Estimating and Decomposing Groundnut Gender Yield Gap: Evidence from Rural Farming Households in Northern Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. The Exogenous Switching Regression
2.2.2. The Oaxaca–Blinder (OB) Decomposition
3. Results and Discussions
3.1. Descriptive Summary Statistics
3.2. Econometric Results
3.2.1. OLS Regression Model of Groundnut Yield
3.2.2. Exogenous Switching Regression (ESR)
3.2.3. Oaxaca-Blinder (OB) Decomposition Analysis
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
VARIABLES | Model 1: Traditional | Model 2: PSM | Model 3: Pooled ESR | Model 4: MHHs ESR | Model 5: FHHs ESR |
---|---|---|---|---|---|
Sex of household head | 0.309 *** | ||||
(0.0849) | |||||
Improved groundnut variety | 0.247 *** | 0.0716 | 0.248 *** | 0.206 *** | 0.483 ** |
(0.0465) | (0.128) | (0.0467) | (0.0476) | (0.242) | |
Natural log of plot size | −0.364 *** | 0.0382 | −0.366 *** | −0.340 *** | −0.594 *** |
(0.0319) | (0.0823) | (0.0321) | (0.0327) | (0.183) | |
Planting on time | 0.0559 | 0.572 *** | 0.0851 | 0.0485 | 0.285 |
(0.0820) | (0.190) | (0.0819) | (0.0859) | (0.345) | |
Harvesting on time | 0.0793 | 0.416 ** | 0.0902 | 0.0443 | 0.0978 |
(0.0773) | (0.185) | (0.0775) | (0.0817) | (0.375) | |
Individually owned plot | 0.112* | 0.878 *** | 0.149 ** | 0.126 * | 0.191 |
(0.0634) | (0.164) | (0.0628) | (0.0669) | (0.317) | |
Plot intercropped | −0.0413 | 0.393 *** | −0.0238 | −0.0462 | 0.220 |
(0.0468) | (0.133) | (0.0468) | (0.0475) | (0.292) | |
Rotation on the plot | 0.110 ** | −0.168 | 0.106 ** | 0.155 *** | −0.502 * |
(0.0497) | (0.140) | (0.0499) | (0.0505) | (0.294) | |
Poor soil fertility | −0.143 | 0.875 * | −0.117 | −0.158 | 0.178 |
(0.148) | (0.466) | (0.148) | (0.150) | (0.815) | |
Average soil fertility | 0.0500 | 0.129 | 0.0579 | 0.00727 | 0.216 |
(0.0801) | (0.207) | (0.0803) | (0.0832) | (0.322) | |
Good soil fertility | 0.152 ** | 0.210 | 0.163 *** | 0.131 ** | 0.261 |
(0.0627) | (0.168) | (0.0629) | (0.0655) | (0.259) | |
Natural log of seed rate | 0.0648 *** | −0.00261 | 0.0644 *** | 0.0672 *** | 0.0824 * |
(0.0108) | (0.0221) | (0.0108) | (0.0115) | (0.0426) | |
Fertilizer application rate | 5.01 × 10−6 | −7.04 × 10−6 | 2.83 × 10−6 | 6.24 × 10−6 | 5.66 × 10−5 |
(1.68 × 10−5) | (5.09 × 10−5) | (1.69 × 10−5) | (1.80 × 10−5) | (5.72 × 10−5) | |
Manure application rate | −3.02 × 10−6 | 1.63 × 10−5 | −1.64 × 10−6 | −6.52 × 10−6 | 0.000126 |
(8.72 × 10−6) | (2.91 × 10−5) | (8.74 × 10−6) | (8.67 × 10−6) | (8.37 × 10−5) | |
Livestock grazing rate | 0.00120 | −0.00636 *** | 0.000924 | 0.00140 | 0.00266 |
(0.000951) | (0.00204) | (0.000952) | (0.000972) | (0.00527) | |
Male labor rate | 0.000158 | 0.000126 | 0.000171 | 0.000406 | −0.00142 |
(0.000509) | (0.00117) | (0.000511) | (0.000535) | (0.00178) | |
Female labor rate | 0.000473 | 0.00204 | 0.000512 | 0.000333 | 0.00462 |
(0.000710) | (0.00526) | (0.000713) | (0.000707) | (0.0426) | |
Children labor rate | 0.000343 | 0.0236 | 0.000379 | 0.000370 | 0.0678 |
(0.000728) | (0.0218) | (0.000730) | (0.000716) | (0.0431) | |
Striga control on plot | −0.0962 | 0.0255 | −0.0980 | −0.0644 | −0.269 |
(0.0694) | (0.181) | (0.0696) | (0.0714) | (0.305) | |
Household head age | 0.00630 ** | 0.0135 ** | 0.00677 *** | 0.00631 ** | 0.00737 |
(0.00251) | (0.00684) | (0.00252) | (0.00258) | (0.0147) | |
Household head years of schooling | 0.00219 | 0.0498 *** | 0.00292 | 0.00202 | −0.0381 |
(0.00318) | (0.0150) | (0.00319) | (0.00318) | (0.0284) | |
Household head farming main occupation | −0.138 ** | 0.247 | −0.135 ** | −0.175 ** | 0.586 |
