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Abstract: The Italian territory is largely prone to seismic risk and 6 million buildings require seismic
retrofitting. In the last three main seismic events (Abruzzo 2009, Emilia Romagna in 2012 and in
Lazio in 2016) 633 people died and considerable financial losses such as the structural collapse of
buildings and interruption of production activities were incurred. During the period 1944–2017,
economic losses caused by seismic events amounted to EUR 212 billion. More than 80% of the entire
building stock does not respect seismic design standards provided by Italian regulations (NTC 2018).
Seismic retrofitting of buildings may avoid many deaths and financial losses, as well as increase
people’s safety. In addition, seismic retrofitting of buildings may also generate an increase in real
estate asset value (namely a market price premium), which may accelerate investments. Despite the
relevance of this issue, there is a lack of literature, which investigates the key factors in boosting
investments and the market price premium for retrofitted buildings in detail. The aim of this paper is
to fill this gap with respect to the Italian Real Estate market. To estimate the capitalization effect of
benefits produced by seismic retrofitting on property market values, it is fundamental to know how
much people are willing to pay for it. As, to our knowledge, there are no available datasets which
provide house characteristics, including seismic performances and market prices of Italian real estate
assets, we implemented a contingent valuation approach to determine the market price premium for
retrofitted assets. In detail, information about the willingness to pay (WTP) an additional price for
a seismically retrofitted home (by considering different risk exposure), ceteris paribus was elicited
using open-ended questions in a self-administered web interview. In particular, we applied the
methodology to a case study, i.e., a contingent scenario related to masonry-detached houses located
in a seismic hazard zone. Our results revealed that individuals are willing to pay an additional price
for retrofitted assets and the average market price premium ranges from 10% to 52% of the property
market price.

Keywords: masonry buildings; buildings seismic retrofitting; market price premium;
contingent valuation

1. Introduction

Over the years, the Italian territory has been exposed to earthquakes that caused victims,
financial losses, the structural collapse of buildings and interruption of production activities. During the
period 2009–2017, the most relevant seismic events, which occurred in L’Aquila in 2009, in Emilia Region
in 2012 and in the Central sector of the Apennines Belt in 2016 and 2017, respectively, led to 665 victims
and the dramatic collapse of historical city centers and villages [1]. According to recent estimates,
economic losses due to seismic events during the period 1944–2017 amounted to EUR 212 billion [1].

The Italian territory is characterized by a high seismic hazard [2–7]. Seismic hazard maps are
defined according to intervals of peak ground acceleration (PGA) and territorial seismicity is classified
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based on local earthquake intensity into four categories from 1 to 4, where zone 1 is the most dangerous
area, whereas zone 4 is the least dangerous area [8].

In Italy more than 6 million buildings are prone to high seismic hazards and require seismic
retrofitting [1,9,10]: 70% of the entire building stock was built before the entry into force of Act
n. 65/1974 [11], which set for the first-time antiseismic design standards. Afterwards, the Italian
Parliament and the government enacted a series of norms and regulations, and in 2008 it entered
into force in the Ministerial Decree of 14 January 2008 [12] (recently updated by Ministerial Decree
of 17 January 2018) [13], which set more stringent and exhaustive antiseismic design standards and
provided specific methodologies for the design of antiseismic buildings. By considering seismic
zones 1 and 2 more, it emerges than 6.1 million buildings and 22.2 million people are prone to a high
and medium seismic hazard [1]. Consequently, more than 80% of the entire building stock does not
respect current seismic design standards, which indeed guarantees high safety levels, and are currently
vulnerable to seismic hazard.

In this context, buildings seismic retrofitting (BSR) plays a fundamental role and represents a
primary policy objective for governments that aim to minimize earthquake disaster losses, by promoting
the adoption of risk mitigation measures [2,14–16]. These investments are usually undertaken by
homeowners, who become key players in BSR investment decisions [17]. To accelerate private
investments in BSR, governments can introduce a wide range of policy instruments, such as financial
and fiscal incentives, regulatory instruments and programs of training, education and qualification to
increase earthquake awareness and preparedness [18–25].

