The Effects of Factors of Production Shocks on Labor Productivity: New Evidence Using Panel VAR Analysis
Abstract
:1. Introduction
2. Review of Literature
2.1. Labor Productivity and Wage
2.2. Labor Productivity and Human Capital (Skilled Labor)
2.3. Labor Productivity and Capital Intensity
3. Data and Methodology
3.1. Data Description
3.2. Methodology
3.2.1. Cross-Sectional Dependence and Unit Root Test
3.2.2. Panel Causality Test
3.2.3. Panel VAR: Impulse Response and Variance Decomposition Analysis
4. Results and Discussion
4.1. Cross-Sectional Dependence and Panel Unit Root
4.2. Dumitrescu-Hurlin (DH) Causality
4.3. Impulse Response
4.4. Variance Decomposition
4.5. Robustness
- (a)
- using a proxy for the percentage of skilled labor
- (b)
- using different lag (lag 2)
- (c)
- using different instrument (instl(1/3))
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Solow, R. An almost practical step toward sustainability. Ekistics 1995, 15–20. [Google Scholar] [CrossRef]
- TCB. The Conference Board Productivity Brief 2019; The Conference Board (TCB): New York, NY, USA, 2019. [Google Scholar]
- OECD. OECD Economic Surveys: Malaysia 2019; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2019. [Google Scholar]
- MEA. Mid-Term Review of the Eleventh Malaysia Plan; Economic Planning Unit (EPU), Ministry of Economic Affairs (MEA): Putrajaya, Malaysia, 2018. [Google Scholar]
- EPU. Eleventh Malaysia Plan, 2016–2020: Anchoring Growth on People; Economic Planning Unit (EPU): Putrajaya, Malaysia, 2015. [Google Scholar]
- Akerlof, G.A. Labor contracts as partial gift exchange. Q. J. Econ. 1982, 97, 543–569. [Google Scholar] [CrossRef]
- Shapiro, C.; Stiglitz, J.E. Equilibrium unemployment as a worker discipline device. Am. Econ. Rev. 1984, 74, 433–444. [Google Scholar]
- Murugasu, A.; Hakim, M.I.; Yau, Y.S. Are Malaysian Workers Paid Fairly?An Assessment of Productivity and Equity; Bank Negara Malaysia: Kuala Lumpur, Malaysia, 2019. [Google Scholar]
- Rasiah, R.; Crinis, V.; Lee, H.-A. Industrialization and labour in Malaysia. J. Asia Pac. Econ. 2015, 20, 77–99. [Google Scholar] [CrossRef]
- Tham, S.Y. Examining the shift to services: Malaysia and China compared. J. Contemp. Asia 2017, 47, 728–751. [Google Scholar] [CrossRef]
- Chandran, V.; Kkv, G.K.; Devadason, E.S. Value-Added Performance in Malaysian Manufacturing: To What Extent Research and Development and Human Capital Matter? Inst. Econ. 2017, 6, 31–51. [Google Scholar]
- Holman, C.; Joyeux, B.; Kask, C. Labor productivity trends since 2000, by sector and industry. Mon. Lab. Rev. 2008, 131, 64. [Google Scholar]
- Basri, N.M.; Karim, Z.A.; Ismail, R.; Sulaiman, N. The Effect of Wages and Industry-Specific Variables on Productivity of Manufacturing Industry in Malaysia: A Dynamic Heterogeneous Panel Evidence. Int. J. Econ. Manag. 2018, 1, 12. [Google Scholar]
- Hall, S.G. An application of the granger & engle two-step estimation procedure to United Kingdom aggregate wage data. Oxf. Bull. Econ. Stat. 1986, 48, 229–239. [Google Scholar]
- Alexander, C.O. The changing relationship between productivity, wages and unemployment in the UK. Oxf. Bull. Econ. Stat. 1993, 55, 87–102. [Google Scholar] [CrossRef]
- Strauss, J.; Wohar, M.E. The linkage between prices, wages, and labor productivity: A panel study of manufacturing industries. South. Econ. J. 2004, 70, 920–941. [Google Scholar] [CrossRef]