(0.0674) | (0.186) | (0.0676) | (0.0692) | (0.409) | |
Household head married | 0.119 | 1.261 *** | 0.222 * | 0.130 | 0.0441 |
(0.124) | (0.219) | (0.121) | (0.160) | (0.331) | |
Household head years of farming experience | 0.000516 | 0.00290 | 0.000627 | 0.000367 | 0.00917 |
(0.00227) | (0.00687) | (0.00227) | (0.00229) | (0.0137) | |
Household head full time farm labor | −0.0753 | 0.236 | −0.0644 | −0.0351 | −0.630 ** |
(0.0633) | (0.170) | (0.0635) | (0.0651) | (0.313) | |
Household head involved in technology testing | −0.104 ** | −0.168 | −0.110 ** | −0.120 ** | 0.294 |
(0.0511) | (0.145) | (0.0512) | (0.0515) | (0.354) | |
Number of extension staff visits | −0.00808 *** | −0.0191 *** | −0.00837 *** | −0.00732 ** | −0.00624 |
(0.00296) | (0.00719) | (0.00297) | (0.00308) | (0.0182) | |
Total male household members | −0.0223 *** | 0.0353 | −0.0216 *** | −0.0237 *** | 0.00472 |
(0.00664) | (0.0232) | (0.00666) | (0.00661) | (0.0611) | |
Total female household members | 0.0208 *** | −0.00468 | 0.0211 *** | 0.0224 *** | −0.0210 |
(0.00608) | (0.0230) | (0.00610) | (0.00603) | (0.0618) | |
Member of household trained in technology | 0.131 ** | −0.256 | 0.118 ** | 0.108 * | 0.216 |
(0.0576) | (0.158) | (0.0577) | (0.0593) | (0.356) | |
Number of cultivated plots | 0.0120 | 0.232 *** | 0.0141 * | 0.0107 | 0.0245 |
(0.00738) | (0.0484) | (0.00739) | (0.00733) | (0.106) | |
Jigawa State | −0.201 ** | −0.688 *** | −0.227 *** | −0.234 *** | −0.413 |
(0.0833) | (0.224) | (0.0833) | (0.0870) | (0.448) | |
Kano State | 0.121 | 0.627 ** | 0.136 | 0.0774 | −0.442 |
(0.0848) | (0.285) | (0.0850) | (0.0866) | (0.791) | |
Katsina State | 0.0302 | −0.143 | 0.0305 | −0.0293 | 0.415 |
(0.0788) | (0.213) | (0.0791) | (0.0815) | (0.415) | |
Kebbi State | 0.897 *** | 0.726 *** | 0.923 *** | 0.831 *** | 1.190 ** |
(0.0828) | (0.251) | (0.0828) | (0.0852) | (0.545) | |
Constant | 5.016 *** | −3.153 *** | 5.074 *** | 5.398 *** | 4.092 *** |
(0.176) | (0.428) | (0.176) | (0.212) | (0.771) | |
Observations | 1645 | 1645 | 1645 | 1513 | 132 |
R-squared | 0.269 | 0.325 | 0.263 | 0.246 | 0.506 |
Variables | Nearest Neighbor |
---|---|
Male HH | 6.244 |
Female HH | 5.720 |
Difference | 0.524 *** |
Std. Error | 0.120 |
t-stat | 4.360 |
No. Obs. | |
Male | 1513 |
Female | 132 |
VARIABLES | Yield Differential | Yield Decomposition | Drivers of Endowments | Drivers of Coefficients | Drivers of Interaction |
---|---|---|---|---|---|
Improved groundnut variety | 0.0314 *** | 0.113 | 0.0421 | ||
(0.0118) | (0.101) | (0.0396) | |||
Natural log of plot size | −0.000694 | −0.0622 | −0.000519 | ||
(0.0227) | (0.0458) | (0.0170) | |||
Planting on time | −0.00538 | 0.218 | −0.0261 | ||
(0.00966) | (0.327) | (0.0402) | |||
Harvesting on time | −0.00497 | 0.0485 | −0.00599 | ||
(0.00929) | (0.348) | (0.0430) | |||
Individually owned plot | −0.0244 * | 0.0557 | −0.0127 | ||
(0.0141) | (0.276) | (0.0630) | |||
Plot intercropped | 0.00997 | 0.142 | −0.0576 | ||
(0.0104) | (0.158) | (0.0649) | |||
Rotation on the plot | −0.0112 | −0.296 ** | 0.0473 | ||
(0.00777) | (0.135) | (0.0362) | |||
Poor soil fertility | 0.00168 | 0.00867 | −0.00357 | ||
(0.00241) | (0.0214) | (0.00961) | |||
Average soil fertility | 0.000133 | 0.0325 | 0.00380 | ||
(0.00154) | (0.0520) | (0.00940) | |||
Good soil fertility | −0.0101 | 0.0864 | −0.00991 | ||
(0.00771) | (0.179) | (0.0213) | |||
Natural log of seed | −0.0180 | 0.0423 | −0.00407 | ||
(0.0164) | (0.123) | (0.0124) | |||
Fertilizer rate | 0.000434 | 0.00867 | 0.00350 | ||
