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Abstract: In recent decades, many countries have shown a growing interest in the use of renewable
energies for power generation. Geothermal energy is a clean and environmentally friendly source
of renewable energy that can be used to produce electricity and heat for industrial and domestic
applications. While Afghanistan has undeniably good geothermal potential that can be utilised
to alleviate the country’s current energy limitations, so far this potential has remained completely
untapped. In this study, the suitability of 21 provinces for geothermal project implementation
in Afghanistan was evaluated using multiple multi-criteria decision-making (MCDM) methods.
The stepwise weight assessment ratio analysis (SWARA) method was used to weigh each criterion
while the additive ratio assessment (ARAS) method was used to rank potential geothermal sites.
The technique for order of preference by similarity to ideal solution (TOPSIS), the vlse kriterijumsk
optimizacija kompromisno resenje (VIKOR), and the weighted aggregated sum product assessment
(WASPAS) methods were also used in this study. These rankings were then examined via sensitivity
analysis which indicated that a 5% change in criteria weights altered the rankings in all methods except
the VIKOR method. Volcanic dome density was ranked the most important criteria. All the methods
identified Ghazni province as the most suitable location for geothermal project implementation
in Afghanistan.

Keywords: geothermal energy; location planning; MCDM method; sensitivity analysis; Afghanistan

1. Introduction

At present, the world heavily relies on fossil fuels as a source of energy. However, overreliance
on these fuels has resulted in environmental pollution, climate change, rising sea levels, etc. [1].
Therefore, the development, acceleration, and dissemination of newer, more sustainable technologies
that do not exacerbate the effects of climate change are of utmost importance [2]. In order to meet the
ever-increasing global demand for energy without compromising on environmental protections and
sustainable development goals, it is essential that fossil fuel-burning power plants are gradually replaced
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by renewable energy systems [3]. A crucial component of sustainable development, the development
and expansion of renewable energy systems should greatly increase national endeavours to satisfy
the economic, environmental, and social goals of the 21st century [4]. Geothermal energy is not only
one of the most reliable, stable, and clean energy sources available, but it can be harvested regardless
of the weather and climate conditions [5]. The limited environmental impact, low greenhouse gas
emission, and low technology requirements of geothermal energy give it immense potential as a
renewable energy source [6,7]. Geothermal energy is harvested from the heat produced in the earth’s
core [8] and its internal structures [9] which lie stored in rocks lying deep below the surface [10,11].
This source of energy is not only used in electricity and heat generation but also in oil extraction,
paper production, gold mining and processing as well as silica dust production [12]. However, it is
mainly utilised in electricity generation, direct heating, and heat pumps [13]. Depending on the
economic, social, and environmental conditions of a region, geothermal energy can be harvested for
industrial, agricultural, or domestic use [14]. In recent decades, geothermal energy has seen significant
growth in the rate of utilisation worldwide.

In underdeveloped countries such as Afghanistan, the absence of extensive electrical infrastructure
as well as the sad state of the electricity industry are obstacles in the road to development [15]. However,
increased public awareness on the importance of sustainable power sources has led to a growing
demand for the development and utilisation of renewable energy sources [16]. As Afghanistan has
numerous volcanic sites and hot springs, it is more than likely that the country not only has significant
power generation potential, but a vast quantity of untapped geothermal power [17]. Therefore,
geothermal power plants may be able to meet a significant part of Afghanistan’s current and future
electricity demands [15]. This calls for special consideration of potential renewable energy sources,
especially geothermal power, in Afghanistan and the role that these sources can play in meeting the
country’s increasing energy demands.

The present study aims to identify potential geothermal project locations in Afghanistan and
assess their suitability. As the shortlisted locations needed to be appraised across multiple criteria,
multiple multi-criteria decision-making (MCDM) methods; specifically (1) stepwise weight assessment
ratio analysis (SWARA), (2) additive ratio assessment (ARAS), (3) technique for order of preference by
similarity to ideal solution (TOPSIS), (4) vlse kriterijumsk optimizacija kompromisno resenje (VIKOR),
and (5) weighted aggregated sum product assessment (WASPAS); were utilised in this study. SWARA
was used to assign a weight to each criterion while ARAS was used to rank regions and provinces in
Afghanistan by order of potential suitability for geothermal project implementation. TOPSIS, VIKOR,
and WASPAS were used to validate the findings of the SWARA and ARAS methods. The ranking
results were then compared with each other before sensitivity analysis was performed to determine
the impact of each criterion as well as the method of results evaluation.

2. Literature Review

As MCDM methods have extensive applications in energy planning, decision-making, and many
other related areas, this section first reviews existing studies on the application of MCDM methods in
renewable energy utilisation, then focuses on their use in geothermal project site location.

2.1. MCDM Methods in the Assessment of Renewable Energy Sources

MCDM methods can be very effective in providing solutions for energy-related decision-making
problems that have multiple conflicting criteria and objectives [18]. Over the years, MCDM methods
have been used in a wide variety of energy-related areas such as planning, resource allocation,
policymaking, and management [19]. This section briefly examines prior studies that have used MCDM
methods to rank renewable energy sources. Yazdani-Chamzini et al. [20] integrated the complex
proportional assessment (COPRAS) and analytic hierarchy process (AHP) methods to identify the
best renewable energy project and proved its validity by comparing their results with the findings of
five other MCDM methods. Stein [21] used the AHP method to assess and rank several renewable
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and non-renewable energy generation technologies. It concluded that the most important renewable
energies were solar, wind, hydroelectric, and geothermal. Kabak & Dag˘deviren [22] examined the
opportunities, risks, benefits, and cost of renewable energies in Turkey and used the analytic network
process (ANP) method to rank them. Their results suggest that hydropower is the most suitable source
of renewable energy for the country. Tasri et al. [23] investigated the best source of renewable energy
for electricity generation in Indonesia and found that hydropower was most appropriate followed by
geothermal, solar, wind, and biomass energies. Ahmad & Tahar [24] used the AHP method to rank
renewable energy technologies for Malaysia and concluded that photovoltaic (PV) systems were most
suited. In a study by Sengul et al. [25], the fuzzy TOPSIS method was used to rank renewable energy
systems in Turkey while the Shannon entropy method was used for criterion weighting. Their findings
indicate that hydropower was the best renewable energy system for Turkey. Streimikiene et al. [26]
combined the ARAS and AHP methods to rank power generation technologies for Lithuania and found
that biomass technologies should be given the highest priority. Buyukozkan & Guleryuz [27] developed
an integrated MCDM model in which the decision-making trial and evaluation laboratory (DEMATEL)
method was used for weighting and the ANP method to rank them. Al Garni et al. [28] presented an
AHP-based MCDM method for assessing renewable energy sources in Saudi Arabia which concluded
that solar photovoltaic was best suited followed by concentrated solar power. Celikbilek & Tuysuz [29]
developed a DEMATEL, ANP, and VIKOR-integrated model to evaluate renewable energy sources
and demonstrated its effectiveness via a case study. They also examined two review studies on the
application of decision-making tools in renewable energy utilisation. A comprehensive study by
Kumar et al. [30] reviewed the criteria used in decision-making models for renewable energy source
assessments and provided valuable insight into various MCDM techniques, their contribution to the
use of renewable energies, and future prospects in this field. It also included extensive research on the
potential use of MCDM techniques in the area of sustainable energy. Kaya et al. [31] reviewed existing
literature on energy-related policymaking and decision-making using MCDM methods. It showed that
the fuzzy AHP method was the most commonly used, either individually or in combination with other
MCDM methods, in this field of study. Xu et al. [32] used two MCDM methods to study potential
renewable energy sources for hydrogen production in Pakistan. The fuzzy AHP method was used
to weight each criterion before the data envelopment analysis (DEA) method was used to rank the
renewable energy sources. They found that wind and solar energy were the best renewable energy
sources for hydrogen production in Pakistan. Ghost et al. [33] created a fuzzy-COPRAS framework to
analyse six renewable energy sources in West Bengal, India based on eight criteria and discovered
that solar energy was the most suitable option. Anwar et al. [34] ranked renewable energy sources in
Pakistan by utilising the AHP method to weight the criteria and the TOPSIS method to rank the energy
sources. Their analysis showed that solar energy was the best renewable energy source for Pakistan.
Campos-Guzmán et al. [35] carried out a comprehensive literature review of the methods used to assess
the sustainability of renewable energy systems and concluded that a combination of life cycle analysis
(LCA) and MCDM methods could be an effective tool in the sustainability assessment of renewable
energy systems and in obtaining a set of sustainability criteria. A study by Siksnelyte-Butkiene et al. [36]
examined scientific articles that have used MCDM methods to evaluate renewable energy technologies
in households. Their paper provides an in-depth overview of MCDM methods and outlines their
advantages and disadvantages when used in technology assessment.

The literature review above clearly shows that many studies have used MCDM methods to assess
and rank renewable energy sources in different countries. However, any change in the method or
evaluation criteria significantly changed the rankings in these studies. Since it is irrational to assess
multiple renewable sources based on a single set of general criteria, a comprehensive set of criteria for
each renewable energy source and its measurements needs to be identified. It is also imperative to
apply several different MCDM methods to each problem and compare the results in order to ensure
that the results are accurate and valid.
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2.2. MCDM Methods in the Assessment of Geothermal Projects

Many researchers have used MCDM methods to determine geothermal project site location and,
more precisely, for the weighting of selection criteria as well as the ranking of potential locations [37].
They have also been used to assess and rank potential geothermal power plant sites in different
countries [38]. This section briefly reviews existing studies that have used MCDM methods to
assess potentially suitable locations for geothermal projects: Ramazankhani et al. [1] used the DEA
method to rank 14 Iranian provinces according to adaptability to geothermal-powered hydrogen
production. The results were then compared with the results of the TOPSIS and VIKOR methods which
showed that the provinces of East Azerbaijan, Bushehr, and Hormozgan were the most adaptable.
A similar study by Mostafaeipour et al. [14] integrated the Shannon entropy method and the fuzzy
multi-objective optimization on the basis of ratio analysis (Fuzzy-MOORA) method to rank the
feasibility of geothermal-energy hydrogen production among 14 Iranian provinces. The Shannon
entropy technique was applied to weight the criteria and the fuzzy-MOORA method was used to
rank the provinces. The study found that the provinces of Bushehr, Hormozgan, and Isfahan were the
most suitable for geothermal-powered hydrogen production. Yalcin et al. [39] used a combination of
multiple-criteria decision analysis (MCDA) and a geographic information system (GIS) framework to
assess geothermal sources in the Akarcay basin in Turkey. In the MCDA phase, the relative weights of
each selection criterion were determined with the help of the AHP method and pairwise comparisons.
Their findings indicate that all the examined hot springs had great geothermal energy potential. In a
paper by Kiavarz et al. [40], a GIS-based framework, working on the basis of ordered weighted
averaging (OWA), was used to generate geothermal maps of the prefectures of Akita and Iwate in
Japan. The researchers stated that the use of the OWA method provided a model for generating
prospective geothermal maps with different optimistic and pessimistic strategies. Tinti et al. [41] used
a GIS framework and the AHP method to assess the suitability of shallow geothermal technologies.
This study, which involved comparing a large number of shallow geothermal source-related criteria
and factors, reported that it was possible that one can draw a suitability map of technologies for
Europe using the AHP method. Puppala et al. [42] assessed potential geothermal fields in India using
the fuzzy AHP method to weight criteria. The paper identified the Puga field as the most important
geothermal field in the studied region. Cambazoğlu et al. [38] used a GIS framework and the TOPSIS
method to examine the potential of geothermal sources in Gediz Graben, Turkey and showed that
76% of the examined geothermal wells were of the two most favourable classes in terms of suitability.
An article by Raos et al. [43] examined the main features of MCDM tools for the economic and
environmental assessment of geothermal projects. They used decision support and MCDM methods
with a weighted decision matrix (WDM) to study the various options of a geothermal system based on
a set of criteria. Their findings were validated for use in several scenarios based on the results of a
sensitivity analysis. The method proposed in this study can be used by investors and decision-makers
to mitigate investment risks. Bilić et al. [44] analysed five potential geothermal sites in north-eastern
Croatia, a part of the Pannonian basin, using the weighted decision matrix (WDM) and discovered a
high degree of consistency between the results and the actual use of five geothermal fields.

Since neither MCDM method is superior to the other, the best way to obtain reliable and robust
results is to use two or more of them and compare the results [45]. Our literature review, however,
shows that most of the existing studies in this field have used either one or only a limited number of
MCDM methods; a choice which makes their result highly dependent upon the chosen method and the
selection criteria. In order to mitigate against this as well as to address the gap in the current literature,
this study used five MCDM methods, namely SWARA, ARAS, TOPSIS, VIKOR, and WASPAS, to rank
the regions of interest in terms of suitability for geothermal projects. These rankings were then
compared and subjected to sensitivity analysis to determine how the choice of method and selection
criteria affect them. It should be noted that the SWARA, ARAS, and WASPAS methods were chosen
due to their relative novelty, simplicity, and reputation of producing robust results. Another innovation
of this research was to focus on regions in Afghanistan that, despite having a wealth of geothermal
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potentials such as hot springs, volcanoes, magma springs, and hot surface waters, have not received
much attention in terms of geothermal potential analysis. Nevertheless, recent geological studies have
revealed enormous geothermal potential in Afghanistan which, if harvested properly, could significantly
influence the electricity and energy supply of the country. Therefore, this study used multiple MCDM
methods to rank Afghan provinces in terms of suitability for geothermal projects and conducted a
comparative analysis of the results.

3. Geography of Afghanistan

Afghanistan is a Central Asian country with a population of 32 million people and a land area of
647,800 km2 making it the 42nd most populous and 40th largest country in the world [46]. The studied
area as well as a map of the Afghan provinces is displayed in Figure 1. At present, the country’s
electricity sector is in dire straits and it suffers from a complex set of stability and security problems
which make it difficult for it import power from its neighbours: Turkmenistan, Tajikistan, Iran,
Uzbekistan, and Kyrgyzstan [47]. Only 10 to 15% of the population have stable access to power which
is very low in comparison to other countries in the world [46]. According to the Afghanistan Power
Sector Master Plan (APSMP), the electricity demand of the country is expected to reach about 3500 MW
by 2032 [47]. Therefore, the Afghan government has made the acquisition of off-grid technologies,
including renewable energies, the highest priority as it provides the best long-term solution to
Afghanistan’s electricity problems [48]. Renewable energies offer great opportunities for bringing
electricity to Afghans, especially those living in rural and remote areas [49]. Although geothermal
energy can satisfy part of the country’s electricity demand, generating electricity from geothermal
sources has two major requirements: adequate equipment and large resources of water or steam [50].
The presence of many magma springs, volcanoes, and surface hot water in Afghanistan is a testament
to the enormous geothermal potential of this country; a potential that has also been reaffirmed by recent
geological studies [17]. Afghanistan also has access to the technologies needed to effectively harness
geothermal energy potentials [51]. The terrain in Afghanistan suggests that there are vast systems of
groundwater circulating beneath the country [48]. However, despite the excellent geothermal potential
present here, Afghanistan still does not have a single geothermal power plant [17].
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4. Methodology

Multiple MCDM techniques were used in this study to rank a number of Afghan provinces
according to their suitability for future geothermal projects. First, the ranking criteria were weighted
using SWARA then the sites were ranked using ARAS, TOPSIS, VIKOR, and WASPAS before the
results were compared.

4.1. SWARA

In MCDM methods, decision makers play a central role in determining which criteria to use
and how they should be weighted. Indeed, criteria weighting is an important step in solving
decision-making problems [52]. SWARA was developed in 2010 by Keršuliene et al., to help experts
weight decision-making criteria. The main advantage of this method is not only that expert opinions
are unconditionally included but, in comparison to other models, it has a higher degree of accuracy
in evaluating the opinions of experts [53]. SWARA is much simpler to comprehend with fewer pair
comparisons than similar methods such as AHP and ANP [54]. It also allows decision makers to
interact and advise each other making the results more precise compared to other techniques [55].

The main criteria weighting steps of SWARA are as follows [54,56–58]:

• Stage 1: Arrange the criteria;
• Stage 2: Assign the respective significance of average value (S j) for each criterion;
• Stage 3: Assign the coefficient K j; a function of S j; using the following equation:

K j = S j + 1 (1)

• Stage 4: Account for the weight q j using the following equation

q j =
q j−1

K j
(2)

where the most important criterion has a weight of 1.
• Stage 5: Account for normalised weight using the following equation

w j =
q j∑

q j
(3)

4.2. ARAS

ARAS is based on the assumption that intricate events can be seen using simple relative
comparisons [59,60]. The aggregate of weighted and normalised number of criteria for each alternative
is divided by the aggregate of weighted and normalised number of criteria for the best alternatives to
gain the degree of optimality coefficient. The stages of ARAS are as follows [59,61]:

Stage 1: Form an m × n decision matrix as follows:

X =



x01 . . . x0 j . . . x0n
...

. . .
...

. . .
...

xi1 . . . xi j . . . xin
...

. . .
...

. . .
...

xm1 . . . xmj . . . xmn


i = 0, m; j = 1, n (4)
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x0 j is the optimal value for the criterion j which, when unknown, can be determined as follows:

x0 j = max
i

xi j , i f max
i

xi j is pre f erable,

x0 j = min
i

x∗i j , i f min
i

x∗i j is pre f erable
(5)

The performance of alternatives in the criteria (xi j) and the weight of criteria (w j) are derived from
input from the decision-makers. However, the weights must first be made dimensionless which can be
accomplished by dividing the weight by the optimal value obtained above.

Using the normalisation method, the primitive decision-making matrix values are converted to
values in the (0, 1) or (0,∞) range.