- Kumar, S.; Webber, D.J.; Perry, G. Real wages, inflation and labour productivity in Australia. Appl. Econ. 2012, 44, 2945–2954. [Google Scholar] [CrossRef] [Green Version]
- Baffoe-Bonnie, J.; Gyapong, A.O. The dynamic implications for wage changes on productivity, prices, and employment in a developing economy: A structural VAR Analysis. J. Dev. Areas 2012, 46, 397–417. [Google Scholar] [CrossRef]
- Yildirim, Z. Relationships among labour productivity, real wages and inflation in Turkey. Econ. Res.-Ekon. Istraživanja 2015, 28, 85–103. [Google Scholar] [CrossRef]
- Dritsaki, C. Real wages, inflation, and labor productivity: Evidences from Bulgaria and Romania. J. Econ. Financ. Stud. 2016, 4, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Karaalp-Orhan, H.S. Labour productivity, real wages and unemployment: An application of bounds test approach for Turkey. Econ. Soc. Dev. Book Proc. 2017, 1, 521–530. [Google Scholar]
- German-Soto, V.; Brock, G. Are Mexican Manufacturing Workers Underpaid? Some Quarterly Time Series Evidence. J. Dev. Areas 2020, 54. [Google Scholar] [CrossRef]
- Ozturk, M.; Durdyev, S.; Aras, O.N.; Ismail, S.; Banaitienė, N. How effective are labor wages on labor productivity?: An empirical investigation on the construction industry of New Zealand. Technol. Econ. Dev. Econ. 2020, 26, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Wakeford 1, J. The productivity–wage relationship in South Africa: An empirical investigation. Dev. South. Afr. 2004, 21, 109–132. [Google Scholar] [CrossRef]
- Samargandi, N. Determinants of labor productivity in MENA countries. Emerg. Mark. Financ. Trade 2018, 54, 1063–1081. [Google Scholar] [CrossRef]
- Hondroyiannis, G.; Papapetrou, E. Seasonality-cointegration and the inflation, productivity and wage growth relationship in Greece. Soc. Sci. J. 1997, 34, 235–247. [Google Scholar] [CrossRef]
- Millea, M. Disentangling the wage-productivity relationship: Evidence from select OECD member countries. Int. Adv. Econ. Res. 2002, 8, 314–323. [Google Scholar] [CrossRef]
- Tsoku, J.T.; Matarise, F. An analysis of the relationship between remuneration (real wage) and labour productivity in South Africa. J. Educ. Soc. Res. 2014, 4, 59. [Google Scholar] [CrossRef] [Green Version]
- Reza, M. Testing Efficiency Wages Hypothesis in Manufacturing Industries of Iran. Rev. Publicando 2018, 5, 744–760. [Google Scholar]
- Gneezy, U.; Rustichini, A. Pay enough or don’t pay at all. Q. J. Econ. 2000, 115, 791–810. [Google Scholar] [CrossRef]
- Lee-Peng, H.; Yap, S.-F. The link between wages and labour productivity: An analysis of the Malaysian manufacturing industry. Malays. J. Econ. Stud. 2001, 38, 51. [Google Scholar]
- Goh, S.K. Is productivity linked to wages? An empirical investigation in Malaysia. Cent. Policy Res. Int. Stud. Work. Pap. Ser. 2009, 102, 18095. [Google Scholar]
- Goh, S.K.; Wong, K.N. Analyzing the productivity-wage-unemployment nexus in Malaysia: Evidence from the macroeconomic perspective. Int. Res. J. Financ. Econ. 2010, 53, 145–156. [Google Scholar]
- Tang, C.F. The non-monotonic effect of real wages on labour productivity. Int. J. Soc. Econ. 2012, 39, 391–399. [Google Scholar] [CrossRef]
- Tang, C.F. The effect of real wages and inflation on labour productivity in Malaysia. Int. Rev. Appl. Econ. 2014, 28, 311–322. [Google Scholar] [CrossRef]
- Fahmy-Abdullah, M.; Ismail, R.; Sulaiman, N.; Talib, B.A. Technical Efficiency in Transport Manufacturing Firms: Evidence From Malaysia. Asian Acad. Manag. J. 2017, 22, 57–77. [Google Scholar] [CrossRef]