(0.00159) | (0.0104) | (0.00890) | |||
Manure rate | 0.00264 | 0.0966 | −0.0536 | ||
(0.00360) | (0.0619) | (0.0378) | |||
Livestock plot grazing rate | 0.00366 | 0.00734 | 0.00327 | ||
(0.00378) | (0.0314) | (0.0142) | |||
Male labor rate | −1.09 × 10−5 | −0.0180 | 4.88 × 10−5 | ||
(0.00192) | (0.0185) | (0.00862) | |||
Female labor rate | −0.000450 | 0.0116 | −0.00579 | ||
(0.00101) | (0.115) | (0.0577) | |||
Children labor rate | −0.000425 | 0.160 | −0.0773 | ||
(0.000881) | (0.117) | (0.0765) | |||
Striga control on plot | −0.00161 | −0.0243 | −0.00510 | ||
(0.00271) | (0.0373) | (0.0102) | |||
Household head age | −0.0411 ** | 0.0490 | −0.00690 | ||
(0.0180) | (0.690) | (0.0972) | |||
Household head years of schooling | −0.00294 | −0.128 | 0.0582 | ||
(0.00468) | (0.0917) | (0.0445) | |||
Household head farming main occupation | 0.00459 | 0.660 * | −0.0200 | ||
(0.00607) | (0.359) | (0.0275) | |||
Household head married | −0.0240 | −0.0844 | 0.0159 | ||
(0.0300) | (0.360) | (0.0680) | |||
Household head years of farming experience | −0.00255 | 0.203 | −0.0612 | ||
(0.0159) | (0.319) | (0.0967) | |||
Household head full time farm labor | 0.00434 | −0.484 * | 0.0735 | ||
(0.00817) | (0.260) | (0.0466) | |||
Household head involved in technology testing | −0.0158 * | 0.147 | 0.0544 | ||
(0.00870) | (0.127) | (0.0505) | |||
Number of extension staff visits | 0.00668 | 0.00463 | −0.000980 | ||
(0.00656) | (0.0794) | (0.0168) | |||
Total male household members | 0.0385 *** | 0.159 | −0.0462 | ||
(0.0125) | (0.343) | (0.100) | |||
Total female household members | −0.0352 *** | −0.198 | 0.0681 | ||
(0.0114) | (0.283) | (0.0982) | |||
Member of household trained in technology | 0.0140 | 0.0212 | 0.0140 | ||
(0.00894) | (0.0709) | (0.0470) | |||
Number of cultivated plots | −0.0131 | 0.0412 | −0.0167 | ||
(0.00909) | (0.320) | (0.130) | |||
Jigawa State | −0.0429 ** | −0.0404 | −0.0327 | ||
(0.0190) | (0.103) | (0.0839) | |||
Kano State | −0.0122 | −0.102 | 0.0820 | ||
(0.0137) | (0.156) | (0.126) | |||
Katsina State | 0.000617 | 0.0834 | −0.00934 | ||
(0.00198) | (0.0796) | (0.0176) | |||
Kebbi State | −0.109 *** | 0.0746 | −0.0474 | ||
(0.0239) | (0.115) | (0.0733) | |||
Total | −0.258 *** | −0.270 | −0.0375 | ||
(0.0594) | (0.263) | (0.256) | |||
Prediction_1 | 5.679 *** | ||||
(0.112) | |||||
Prediction_2 | 6.244 *** | ||||
(0.0243) | |||||
Difference | −0.565 *** | ||||
(0.114) | |||||
Endowments | −0.258 *** | ||||
(0.0594) | |||||
Coefficients | −0.270 | ||||
(0.263) | |||||
Interaction | −0.0375 | ||||
(0.256) | |||||
Constant | −1.307 | ||||
(0.800) | |||||
Observations | 1645 | 1645 | 1645 | 1645 | 1645 |
References
- World Bank. Poverty and Shared Prosperity 2018: Piecing Together the Poverty Puzzle; World Bank: Washington, DC, USA, 2018; License: Creative Commons Attribution CC BY 3.0 IGO. [Google Scholar]
- Zadawa, A.N.; Omran, A. Rural development in Africa: Challenges and opportunities. In Sustaining Our Evironment for Better Future; Omran, A., Schwarz-Herion, O., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Odusola, A. Fiscal Space, Poverty and Inequality in Africa. Afr. Dev. Rev. 2017, 29, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Johnson, M.; Saurkar, A.; Makombe, T. Investing in African Agriculture to Halve Poverty by 2015. IFPRI Discussion Paper 00751. Development Strategy and Governance Division, 2008. Available online: https://www.fanrpan.org/archive/documents/d00484/Agric_poverty_IFPRI_Feb2008.pdf (accessed on 4 July 2020).
- Ligon, E.; Sadoulet, E. Estimating the Effects of Aggregate Agricultural Growth on the Distribution of Expenditure; Background paper for the World Development Report, 2008; The World Bank: Wasington, DC, USA, 2008. [Google Scholar]
- Mugisha, J.; Diiro, G. Explaining the Adoption of Imoproved Maize Varieties and its Effects on Yields among Smallholder Maize Farmers in Eastern and Central Uganda. Middle East J. Sci. Res. 2010, 5, 6–13. [Google Scholar]
- Shimeles, A.; Verdier-Chouchane, A.; Boly, A. Introduction: Understanding the Challenge of the Agricultural Sector in Sub-Saharan Africa. In Building a Resilient and Sustainable Agriculture in Sub Saharan Africa; Shimeles, A., Verdier-Chouchane, A., Boly, A., Eds.; Palgrave Macmillan: Cham, Switzerland, 2018. [Google Scholar]
- Christiaensen, L.; Demery, L.; Kuhl, J. The (evolving) role of agriculture in poverty reduction—An empirical perspective. J. Dev. Econ. 2011, 96, 239–254. [Google Scholar] [CrossRef] [Green Version]
- Slavchevska, V. Gender differences in agricultural productivity: The case of Tanzania. Agric. Econ. 2015, 46, 335–355. [Google Scholar] [CrossRef]
- Karamba, R.W.; Winters, P.C. Gender and agricultural productivity: Implications of the Farm Input Subsidy Program in Malawi. Agric. Econ. 2015, 46, 357–374. [Google Scholar] [CrossRef]
- Oseni, G.; Corral, P.; Goldstein, M.; Winters, P. Explaining gender differentials in agricultural production in Nigeria. Agric. Econ. 2015, 46, 285–310. [Google Scholar] [CrossRef] [Green Version]
- Mukasa, A.N.; Salami, A.O. Sources of gender productivity differentials in Africa: A cross-country Comparison. African Development Bank. Afr. Econ. Brief 2016, 4. [Google Scholar]
- Ali, D.; Bowen, D.; Deininger, K.; Duponchel, M. Investigating the Gender Gap in Agricultural Productivity: Evidence from Uganda. World Dev. 2016, 87, 152–170. [Google Scholar] [CrossRef] [Green Version]
- Rufai, A.; Salman, K.; Salawu, M. Input Utilization and Agricultural Labour Productivity: A Gender Analysis. In Building a Resilient and Sustainable Agriculture in Sub Saharan Africa; Shimeles, A., Verdier-Chouchane, A., Boly, A., Eds.; Palgrave Macmillan: Cham, Switzerland, 2018. [Google Scholar]
- FAO. The State of Food and Agriculture: Women in Agriculture, Closing the Gender Gap for Development; FAO: Rome, Italy, 2011. [Google Scholar]
- Kilic, T.; Palacios-López, A.; Goldstein, M. Caught in a Productivity Trap: A Distributional Perspective on Gender Differences in Malawian Agriculture. World Dev. 2015, 70, 416–463. [Google Scholar] [CrossRef] [Green Version]
- Levin, C.; Ruel, M.T.; Morris, S.S.; Maxwell, D.G.; Armar-Klemesu, M.; Ahiadeke, C. Working Women in an Urban Setting: Traders, