linear function was based on the coefficient of determination R2. The function with the highest
R2 has been selected (see Table 6).

Table 6. R2 coefficients for regression model (source: own elaboration).

Regression Model R2 for Tested Functions of Regression 1

Logarithmic Exponential Polynomial

Rated power vs.
expected cost of product life cycle R2 = 0.7052 R2 = 0.7602 R2 = 0.9874

Rated current vs.
expected cost of product life cycle R2 = 0.7170 R2 = 0.7633 R2 = 0.9846

Shaft diameter vs.
expected cost of product life cycle R2 = 0.6638 R2 = 0.8718 R2 = 0.8013

1 Bold font indicates the highest value.

A regression model with a single explanatory variable shows that independent variables [X2],
[X3], [X4], [X6] have a linear and non-linear impact on the level of the expected cost of the product’s life
cycle (Figure 7b–d,f), while variables [X1] and [X5] are not statistically significant from the point of
view of the expected cost of the product’s life cycle (Figure 7a,e). Independent variables [X2], [X3], [X4],
and [X6] are positively correlated with the expected cost of the product’s life cycle—Y. Determination
coefficient R2 for independent variables [X2], [X3], [X4], and [X6] is within the range of 0.87 to 0.99 which
proves the high quality of model adjustment. Multiple regression was used as a comparative model
for ANNs. Multiple regression for [X1], [X2], [X3], [X4], [X5], and [X6] shows that the determination
coefficient R2 is 0.99. The regressions parameters were calculated based on the data used in ANNs as
training and validation sets.
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3.2. Performance Comparison

In a comparative study, the performance of each model was measured using basic types of
forecasting errors. The basic measure of error between the forecasted measure and the forecast is the
percentage error (PE). The pre-performance comparison was carried out using data from:

• ANNs in the product life cycle cost estimation;
• Parametric cost estimation of the product life cycle.

Comparative results for randomly selected cases are presented in Table 7. It presents the test set
data with example values estimated by the MLP and a parametric approach in comparison with the
expected product life cycle costs (historical cost values archived in the SAP-ERP controlling module).

Table 7. The example performance comparison of the ANN and parametric estimation with the test
data set (source: own elaboration).

Case
Number

Expected
Value (USD)

ANN Parametric Estimation

Estimated
Value (USD)

Percentage
Error (PE) (%)

Estimated
Value (USD) PE (%)

1 7240 7230 0.14% 7226 0.19%
2 2763 2712 1.85% 2478 10.31%
3 2995 2950 1.50% 3500 14.43%
4 5526 5545 0.34% 4900 11.33%
5 276 280 1.43% 250 9.42%
. . . . . . . . . . . . . . . . . .

PE (%) for the entire test set 1.10% 8.86%

The PE indicates the higher accuracy of the ANN model than the model of a parametric estimation
of product life cycle costs. The PE is 8.05 times lower for the ANN (1.10%) than for the parametric
model (8.86%).

The PE value of the life cycle cost estimation is not the only factor indicating the advantage of the
ANN estimation. The generalization capability of ANN is impressive for these types of estimation
issues where the technical product specifications required by the consumer are used directly as input
variables for the model instead of the typical cost drivers.

4. Discussion

In companies with advanced production technology, building a model for the parametric estimation
of product life cycle costs is complicated, as the number of independent variables—technological
parameters—increases. Relations between variables become complex and difficult to describe
mathematically. Product engineers are not able to identify the relationships between the dependent
variable—the cost of the product’s life cycle, and independent variables—technological parameters
(cost drivers). Building a multidimensional cost function is extremely labor-intensive and may even be
impossible in some cases. The sets of data necessary to build mathematical equations, are in many cases
very large and expensive to obtain. The advantage of parametric estimation of product life cycle costs is
the possibility to be used in a reliable audit based on detailed procedures and mathematical equations.
In the case of parametric models, cost engineers build mathematical equations, whose correctness
can be verified not only by a formal audit but also by the logic of their reasoning. Computer-aided
parametric estimation is rather simple and does not involve a lot of work, however, is not as precise
as ANNs. The paper presents the model trained with the BFGS algorithm, which transpired to be
more precise than the popular backpropagation method used inter alia in [30,33]. The research showed
that also models based on a relatively small number of input variables and simple structure (in the
comparison to inter alia [30]) can generate the precise estimates of product life cycle costs.
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The use of ANNs should also have a positive impact on the macroeconomic aspects of the
functioning of the economy. The existence of a relationship between life cycle cost and the generally
understood economic development (often defined by GDP or GNP) was indicated in the literature on
the subject in, inter alia, [44]. The connection between costs on the microeconomic level and effects
on the macroeconomic scale in the classical life cycle costing was also noticed in [45]. Optimizing
the product life cycle through the use of ANN should translate into further growth of its positive
contribution to the economy. For this reason, economic policy should stimulate the described and
similar approaches focusing on the efficient use of economic resources.

Future research should focus on further model optimization. It can be potentially achieved with
the use of more complex ANNs, especially deep learning models. Their application enables the effective
use of a larger number of neurons. The multitude of different types of layers in deep networks enables
the model to be adjusted to a specific problem, but at the same time significantly increases the number
of parameters, most of which must be selected experimentally.

5. Conclusions

ANNs do not eliminate all difficulties associated with the use of parametric estimation of product
life cycle costs. They are a viable alternative to traditional CER estimation, especially in situations of
poor recognition of the nature of technological and production relations between costs and their cost
drivers or in situations of non-linear, multidimensional relations between variables. This important
advantage of ANNs reduces the need to perform technological and production analyses and to share
in-depth technological knowledge with product cost engineers. A computer-aided ANN, unlike
parametric estimation, is not simple and requires expert IT knowledge. The disadvantage of ANN is
the significant risk involved in the process of building a neural model using a small number of data
sets. As indicated by the results of both the literature and the empirical research conducted by the
authors of this paper, the number of data samples is one of the basic elements influencing the quality
of estimation.

In this study, an ANN using technical specifications required by consumers was designed to
estimate the cost of a product’s life cycle. The results show that the accurate prediction capability of the
ANN improves cost estimation. Statistical research revealed the existing positive correlation between
the selected technical specifications required by the consumers and the expected cost of a product’s
life cycle.
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