In this respect, to promote the adoption of seismic retrofit measures (SRMs) and reduce the seismic
vulnerability of buildings, the Italian government enacted Act n. 90/2013 [26], updated by 2017 Budget
Law [27], better known as Sisma Bonus. This incentive scheme consists of a tax credit based on retrofit
investment costs: 80% and 85% maximum tax detractions for a single house and condominiums,
respectively [28]. According to Sisma Bonus, it is possible to benefit from tax detractions based on
investment costs paid to implement SRMs or to buy a house in seismic zone 1 [28]. In detail, taxpayers
can pay back a percentage of retrofit costs, which varies from 50% up to 85% by 5 annual equal-value
instalments. The percentage of retrofit costs detractions depends on building typology and seismic
class of risk achieved through retrofitting. Nonetheless, it is still controversial whether these incentives
are cost-effective or not [29]. According to the “Casa Italia” report, due to the potential housing stock
prone to seismic hazards, the minimum cost for the government (i.e., lower tax revenues) related to
the Sisma Bonus implementation is about EUR 36.8 billion [30]. Therefore, the potential demand for
BSR and related government costs can be very high. Cost-effective incentive policies should have the
capacity to stimulate investments, reduce social costs and promote innovation. To optimally design
policy incentives, policy makers must take into consideration, along with building age and construction
materials, both private and social costs and benefits, as well as environmental concerns.

The benefits generated by BSR can indeed be key drivers in retrofit decisions and SRMs adoption.
Based on literature, benefits generated by seismic retrofitting can be grouped into two main categories:
economic benefits and social benefits. The most relevant economic benefit is related, indeed, to the
reduction of future costs associated to building’s structural and nonstructural losses [3,31–37] and to a
potential market price premium for retrofitted buildings [38–41]. Social benefits are usually related
to individuals’ well-being, historical heritage conservation, public recognition, sense of community
identity and social inclusion [39,42–44]. Nonetheless, the benefit perceived as the most important is
related to the safeguarding of life and buildings and infrastructure resilience [39,40,42–45].

To determine the cost-benefit trade-offs and address the multiple benefits of BSR and the financial
barriers (e.g., renovation costs) to its implementation, we cannot prescind from the estimation of the
willingness to pay (WTP) for BSR. Starting from the seminal works by [46] and [47], stated-preference
methods (SPMs) were widely implemented in literature to investigate consumers’ preferences and their
WTP. Nonetheless, to our best knowledge, there is a lack of contributions in literature, which focused
on the estimation of homeowners’ WTP and demand for BSR. In this respect, Ref. [38] adopted the WTP
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approach to evaluate the trade-off between additional costs and increased safety of the seismic retrofit
of old masonry buildings in Los Angeles and compared alternative incentive policies. A hedonic
price utility model of self-insurance was developed and applied by [48] to high-loss earthquake
hazards. The model empirical results proved the existence of a price gradient for safety in Los
Angeles and San Francisco, with safer homes commanding higher prices, ceteris paribus. According
to [49], who investigated the hedonic price of earthquake-related risks, the Loma Prieta earthquake
caused a 2% reduction in housing prices in the San Francisco Bay area, and housing prices have a
significant risk premium embedded for increasing hazard risks. More recently, Ref. [50] estimated
the WTP and the increase in house value due to building seismic certification in Turkey. In addition,
Ref. [39] identified stakeholders’ motivation factors (economic and social) for improved seismic retrofit
implementation in New Zealand; whereas [44] investigated how to enhance homeowners’ earthquake
hazard preparedness decisions. The economic effect of disaster-mitigation regulations on commercial
buildings in New Zealand was analyzed by [51], who determined a 12.5% stigma-discount in response
to New Zealand’s earthquake-prone buildings policy. It is nevertheless worth noting that there is a lack
of literature on this issue with specific respect to the Italian context. An exception is represented by [52],
who estimated the WTP for the reduction of buildings seismic vulnerability in private residential
reinforced-concrete buildings.

The aim of this paper is to fill this gap in literature by estimating the market price premium for
seismic-retrofitted buildings and, consequently, determining how far it is optimal to push on BSR.
According to literature, it is likely that the market premium depends on buildings’ vulnerability and
seismic risk classification: the lower the seismic vulnerability, the higher the market price premium.

To estimate the capitalization effect of class upgrades due to strengthening interventions on
property market values, it is of paramount importance to understand the monetary amount that
people are willing to pay for it. Nonetheless, different to energy performance certification, seismic risk
classification of constructions, introduced in Italy in 2017, is not mandatory nor is it a specific
requirement for selling or renting a property. Consequently, to our best knowledge, there are no
available datasets in Italy, which provide asset characteristics (e.g., size, quality of finishes, energy
performance certification, accessibility to school and public services, etc.) and seismic risk certification
along with their market price. As a result, we implemented a contingent valuation (CV) exercise
to determine the market price premium for retrofitted buildings. In detail, information about the
willingness to pay (WTP) an additional price for a property, which, ceteris paribus, underwent class
upgrade interventions, was elicited by implementing open-ended questions in self-administered
web interviews.

The remainder of the paper is organized as follows. In Section 2, the CV method is briefly
described; in Section 3, the survey design and administration are described; in Section 4, results are
provided and discussed; Section 5 concludes.