Stage 2: Normalise the primitive input values of all the criteria and convert into the matrix X
or xi j:

X =



x01 . . . x0 j . . . x0n
...

. . .
...

. . .
...

xi1 . . . xi j . . . xin
...

. . .
...

. . .
...

xm1 . . . xmj . . . xmn


i = 0, m; j = 1, n (6)

For positive criteria, normalisation is done using Equation (7):

xi j =
xi j∑m

i=0 xi j
(7)

For negative criteria, normalisation is done using Equation (8):

xi j =
1

x∗i j
xi j =

xi j∑m
i=0 xi j

(8)

Stage 3: Apply the weights to the normalised matrix X to obtain the matrix X̂. The appointed
weights must have the following specifications:

0 < w j < 1

n∑
j=1

w j = 1 (9)

X̂ =



x̂01 . . . x̂0 j . . . x̂0n
...

. . .
...

. . .
...

x̂i1 . . . x̂i j . . . x̂in
...

. . .
...

. . .
...

x̂m1 . . . x̂mj . . . x̂mn


i = 0, m; j = 1, n (10)

x̂i j = xi j ×w j; i = 0, m (11)

The value of the optimality function is obtained using Equation (12):

Oi =
n∑

j=1

x̂i j; i = 0, m (12)
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To determine the utility degree of each alternative, it has to be compared with the best value O0.
The utility degree for the alternative Ai; denoted by Ki; is given by:

Ki =
Oi
O0

; i = 0, m (13)

where O0 and Oi are given by Equation (12). It is clear that Ki is always in the range (0, 1). Alternatives
are prioritised based on Ki.

5. Data Analysis

5.1. Identification of Suitable Provinces for Geothermal Projects

To begin with, the Afghan provinces with some geothermal project potential had to be identified.
Since regions with hot springs are likely to have geothermal reservoirs [20], it was assumed that
provinces that have hot springs and hot water resources would have good geothermal potential.
The presence of faults, volcanic mountains, and volcanic rocks was considered geological criteria,
the presence of hot springs and mud pools was considered geochemical criteria, and the presence
of intrusive rocks was considered a geophysical criterion for geothermal potential evaluation [62].
These criteria were used to identify provinces that had potential for geothermal projects.

5.2. Decision Model Criteria

In order to choose locations with suitable potential for geothermal projects, a wide range of criteria
have to be evaluated. First and foremost, these criteria must be specified. Therefore, the decision
criteria for geothermal project implementation were identified by studying the literature review of
geothermal energy and input from an expert panel. The shortlisted decision criteria are listed in Table 1.

Table 1. Criteria for estimating the suitability of a region for geothermal projects.

Code Criteria Definition Reference

C1 Hot spring density

Hot springs are a significant and clear sign of hydro geothermal
resources. Many of the world’s geothermal regions have been identified
by visible signs on the terrain such as hot springs created by volcanic
activity. Therefore, the number of hot springs was used as a criterion

for measuring geothermal potential.

[17,39,40,42,62–65]

C2 Fault density

Fault and heat transfer in the ground’s surface is directly related to the
presence of faults. Faults are a vital component of fluid upwelling that
aids convective heat transfer. Therefore, the distance from faults as well

as the density of fault layers are an indication of the proximity to a
fracture and the presence of a geothermal reservoir. Fault-related

criteria are important in terms of heat transfer as geothermal activity is
related to faults and fault densities. Fault density is equal to the ratio of
the fault length in the province area. While fault density increases the

geothermal potential of a region, the geothermal power plant itself
must be constructed in a place safe from natural disasters. Therefore,
new technologies can be used in geothermal power plants to mitigate

natural disasters.

[17,39,40,62–67]

C3 Volcanic dome density

Volcanic mountains and rocks can be considered geological criteria for
geothermal potential evaluation as their surrounding areas have great

potential for geothermal sources. Therefore, the number of volcanic
domes was used as a criterion for measuring geothermal potential.

[17,39,40,62,64,66,67]

C4 Hot mineral spring density

Areas surrounding hot springs and mineral springs are very likely to be
in high-temperature zones. The presence of mineral water springs is a
visible indicator of a thermal water source. Therefore, the number of

hot mineral springs was taken as a sign of geothermal activity in a
region and used as a criterion for measuring geothermal potential.

[17,39,63,68–70]
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Table 1. Cont.

Code Criteria Definition Reference

C5 Drainage density

Drainage density, which refers to the number of drainage lines such as
streams, rivers, and seasonal rivers, is an important criterion for

geothermal site selection. Drainage density is determined by the length
of drainage lines per unit area, sometimes given in square kilometres.

Therefore, the higher the water density, the higher the
geothermal potential.

[17,39,63,66]

C6 Intrusive rock density

The presence of intrusive rocks is a sign of volcanic activity and the
highest heat flows are found near hot springs, large faults, and intrusive

rocks. The location of geothermal energy sources is known to be
associated with the presence of old volcanic and intrusive rocks.

The density of intrusive rocks is an important geophysical criterion for
measuring the geothermal potential of an area. It is measured as a ratio

of the area of intrusive rocks to the area of the province.

[17,39,40,62,65]

C7 Population density

Population and work not only lead to the development of an area but
lays the foundation for the improvement of businesses in the area.

Population is often considered a principal indicator of employment.
The implementation of geothermal projects in populous areas can offer

electricity and energy to a larger number of people. Therefore,
areas with a higher population density were considered to have higher

geothermal potential.

[1,14]

C8 University density

Access to skilled labour is essential for the operation of geothermal
power plants. Since the availability of talented labour directly correlates

to the number of colleges and learning centres within a region,
the number of universities in each region was also used as a criterion

for evaluating the suitability of a region for geothermal projects.

[1,14]

C9 Area of the province

The area of a region significantly impacts the cost incurred from
transportation, labour movement, and power transmission. This factor

is considered a negative (cost type) criterion because as an area
increases, so does the cost of transportation, labour movement,

and power transmission. Therefore, smaller areas have higher potential
for geothermal plant development.

[1,14]

The values of the decision criteria for the studied areas are outlined in Table 2.

Table 2. Values of the decision criteria for Afghan provinces.

Province
The Number of

Hot Springs
[49,71]

Fault
Density

The
Number of

Volcanic

The Number of
Hydrothermal

Mineral Waters

Drainage
Density

Intrusive
Rocks

Density

Population of
the Province

[48]

The Number of
Universities

[48]

Area of the
Province

[48]

A1 Badakhshan 3 0.0219 0 5 0.0806 0.3777 950,953 1 44,836

A2 Badghis 1 0.0118 0 9 0.0757 0.0406 495,958 0 20,794

A3 Baghlan 4 0.0247 0 2 0.0543 0.2889 910,784 4 18,255

A4 Balkh 2 0.0117 0 2 0.0823 0.0256 1,325,659 10 16,186

A5 Bamyan 6 0.0457 0 12 0.0558 0.1923 447,218 1 18,029

A6 Daykondi 2 0.0179 0 6 0.0769 0.2896 424,339 0 17,501

A7 Farah 4 0.0103 2 12 0.0976 0.1853 507,405 0 49,339

A8 Ghazni 4 0.0389 10 6 0.0588 0.2047 1,228,831 1 22,460

A9 Ghowr 1 0.0306 0 12 0.0612 0.2238 690,296 0 36,657

A10 Heart 8 0.0323 0 10 0.0619 0.1789 1,890,202 4 55,868

A11 Helmand 3 0.0123 0 45 0.0517 0.1098 924,711 2 58,305

A12 Kabul 0 0.0150 0 1 0.0464 0.3152 4,372,977 57 4524

A13 Kandahar 3 0.0148 0 7 0.0391 0.1540 1,226,593 2 54,844

A14 Logar 1 0.0354 0 1 0.0558 0.2921 392,045 0 4568

A15 Nimruz 0 0.0022 0 10 0.0930 0.0032 164,978 0 42,410

A16 Oruzgan 8 0.0289 0 8 0.0616 0.0503 386,818 0 11,474

A17 Pakitika 0 0.0136 0 2 0.0472 0.0439 434,742 0 19,516

A18 Parwan 6 0.0440 0 3 0.0435 0.3421 664,502 2 5715

A19 Sari pul 2 0.0101 0 0 0.0534 0.0339 559,577 0 16,386

A20 Wardak 9 0.0423 0 11 0.0469 0.2921 596,287 0 10,348

A21 Zabol 0 0.0154 0 1 0.0572 0.2438 304,126 0 17,472
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5.3. Criteria Weighting Using SWARA

The selected decision criteria were weighted with the help of an expert panel of seven experienced
and knowledgeable academic and working professionals. In line with the procedures of the SWARA
method, experts sorted the shortlisted criteria in descending order of importance. Upon completion,
the obtained weights were then normalised and the ultimate weights of the criteria were decided.
These weights are displayed in Table 3.

Table 3. Criteria weights obtained using stepwise weight assessment ratio analysis (SWARA).

Criterion Code Comparative Significance
of Average Value

Kj qj wj

The number of hot springs C1 1.000 1.000 1.000 0.209

Fault density C2 0.110 1.110 0.901 0.188

The number of volcanic C3 0.210 1.210 0.745 0.156

The number of hydrothermal mineral waters C4 0.250 1.250 0.596 0.125

Drainage density C5 0.320 1.320 0.451 0.094

Intrusive rocks density C6 0.310 1.310 0.344 0.072

Population of the province C7 0.280 1.280 0.269 0.056

The number of universities C8 0.080 1.080 0.249 0.052

Area of the province C9 0.110 1.110 0.224 0.047

The obtained weights showed that hot spring density (0.209), fault density (0.188), and volcanic
dome density (0.156) were the most important criteria. These findings are corroborated by numerous
other studies [17,39,40,63,64,67–69].

5.4. Ranking of Afghan Provinces for Geothermal Projects

5.4.1. ARAS

Table 4 shows the ranking of Afghan provinces in terms of suitability for geothermal project
implementation according to the ARAS method. The provinces of Ghazni, Wardak, and Herat were
ranked most suitable for geothermal projects in that order.

Table 4. Ranking of Afghan provinces in terms of suitability for geothermal project implementation
according to the additive ratio assessment (ARAS) method.

Province Oi Ki Rank

A1 Badakhshan 0.190 0.180 11

A2 Badghis 0.016 0.109 17

A3 Baghlan 0.052 0.184 10

A4 Balkh 0.034 0.135 16

A5 Bamyan 0.059 0.264 6

A6 Daykondi 0.046 0.149 14

A7 Farah 0.053 0.251 8

A8 Ghazni 0.032 0.587 1
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Table 4. Cont.

Province Oi Ki Rank

A9 Ghowr 0.028 0.165 13

A10 Heart 0.021 0.281 3

A11 Helmand 0.014 0.254 7

A12 Kabul 0.050 0.276 4

A13 Kandahar 0.048 0.143 15

A14 Logar 0.013 0.168 12

A15 Nimruz 0.048 0.075 20

A16 Oruzgan 0.016 0.240 9

A17 Pakitika 0.031 0.066 21

A18 Parwan 0.050 0.264 5

A19 Sari pul 0.026 0.086 19

A20 Wardak 0.111 0.310 2

A21 Zabol 0.027 0.087 18

5.4.2. Comparison of ARAS, TOPSIS, VIKOR, and WASPAS Ranking Results

This study used four MCDM methods; ARAS, TOPSIS, VIKOR, and WASPAS; to rank Afghan
provinces in terms of suitability for geothermal project implementation. The ranking of each province
by each MCDM method is as follows: (1) ARAS: Ghazni, Wardak, and Herat, (2) TOPSIS: Ghazni,
Wardak, and Helmand, (3) VIKOR: Ghazni, Wardak and Bamian, and (4) WASPAS: Ghazni, Wardak,
and Parwan. The rankings obtained from the different MCDM methods are compared in Table 5.

5.5. Sensitivity Analysis

The rankings obtained from the four different MCDM methods strongly depend on the nature of
the evaluation criteria as well as the weight assigned to each criterion. As criteria weights are usually
assigned by the decision-maker or a team of experts, they are subjective and increase the likelihood
of bias in weight assignment. This should, therefore, be taken into account. In this study, sensitivity
analysis was used to determine the correlation between the ranking results and the weight criteria.
This was accomplished by measuring the degree of a criterion’s change in the rankings following
a change in its weight, the results of which are presented in Table 5. The chart plotted in Figure 2
shows how a change in the weight of a criterion affects its ranking. In this chart, dark green rectangles
represent weight changes that do not alter rankings while light green rectangles represent weight
changes that have an effect on the rankings. Horizontal bar length represents the sensitivity of criteria
to change: the shorter the bar, the higher the sensitivity. The sensitivity analysis of the four MCDM
methods are presented on the top (ARAS, TOPSIS, VIKOR) and bottom (WASPAS) axes of this chart.
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Table 5. Comparison of ARAS, similarity to ideal solution (TOPSIS), vlse kriterijumsk optimizacija
kompromisno resenje (VIKOR), and weighted aggregated sum product assessment (WASPAS) Afghan
provinces ranking results in terms of suitability for geothermal project executions.