- Bheemaiah, K.; Smith, M.J. Inequality, technology and job polarization of the youth labor market in Europe. Technol. Job Polariz. Youth Labor Mark. Eur. 2015. [Google Scholar] [CrossRef]
- Sweet, S.; Meiksins, P. Changing Contours of Work: Jobs and Opportunities in the New Economy, 3rd ed.; SAGE Publications, Incorporated: Los Angeles, LA, USA, 2016. [Google Scholar]
- Jain, H. Wage–Productivity Relationship in Indian Manufacturing Industries: Evidences from State-level Panel Data. Margin. J. Appl. Econ. Res. 2019, 13, 277–305. [Google Scholar] [CrossRef]
- Lucas, R.E. On the mechanics of economic development. Nber Work. Pap. 1989, 22, 3–42. [Google Scholar] [CrossRef]
- Lall, S. Strengthening SMEs for International Competitiveness; Egyptian Center for Economic Studies Cairo: Cairo, Egypt, 2000. [Google Scholar]
- Hamel, G.; Prahalad, C.K. Competing for the future. Harv. Bus. Rev. 1994, 72, 122–128. [Google Scholar]
- Penrose, E.; Penrose, E.T. The Theory of the Growth of the Firm; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Barney, J.B. Looking inside for competitive advantage. Acad. Manag. Perspect. 1995, 9, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Dierickx, I.; Cool, K. Asset stock accumulation and sustainability of competitive advantage. Manag. Sci. 1989, 35, 1504–1511. [Google Scholar] [CrossRef] [Green Version]
- Rumelt, R.P. Towards a strategic theory of the firm. Compet. Strateg. Manag. 1984, 26, 556–570. [Google Scholar]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Riahi-Belkaoui, A. Intellectual capital and firm performance of US multinational firms. J. Intellect. Cap. 2003, 4, 215–226. [Google Scholar] [CrossRef]
- Becker, B.; Gerhart, B. The impact of human resource management on organizational performance: Progress and prospects. Acad. Manag. J. 1996, 39, 779–801. [Google Scholar]
- Ndinguri, E.; Prieto, L.; Machtmes, K. Human capital development dynamics: The knowledge based approach. Acad. Strateg. Manag. J. 2012, 11, 121. [Google Scholar]
- Bontis, N.; Keow, W.C.C.; Richardson, S. Intellectual capital and business performance in Malaysian industries. J. Intellect. Cap. 2000, 1, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, N.; Yussof, I.; Ahmad, M.S.L.; Ismail, R. Impact of Labour Productivity of the National Key Economic Areas (NKEAs). J. Contemp. Issues Thought 2014, 4, 137–155. [Google Scholar]
- Sulaiman, N.; Ismail, R. Re-Aligning the Needs of Manpower for the Vision 2020: The Case of the Manufacturing Sector in Malaysia. Int. J. Bus. Manag. Sci. 2019, 9, 407–423. [Google Scholar]
- Ismail, R. The impact of human capital and innovation on labour productivity of Malaysian small and medium enterprises. Int. J. Product. Qual. Manag. 2018, 25, 245–261. [Google Scholar] [CrossRef]
- Hayes, R.; Wheelwright, S. Restoring Our Competitive Edge: Competing Through Manufacturing; Jonh Wiley: New York, NY, USA, 1984. [Google Scholar]
- Chauvin, K.W.; Hirschey, M. Advertising, R&D expenditures and the market value of the firm. Financ. Manag. 1993, 22, 128–140. [Google Scholar]
- Koch, M.J.; McGrath, R.G. Improving labor productivity: Human resource management policies do matter. Strateg. Manag. J. 1996, 17, 335–354. [Google Scholar] [CrossRef]
- Datta, D.K.; Guthrie, J.P.; Wright, P.M. Human resource management and labor productivity: Does industry matter? Acad. Manag. J. 2005, 48, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Erenburg, S.J. Productivity, private and public capital, and real wage in the US. Appl. Econ. Lett. 1998, 5, 491–495. [Google Scholar] [CrossRef]