2. Method

As previously mentioned, the aim of this contribution is to estimate the market price premium
for seismically retrofitted assets, according to individuals’ WTP for different risk class upgrades.
Although the Hedonic Price (HP) method [53] is usually the most adopted in literature to estimate the
implicit marginal prices of the characteristics of real estate assets (e.g., location, size, finishing, etc.),
numerous data on real estate transactions are needed for its implementation. In Italy, it is rather difficult
to collect data on real estate transactions and there are no available datasets, which record home sale
transactions and property characteristics. In addition, seismic risk classification of constructions is
limited to the buildings whose homeowners applied for fiscal incentives (i.e., tax deductions) according
to the Sisma Bonus scheme.

Consequently, to estimate individuals’ WTP for seismic class upgrades (i.e., to estimate the
implicit marginal price of seismic risk classes), we implemented a CV approach. CV is a survey-based,
stated-preference method, which was originally developed by [46,54–56] to estimate the value people
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place on public goods and nonmarket goods and is currently largely implemented in literature to
assess the WTP for specific improvements in individuals’ well-being.

The objective of CV is to measure the compensating (or equivalent) variation for the good
under investigation. Individuals are directly asked to express their WTP to obtain a specific
good, or their willingness to accept (WTA) to give up the good. As in the CV approach,
a hypothetical marketplace (i.e., contingent market) is created, in which no actual transactions occur.
CV is successfully implemented when valuing commodities that are not exchanged in markets
(e.g., reduction in risk of death) or when it is not possible to observe market transactions under specific
conditions [57,58].

In CV studies, several formats to elicit WTP and WTA are available. The most commonly used are
Open-Ended (OE) questions, single and double-bonded Dichotomous-Choice (DC) formats [56,59,60]
as well as Payments Card (PC) approaches [46,54]. Although the DC approach mimics individuals’
behavior in markets, where people accept or refuse to buy a specific good at a specific price, it does
not permit observing directly WTPs or WTAs and it indeed allows for identifying intervals around
respondents’ WTP/WTA monetary value.

In our study, the OE format was implemented, as it avoids issues related to the anchoring
and starting point bias compared with other CV methodologies [54,57], and it provides good WTP
estimates whenever respondents are able to value the good (or service) with reduced cognitive effort,
i.e., they know a priori an estimate of the price [54,61–63]. As the good under current evaluation is a
detached house, which represents a widespread building typology usually exchanged in the real estate
market, we made the hypothesis that respondents were able to estimate the market price premium for
different risk class upgrades, based on usually well-known market prices and conditions for this market
segment. In other words, we assumed that respondents were sufficiently experienced to express their
WTP in terms of property market price premiums [64].

Based on survey data collected, WTPs are estimated using descriptive and inferential statistic
techniques [65–67].

If the elicitation format is OE and the distribution of WTP is normal, the sample average is the
lowest-variance estimator of the true population mean and, consequently, the WTP figures reported by
respondents can be averaged to produce an estimate of median WTP [58]:

MWTP =
1
n

∑n

i=1
zi (1)

where n is the sample size and zi is the reported WTP amount by the i-th respondent.
In detail, descriptive statistics and Q-Q plots were first used to investigate whether the distribution

of WTP values was roughly normal (for each seismic class of risk), and secondly the Jarque-Bera test (JB)
was implemented to validate the hypothesis that data are normally distributed. The Jarque-Bera test is
a goodness-of-fit test, which analyzes the skewness and kurtosis of the sample distribution to verify
whether the distribution of data is normal. By fixing a significance level (α-value) the test is performed
and if the null hypothesis is accepted data are considered as normally distributed.

Once the JB test was performed, we estimated respondents mean WTP, which was considered as
a good estimator of population expected WTP [55]. Finally, confidence intervals for the population
mean WTP related to each seismic class of risk were computed.

3. Survey Design and Administration

Our survey was designed to elicit WTP for seismic class upgrades in terms of market price
premiums for seismic risk classification of constructions.

According to literature, the benefits of BSR perceived by homeowners as the most relevant are
those related to safeguarding of life and minimization of repair costs and economic losses due to future
seismic events. Reduction of repair costs and of human and economic losses is strongly related to
existing building stock vulnerability and class of risk. In this respect, building codes and regulations’
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primary objective is to protect the life of occupants and reduce damages caused by seismic actions in
order to favor a rapid reuse of buildings [3]. Seismic risk classification of constructions in Italy is normed
by Ministerial Decree n. 58 of 28 February 2017 [68] and Ministerial Decree n. 65 of 20 March 2017 [69]
and is based on two indexes: the expected annual losses (EAL) index and the Safety Index of the
structure at the Life Safety Limit State (SI-LS). The EAL index measures the overall construction behavior
at increasing intensity earthquakes in terms of expected annual losses, whereas the SI-LS index, firstly
set in 2003 by the Italian code O.P.C.M 3274 [70] accounts for building performance in accordance with
the Life Safety Limit State to guarantee safety of occupants. The EAL index does not provide adequate
guarantees for safety of occupants per se; e.g., highly fragile constructions can exhibit inadequate safety
at collapse conditions, regardless of low EAL values [3,71–73]. The seismic risk class of a building is
defined as the minimum between the class associated with the SI-LS index of the structure and the
class related to the EAL index. Specifically, Ministerial Decree n. 65 of 20 March 2017 [69] introduced
8 seismic risk classes from A+ (best) to G (worst).

Based on the above considerations, our survey was designed to elicit WTP for seismic class
upgrades in terms of market price premiums for seismic risk classification of constructions. We made
the hypothesis that individuals may be willing to pay different price premiums for real estate assets
depending on their seismic class of risk: the better the class, the greater the asset’s market price premium.

In our survey, respondents were asked to play the role of the homebuyers of a reference building,
i.e., a medium-size (i.e., 140 m2) detached house, F-rated seismic class of risk, located in Foligno
(province of Perugia), in seismic Zone 1.

The reference building is a two-story, unreinforced masonry building with reinforced concrete
floors, built in the 1970s, consisting of 7 rooms and a private garden, whose market price is equal to
EUR 120,000. The asset market price was estimated according to the sale comparison approach [74–76],
by considering recent home sale transactions of detached houses located in Foligno, exhibiting intrinsic,
positional and characteristics. This choice was made in order to facilitate respondents in answering
the payment question, because by representing one of the most widespread building typologies in
Italy—61.5% of the Italian real estate stock is constituted by masonry buildings [77]—they were likely
adequately experienced to express their WTP for such a building. In detail, respondents were queried
about their WTP an additional price (i.e., a market price premium) for an improvement in the building’s
seismic class of risk.

The survey questionnaire was structured into 5 sections. In the Section 1, the research topic
was introduced to raise awareness about the issue of seismic hazard and earthquakes impacts and
motivate the research. In detail, data about human and financial losses caused by recent relevant
seismic events were reported, information on seismic risk classification and seismic hazard zones were
illustrated and basic knowledge on the EAL and SI-LS indexes was provided, respectively. Benefits of
BSR (e.g., safeguard of life, reduction of repair costs due to the effects of seismic actions, etc.) were
listed and briefly described as well. The Section 2 of the questionnaire described the valuation scenario
(i.e., the hypothetical scenario) and the specified good, i.e., a 140 m2 detached house, F-rated, built in
the 1970s and priced EUR 120,000. Pictures and descriptions of the technical characteristics of the
building were provided. In addition, it was clarified and illustrated by means of renderings (Figure 1)
that if a seismic event occurred analogous to that that occurred in Amatrice in August 2016, the buildings
would suffer from severe structural damages and human losses might be incurred. In the Section 3
of the survey format, primary information on each seismic class of risk was provided and illustrated
by means of renderings: (a) hazard rating; (b) entity of damages; (c) inaccessibility and time to reuse;
(d) EAL amount in Euros and in percentage terms with respect to the building’s (ex novo) construction
costs; (e) potential occupants’ loss of life. In the Section 4, instructions to compile the survey were
provided and WTP elicitation questions were posed. Instructions specified that respondents have to
express their WTP an additional price to buy a detached house analogous to that described in the
hypothetical scenario, but differently rated (i.e., a detached house of upgraded seismic risk class)
according to a simplified approach to seismic risk classification, based on the European Macroseismic
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Scale [78], proposed for masonry buildings in Ministerial Decree n. 58 of 28 February 2017 [68] and
Ministerial Decree n. 65 of 7 March 2017 [69]. Respondents were queried about their WTP a market
price premium for a detached house rated respectively E, D, C, B and A and payment questions were
phrased as OE questions. Finally, the Section 5 of the questionnaire included usual questions about
socio-demographic characteristics (gender, educational attainment, age and income per household).

Figure 1. Renderings of the reference building (source: our processing).

As previously mentioned, each seismic class of risk was described in terms of hazard rating,
severity of damages, time to building’s usability, EAL and occupants’ loss of life, based on the
hypothesis that the building suffers from the effects of an intense seismic event, analogous to the
earthquake occurred in Amatrice on 24 August 2016, of the sixth degree on the Richter scale.

We defined damage grades according to the European Macroseismic Scale, henceforth EMS-98 [79].
Damage grades were related to 12 earthquake intensity degrees, defined in terms of effects on humans,
effects on objects and on nature and damage to buildings by EMS-98 [79]. According to EMS-98,
the Amatrice seismic event was classified as a 10-intensity degree, i.e., “Very Destructive” [80]. Table 1
summarizes damage grades for each vulnerability class of a 10-intensity earthquake.

Table 1. Vulnerability classes and damage grades for a 10-intensity earthquake (source: Ministerial
Decree n. 65 of 7 March 2017-Annex A, EMS-98).

Vulnerability Class (EMS-98) Vulnerability Class
(Ministerial Decree n. 65 of 7 March 2017) Damage Grade (EMS-98)

A V6 5
B V5 5
C V4 4 (Most Likely); 5 (Less Likely)
D V3 3 (Most Likely); 4 (Less Likely)
E V2 2 (Most Likely); 3 (Less Likely)
F V1 2

Buildings’ deformation under earthquake loading depends on the building type. Figure 2
illustrates classification of damage to masonry buildings based on EMS-98.
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Figure 2. Classification of damage to masonry buildings (source: EMS-98, p. 16).

Based on EMS-98 classification of damage grades and photographic records and reports illustrating
building collapse and damage caused by seismic activity [81–84], we provided respondents with
renderings that showed potential damages to the detached house under investigation in the valuation
scenario (Figure 3).

Ministerial Decree n. 65 of 7 March 2017 [69] (Annex A) relates seismic risk classification to
seismic zones and vulnerability classes, whereas EMS-98 relates damage grades to vulnerability classes.
By cross-referencing Annex A and EMS-98, seismic classes of risk were associated to damage grade for
a 10-intensity earthquake (Table 2).

Table 2. Seismic class of risk and related damage grade.

Seismic Class of
Risk (Ministerial Decree n. 65 of 7 March 2017) Damage Grade (EMS-98)

A 1
B 2
C 2
D 3
E 4
F 5
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Figure 3. Renderings of the potential damages to the detached house under investigation in the
valuation scenario (source: our processing).

Based on EMS-98 and specific contributions in literature [81,83,84], we organized a focus group
with a panel of experts in the field (e.g., engineers, architects, geologists, etc.), who identified 5 attributes
to provide respondents with a characterization of seismic classes of risk and create the bases for
common knowledge, aimed at reducing information biases: (a) effects of damage (i.e., damage);
(b) risk (i.e., risk); (c) time to usability of the building (i.e., time to usability); (d) occurrence of loss of
occupants’ life (i.e., loss of occupants’ life); (e) EAL monetary amount (i.e., EAL). Table 3 illustrates
discretization scales used to express a continuum of possible degrees of damage, risk, inaccessibility
and loss of occupants’ life, whereas Table 4 reports the characterization attributes of each seismic class
of risk and their assessment, presented to respondents.
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Table 3. Discretization scale of a continuum of possible degrees of damage, risk, time to usability and
loss of occupants’ life (source: our processing).

Attribute Discretization Scale

Damage

Negligible
Low
Moderate
Substantial
Heavy
Very Heavy

Risk

Negligible
Very Low
Low
Medium High
High
Very High

Time to usability

Null
Some Days
Few Months
Several Months
No Longer Usable

Loss of occupants’ life

Null
Unlikely
Moderately Likely
Likely
Very Likely

Table 4. Seismic classes of risk and relative characterization of attributes.

Class Attribute Attribute Level

A

Damage Negligible
Risk Negligible
Inaccessibility Null
Loss of occupants’ life Null

EAL
[EUR] 758–1570
(% of Reconstruction Cost) (0.50–1.00)

B

Damage Low
Risk Very Low
Inaccessibility Null
Loss of occupants’ life Null

EAL
[EUR] 1570–2355
(% of Reconstruction Cost) (1.00–1.50)

C

Damage Moderate
Risk Low
Inaccessibility Some Days
Loss of occupants’ life Unlikely

EAL
[EUR] 2355–3925
(% of Reconstruction Cost) (1.50–2.50)

D

Damage Substantial
Risk Medium High
Inaccessibility Few Months
Loss of occupants’ life Moderately Likely

EAL
[EUR] 3925–5500
(% of Reconstruction Cost) (2.50–3.50)

E

Damage Heavy
Risk High
Inaccessibility Several Months
Loss of occupants’ life Likely

EAL
[EUR] 5500–7070
(% of Reconstruction Cost) (3.50–4.5)

F

Damage Very Heavy
Risk Very High
Inaccessibility No Longer Usable
Loss of occupants’ life Very Likely

EAL
[EUR] 7070–11,780
(% of Reconstruction Cost) (4.5–7.5)
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In detail, EAL lower and upper bounds were estimated according to Ministerial
Decree n. 65 of 7 March 2017 [69] and EAL indexes. EAL are a fraction of reconstruction costs
(i.e., costs to build the building ex novo). Reconstruction costs were estimated by consulting the
2018 price list provided by DEI. The DEI price list estimates construction costs for different building
typologies. For each building typology, the price estimation is obtained by comparison approaches
over a sample of homogeneous buildings. We updated the price list to the present by considering the
construction cost growth rate index provided by the Italian National Institute of Statistics (ISTAT).
Estimated current construction costs for the building under investigation are equal to EUR 157,000.