Province ARAS TOPSIS VIKOR WASPAS

A1 Badakhshan 11 13 8 7

A2 Badghis 17 17 17 17

A3 Baghlan 10 10 9 9

A4 Balkh 16 16 12 16

A5 Bamyan 6 5 3 5

A6 Daykondi 14 14 11 14

A7 Farah 8 8 7 8

A8 Ghazni 1 1 1 1

A9 Ghowr 13 12 15 13

A10 Heart 3 4 5 4

A11 Helmand 7 3 10 11

A12 Kabul 4 9 18 12

A13 Kandahar 15 15 13 15

A14 Logar 12 11 14 10

A15 Nimruz 20 20 20 20

A16 Oruzgan 9 6 6 6

A17 Pakitika 21 21 21 21

A18 Parwan 5 7 4 3

A19 Sari pul 19 19 16 19

A20 Wardak 2 2 2 2

A21 Zabol 18 18 19 18
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As seen, both incremental and diminishing changes in the weight of one criterion proportionately
changed the weights of the other criteria so that the total weight remained equal to one. Therefore,
a coefficient of sensitivity was assigned to represent the sensitivity of each criterion in each method.
The coefficient of sensitivity for the criterion Cj, denoted by SCj*, was calculated independently for
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each method and showed that a 5% or 50% increase or decrease in criterion weight led to a change in
ranking. The sensitivity coefficients calculated for the criteria are listed in Table 6.

Table 6. Distribution of the coefficient of sensitivity (SC*) for the four multi-criteria decision-making
(MCDM) methods.

MCDM Method

Change of Criterion Weight

−5% +5% −50% +50%

Sensitivity Coefficient SC*

0 1 >1 0 1 >1 0 1 >1 0 1 >1

Occurrence of Sensitivity Coefficient Amongst 9 Criteria

ARAS 8 1 0 8 5 1 0 2 2 0 6 3

TOPSIS 7 2 0 6 2 3 0 5 2 6 1 2

VIKOR 9 0 0 9 4 0 0 3 2 4 2 3

WASPAS 8 1 0 8 6 1 0 3 0 5 4 0

An analysis of the calculated coefficients of sensitivity showed that a 5% increment or reduction
in the weights had an effect on the rankings of all methods except VIKOR.

The critical criterion in each MCDM method was then identified. The critical criterion was defined
as Cj for which the smallest relative (percentage) change within the weight (the change Dj in the weight
Wj) resulted in a change in the ranking. The sensitivity criterion SCj was used to measure the sensitivity
of the results to change in the weight of each criterion. As seen in Figure 3, the critical criteria in ARAS,
TOPSIS, VIKOR, and WASPAS were C1, C5, C2, and C2, respectively. Overall, C3 was identified as the
critical criterion for the best alternative for all the methods used.
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6. Conclusions

Investment in renewable energy technologies can boost the efforts of developing countries to
fulfil economic, environmental, and social objectives as well as serve as a springboard for achieving
sustainable development. Geothermal energy is one of the most dependable and stable renewable
energy sources as it can be harvested regardless of inclement weather and climate changes and it can
be used to generate power for industrial, agricultural, and domestic applications. Due to significant
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geothermal potentials in Afghanistan, ours was the first study to rank the provinces of this country in
terms of geothermal project potential.

After assessing the literature review on the ranking of regions in terms of geothermal potential,
it was discovered that most of these studies either used only one or a few MCDM methods and
completely overlooked the fact that the results changed significantly according to the method and
criteria used. To fill this gap, this study used multiple MCDM methods, namely SWARA, ARAS,
TOPSIS, VIKOR, and WASPAS, to rank a number of provinces in terms of suitability for geothermal
project implementation. SWARA was employed to assign a weight to each criterion while ARAS,
TOPSIS, VIKOR, and WASPAS were utilised to rank the provinces. After comparing the results of all
four methods, a sensitivity analysis was performed to determine how the criteria and methods used
affected their ranking. The most significant points of this research are listed below:

• Nine criteria were used to evaluate the geothermal potential of each province.
• Hot spring density, fault density, and volcanic dome density were the most significant criteria for

geothermal site location according to SWARA, which was used to weight the selected criteria.
• The studied provinces were ranked according to geothermal suitability using ARAS, TOPSIS,

VIKOR, and WASPAS. Sensitivity analysis was performed to further analyse the results.
• Ghazni province was identified as the most suitable province for geothermal project

implementation using ARAS, TOPSIS, VIKOR, and WASPAS.
• Sensitivity analysis indicated that a 5% change in criteria weight affected the rankings of all

methods except VIKOR.
• Hot spring density C1, drainage density C5, fault density C2, and fault density C2 were identified

as the most important criteria in ARAS, TOPSIS, VIKOR, and WASPAS, respectively.
• Overall, volcanic dome density C3 was identified as the critical criterion for the best alternatives

in all methods.
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