- Jajri, I.; Ismail, R. Impact of labour quality on labour productivity and economic growth. Afr. J. Bus. Manag. 2010, 4, 486–495. [Google Scholar]
- Turner, C.; Tamura, R.; Mulholland, S.E. How important are human capital, physical capital and total factor productivity for determining state economic growth in the United States, 1840–2000? J. Econ. Growth 2013, 18, 319–371. [Google Scholar] [CrossRef] [Green Version]
- Fahmy-Abdullah, M.; Sieng, L.W.; Isa, H.M. Technical Efficiency Evaluation: Study on Malaysian Electrical and Electronics Firms. Asian Acad. Manag. J. 2019, 24, 1–19. [Google Scholar] [CrossRef]
- Fahmy-Abdullah, M.; Sieng, L.W.; Isa, H.M. Technical Efficiency in Malaysian Textile Manufacturing Industry: A Stochastic Frontier Analysis (SFA) Approach. Int. J. Econ. Manag. 2018, 1, 12. [Google Scholar]
- Chudik, A.; Pesaran, M.H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. J. Econom. 2015, 188, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, H. General Diagnostic Tests for Cross-Sectional Dependence in Panels; Cambridge Working Papers in Economics, No. 0435; University of Cambridge: Cambridge, UK, 2004. [Google Scholar]
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Love, I.; Zicchino, L. Financial development and dynamic investment behavior: Evidence from panel VAR. Q. Rev. Econ. Financ. 2006, 46, 190–210. [Google Scholar] [CrossRef]
- Andrews, D.W.; Lu, B. Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models. J. Econom. 2001, 101, 123–164. [Google Scholar] [CrossRef]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Crépon, B.; Deniau, N.; Pérez-Duarte, S. Wages, Productivity and Worker Characteristics: A French Perspective. Available online: http://www.crest.fr/ckfinder/userfiles/files/Pageperso/crepon/CreponDeniauPerezDuarte2002.pdf (accessed on 18 December 2018).
- Mahlberg, B.; Freund, I.; Cuaresma, J.C.; Prskawetz, A. Ageing, productivity and wages in Austria. Labour Econ. 2013, 22, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Sangiácomo, M. XTCIPS: Stata Module to Compute Pesaran Panel Unit Root Test in the Presence of Cross-Section Dependence; Statistical Software Components; Boston College Department of Economics: Boston, MA, USA, 2018. [Google Scholar]
- Lopez, L.; Weber, S. Testing for Granger causality in panel data. Stata J. 2017, 17, 972–984. [Google Scholar] [CrossRef] [Green Version]
- Abrigo, M.R.; Love, I. Estimation of panel vector autoregression in Stata. Stata J. 2016, 16, 778–804. [Google Scholar] [CrossRef] [Green Version]
- Galariotis, E.C.; Makrichoriti, P.; Spyrou, S. Sovereign CDS spread determinants and spill-over effects during financial crisis: A panel VAR approach. J. Financ. Stab. 2016, 26, 62–77. [Google Scholar] [CrossRef] [Green Version]
- Liaqat, Z. Does government debt crowd out capital formation? A dynamic approach using panel VAR. Econ. Lett. 2019, 178, 86–90. [Google Scholar] [CrossRef]
- Brüggemann, R.; Lütkepohl, H.; Saikkonen, P. Residual autocorrelation testing for vector error correction models. J. Econom. 2006, 134, 579–604. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.D.; Susmel, R. Autoregressive conditional heteroskedasticity and changes in regime. J. Econom. 1994, 64, 307–333. [Google Scholar] [CrossRef]