4. Results and Discussion

The survey was self-administrated via computer-assisted web interviewing (CAWI) in the period
4 November–28 November 2019 to a sample of 200 Italian residents (aged between 18 and 70 years),
coming from cities in the North, Centre and South of Italy. A random sample of households was
stratified by a survey company on the most important socio-demographics (e.g., age, educational
attainment, gender, households’ income, seismic zone of residency) of the 2011 Italian census. Finally,
104 fully filled questionnaires were collected from respondents, who declared to be owner-occupiers of
residential units, and stated that at least once in the past 2 years they had consulted online datasets
reporting asking prices of real estate assets. Table 5 reports respondents’ descriptive statistics of
socio-economic characteristics.

Table 5. Descriptive statistics of the respondents, percentage.

Variable Percentage

Gender
Male 48.00%

Female 52.00%

Age

20–24 22.12%
25–29 22.12%
30–39 17.31%
40–49 17.31%
50–59 15.38%
60–69 5.77%

Educational Attainment

Middle school diploma 4.81%
High school diploma 37.50%

Bachelor degree 50.96%
Master Degree/PhD 6.73%

Household Income [EUR]

0–10,000 1.92%
10,000–15,000 6.73%
15,000–20,000 8.65%
20,000–25,000 7.69%
25,000–30,000 12.50%
30,000–40,000 17.31%
40,000–55,000 17.31%

>55,000 27.88%

Seismic Zone of Residency

1 0.96%
2 20.19%
3 40.38%
4 38.46%

From direct inspection of Table 5, it emerges that 48% of respondents were males whereas 52%
were females, therefore the sample perfectly mirrors the shares in the population of the country [85].
Some 44% of respondents were aged between 20 and 29 years, 35% were aged between 30 and 49 years,
whereas respondents aged 60 or more accounted for about 6%. Some 5% of respondents had a middle
school diploma, 37.50% had a high school diploma and about 51% had a bachelor degree, whereas
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some 7% of respondents had a PhD or a master degree. Some 8% of respondents reported an annual
household income lower than EUR 15,000, whereas some 29% of respondents reported an annual
household income ranging between EUR 15,000 and EUR 30,000. Finally, about 28% of respondents
reported an annual household income greater than EUR 55,000. These figures mirrored income shares
in the country [85].

We queried respondents about their area of residency, because individuals living in high seismicity
zones (Zone 1 and Zone 2) may express WTPs higher than WTPs of respondents living in low
seismicity zones (Zone 3 and Zone 4). Therefore, in order to obtain a consistent estimate of mean
WTP, we preliminarily checked that the sample mirrored the country share of residency areas per
seismic zones.

Some 1% of respondents lived in seismic Zone 1, 20.19% in Zone 2, 40.38% in Zone 3 and 38.46%
in Zone 4. According to [1], these figures mirrored the general share in the population of the country:
5% of the Italian population resides in Zone 1, 32% in Zone 2, 43% in Zone 3, whereas 21% of the entire
population resides in Zone 4.

Descriptive and inferential statistics of WTP figures computed for each seismic class of risk are
displayed in Table 6.

Table 6. Descriptive and inferential statistics and summary of WTP figures for upgraded seismic classes
of risk.

Statistics WTP Figures

Seismic Class of Risk A B C D E
Number of observations 104 104 104 104 104
Minimum value [EUR] 1000 0 0 0 0
Quantile (25%) [EUR] 30,000 25,000 13,500 10,000 7070
Median [EUR] 56,000 40,000 30,000 20,000 10,000
Quantile (75%) [EUR] 100,000 70,000 40,000 23,000 20,000
Maximum value [EUR] 160,000 120,000 70,000 45,000 30,000
Mean [EUR] 62,392 47,873 29,724 18,913 12,582
Standard deviation [EUR] 37,524 30,214 19,332 12,675 8310
Jarque-Bera test p-value (α = 5%) 0.1132 0.06701 0.07356 0.08496 0.1175
Lower limit confidence
interval (α/2 = 2.5%) [EUR] 54,622 41,616 25,580 15,773 10,057

Upper limit confidence
interval (α/2 = 2.5%) [EUR] 70,161 54,129 33,868 22,053 15,106

With an exception made for A-class (i.e., minimum WTP equal to EUR 1000), minimum WTP
figures for seismic classes of risk resulted null. By direct inspection of our dataset, it emerged that these
WTP responses were given by respondents living in low seismicity zones (i.e., Zone 3 and Zone 4).
Therefore, it was not surprising that they have a low perception of risk. Nonetheless, respondents
living in earthquake-stricken communities expressed conspicuous WTPs for each seismic class of
risk (Table 6). A low perception of risk in addition to high costs of BSR have a negative impact on
investments in seismic upgrading of the existing building stock, and generate a suboptimal mitigation
of risk (i.e., market failure), which calls for a more efficient government intervention, based on incentive
mechanisms, to accelerate investments.

The highest maximum WTP values were declared for classes A and B (EUR 160,000 and EUR
120,000, respectively), whereas the lowest maximum WTP value was declared for class E (EUR 30,000).
It is worth noting that the maximum WTPs (i.e., the market price premium) for upgrading to class B and
class A were equal or greater than the market price of the F-rated reference building (i.e., EUR120,000),
but were in line with construction costs paid to build an analogous detached house, which meets
current code requirements and seismic design standards (i.e., EUR 157,000). Thanks to responses to
follow-up questions, where respondents were queried about the relative importance of class-of-risk
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characterization attributes, it emerged that these respondents place the highest importance to safeguard
of life and minimization of potential loss of occupants’ life.

In order to verify whether WTP distribution is normal, we firstly displayed the Quantile-Quantile
plot (QQ-plot) relative to each seismic class of risk. As illustrated in Figure 4, the sample quartiles fell
approximately along the reference line. This suggested that WTP distribution is normal.

Figure 4. Quantile-Quantile plot (QQ-plot) of WTP values for different seismic classes of risk (A–E).

To confirm whether WTP is normally distributed, we implemented the Jarque-Bera test, by fixing
a significance level (α-value) equal to 0.05. We then calculated the confidence intervals for each seismic
class of risk. All the p-values were greater than the α-value, and consequently the null hypothesis that
the WTP values are normally distributed could be accepted. Finally, we determined the population
mean WTP for each seismic class of risk (Table 6).

In Figure 5, MWTP is plotted against seismic classes of risk to represent market demand for
upgrading of seismic class, which is decreasing according to theoretical expectations.

Our results revealed that the Italian population is (on average) willing to pay a price premium
for upgrading the seismic class. This in turn proves that Italians care about seismic hazards and
their related issues, which is not surprising as the Italian territory is largely prone to seismic hazards.
The highest seismic activity is concentrated in the central-southern part of the peninsula, along the
Apennine ridge, in Calabria and Sicily, and in some northern areas, including Friuli, Veneto and part of
Western Liguria.
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Figure 5. MWTP for different seismic classes of risk.

Table 7 illustrates the mean market price premium per each seismic class of risk (i.e., coincident
with MWTP), expressed both in Euros (rounded to the nearest thousand Euros), and in percentage
terms (rounded to the nearest unit) with respect to the reference building price (equal to EUR 120,000).
The average price premium for upgrading to class A is about 52%, whereas the average price premium
for upgrading to class E is about 11% (Table 7). These findings acknowledge that a limited risk mitigation
is less valuable to individuals than a significant risk mitigation, and consequently individuals’ WTP is
not strongly dependent on EAL, but it is indeed very affected by the occurrence of a loss of occupants’
life. Our mean WTP estimates were in line with costs of seismic upgrade of existing masonry buildings
in Italy [86–90]. Specifically, according to analyses by the RELUIS Consortium (i.e., the Laboratories
University Network of seismic engineering, financed by the Italian Civil Protection Department),
retrofit costs for seismic upgrades from seismic class of risk F to E amount to 68 EUR/m2, whereas costs
for upgrading from class F to class A or B fall in the range 320–400 EUR/m2 (www.reluis.it).

Table 7. Market price premium per each class of seismic risk.

Seismic Class of Risk Price Premium [EUR] Price Premium [%]

A 62,000 52
B 48,000 40
C 30,000 25
D 19,000 16
E 13,000 11

It is worth noting that, according to literature, market price premiums for energy retrofitting
buildings in Italy range from 22% to 45% for A-EPC labelled buildings and from 2% to 10% for F
and E-EPC labelled buildings, respectively [91–93]. Compared to the energy retrofitting of buildings,
the price premiums for BSR we obtained were larger, probably due to higher non-use values (mostly
related to the safeguarding of life), which respondents commended to BSR compared to non-use values
(mostly related to environmental concerns) attributable to the energy retrofitting of buildings [94].

5. Conclusions

Italy is one of the European Countries with the highest seismicity. The frequency and intensity of
seismic events that have affected this territory over the years caused disruptive social and economic
impacts. More than 6 million buildings are exposed to high seismic hazard due to their vulnerability
and require urgent seismic retrofitting. BSR is therefore a primary policy objective for the government,

www.reluis.it
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which have tried to promote the adoption of risk mitigation measures by introducing policy incentives.
Despite the introduction of incentive schemes, good practice in mitigating buildings vulnerability is
still far from being implemented and the number of seismic upgrading interventions is still limited.
Homeowners play a key de facto role in undertaking investments in BSR and their perception of risk,
as well as of the other benefits produced, and are fundamental in driving the decision process.

To determine the cost-benefit trade-offs of BSR and the monetary value of its benefits, a CV
study was implemented. In detail, since no similar studies have been conducted in literature so far
and no datasets are currently available, to assess the WTP for BSR and market price premiums of
retrofitted buildings in Italy, in our survey-based approach, starting from an F-rated reference building,
respondents were queried about their WTP an additional price for the building, by class-of-risk
upgraded construction. Via a self-administered web interview, respondents were asked to play the role
of homebuyers of a detached 140 m2 masonry house, located in Foligno (seismic Zone 1), with a price
equal to EUR 120,000, and were queried about the market price premium they were willing to pay in
case it were better seismic-class rated. We interviewed a heterogeneous sample of Italian respondents,
aged between 18 and 70 years and coming from the North, Centre and South of Italy, and we obtained
statistically significant WTP estimates for different seismic class upgrades.

Our findings confirmed that people in Italy do care about seismic risk: the lower the building’s
seismic vulnerability, the higher the market price premium. Market price premiums ranged from about
52% to 11%. In detail, the average price premium for upgrading to class A was about 52%, whereas the
average price premium for upgrading to class E was about 11%. Our results confirmed that limited risk
mitigation is less valuable to individuals than a significant risk mitigation, and individuals’ WTP is not
strongly dependent on EAL, but it mainly depends on the potential reduction in number of deaths.
In addition, respondents living in earthquake-stricken communities expressed conspicuous WTPs
for each seismic class of risk. By contrast, minimum WTP (i.e., null) values were (not surprisingly)
expressed by respondents living in low seismicity zones, who have a low perception of risk.

Some limitations of this study relate to the usual drawbacks of CV studies. In a hypothetical market,
people may express WTP values greater than WTPs generated in a real market, due to the discrepancy
between intentions and behavior in hypothetical and real contexts. As the occurrence of hypothetical
bias is mainly related to respondents’ failure to understand the value of the specific good and the
contingent scenario, to mitigate this issue we provided a detailed and realistic description of both
the building and the effects of mitigation of seismic risk, due to different class upgrades. In addition,
it is worth mentioning that social desirability bias is reduced in self-administered surveys such as
ours, and starting point bias is inherently annulled in open-ended elicitation formats. Nonetheless,
the concern related to potential measurement errors, i.e., to the relation between the response and the
unobserved value that generates it, may persist. The reduction of measurement error effects on WTP
figures is very challenging with respect to the Italian context, as to our best knowledge, there are no
available WTP estimates in literature nor another criterion against which we can compare our WTP
figures. Our results, though, indicated that respondents are sensitive to scope (i.e., they are willing to
pay more for greater risk reduction) and therefore consistent with economic theory, and that stated
WTPs were in line with retrofitting costs.

Although usual caveats apply in that WTP amounts may diverge from reality to preclude
predicting behavior with the degree of accuracy required for robust monetary benefit estimates,
our findings can provide preliminary interesting policy implications for the design of optimal policy
incentives. Italian residents are willing to pay significant monetary amounts for upgrades of seismic
class of risk in high seismicity zones. The role of incentives and their impact on private investment
decisions is therefore fundamental in determining how far it is optimal to push on BSR. Nonetheless,
analogously to evidence on the cost-efficiency of incentives set to improve buildings’ energy efficiency,
it is still controversial whether incentives set to reduce buildings’ vulnerability are cost-effective or
not. Suboptimal incentive designs may generate significant de facto losses to the government and
attract free riders. In order to reduce the costs of current incentive schemes, the government may
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revise upward fiscal incentives paid to investments, aiming at both seismic and energy retrofitting
simultaneously, whereas it may revise downward incentives paid to upgrading solely the energy
performance or seismic performance of buildings. In addition, information campaigns to increase
social awareness on BSR-related benefits should be organized.

Further research may investigate the opportunity to introduce innovative regulatory instruments,
such as mandatory certification of buildings’ seismic performance (analogous to energy performance
certification), and its cost-effectiveness in promoting BSR.
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