- Love, I.; Ariss, R.T. Macro-financial linkages in Egypt: A panel analysis of economic shocks and loan portfolio quality. J. Int. Financ. Mark. Inst. Money 2014, 28, 158–181. [Google Scholar] [CrossRef] [Green Version]
- Lazear, E.P. Why is there mandatory retirement? J. Political Econ. 1979, 87, 1261–1284. [Google Scholar] [CrossRef]
Variables | CD Test | p-Value |
---|---|---|
labor productivity (lyl) | 10.87 | 0.000 |
capital per labor (lkl) | 25.30 | 0.000 |
wage per labor (lwl) | 29.24 | 0.000 |
% of skilled labor (npt) | 13.86 | 0.000 |
Variables | CIPS (CIPS Statistic) |
---|---|
labor productivity (level) | −2.402 |
labor productivity (first difference) | −3.442 |
capital per labor (level) | −1.965 |
capital per labor (first difference) | −3.183 |
wage per labor (level) | −2.582 |
wage per labor (first difference) | −4.119 |
% of skilled labor (level) | −2.504 |
% of skilled labor (first difference) | −3.723 |
Null Hypothesis | Zbar-Statistic | p-Value |
---|---|---|
capital per labor does not cause labor productivity | 6.1359 *** | 0.0000 |
% of skilled labor does not cause labor productivity | 2.5796 *** | 0.0099 |
wage per labor does not cause labor productivity | 6.4543 *** | 0.0000 |
Lag | CD | J | J p-Value | MBIC | MAIC | MQIC |
---|---|---|---|---|---|---|
1 | 0.83929 | 39.14617 | 0.81568 | −253.019 | −56.85383 | −134.2412 |
2 | 0.85574 | 23.14587 | 0.87369 | −171.630 | −40.85413 | −92.44571 |
3 | 0.50961 | 14.01124 | 0.59768 | −83.3771 | −17.98876 | −43.78455 |
Eigenvalue | ||
---|---|---|
Real | Imaginary | Modulus |
−0.343718 −0.234300 −0.152667 −0.006216 | 0 0 0 | 0.343718 0.234300 0.152667 0.006216 |
Variable | Observations | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
∆lkl | 660 | −0.00569 | 0.34999 | −3.60582 | 3.26284 |
∆npt | 660 | −0.00584 | 3.74691 | −35.7587 | 28.0139 |
∆lwl | 660 | 0.01477 | 0.10456 | −0.76893 | 0.63294 |
∆lyl | 660 | 0.02216 | 0.34952 | −3.42834 | 2.51773 |
Response Variable and Forecast Horizon | Impulse Variable | ||||
---|---|---|---|---|---|
∆lkl | ∆lwl | ∆npt | ∆lyl | ||
∆lyl | 0 | 0 | 0 | 0 | 0 |
1 | 0.130125 | 0.048691 | 0.10336 | 0.717823 | |
2 | 0.128882 | 0.047449 | 0.10065 | 0.723018 | |
3 | 0.128732 | 0.047445 | 0.100689 | 0.723134 | |
4 | 0.128715 | 0.047457 | 0.100715 | 0.723114 | |
5 | 0.128713 | 0.047459 | 0.100719 | 0.72311 | |
6 | 0.128713 | 0.047459 | 0.100719 | 0.723109 | |
7 | 0.128713 | 0.047459 | 0.100719 | 0.723109 | |
8 | 0.128713 | 0.047459 | 0.100719 | 0.723109 | |
9 | 0.128713 | 0.047459 | 0.100719 | 0.723109 | |
10 | 0.128713 | 0.047459 | 0.100719 | 0.723109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Basri, N.; Abdul Karim, Z.; Sulaiman, N. The Effects of Factors of Production Shocks on Labor Productivity: New Evidence Using Panel VAR Analysis. Sustainability 2020, 12, 8710. https://doi.org/10.3390/su12208710
Mohd Basri N, Abdul Karim Z, Sulaiman N. The Effects of Factors of Production Shocks on Labor Productivity: New Evidence Using Panel VAR Analysis. Sustainability. 2020; 12(20):8710. https://doi.org/10.3390/su12208710
Chicago/Turabian StyleMohd Basri, Nurliyana, Zulkefly Abdul Karim, and Noorasiah Sulaiman. 2020. "The Effects of Factors of Production Shocks on Labor Productivity: New Evidence Using Panel VAR Analysis" Sustainability 12, no. 20: 8710. https://doi.org/10.3390/su12208710
APA StyleMohd Basri, N., Abdul Karim, Z., & Sulaiman, N. (2020). The Effects of Factors of Production Shocks on Labor Productivity: New Evidence Using Panel VAR Analysis. Sustainability, 12(20), 8710. https://doi.org/10.3390/su12208710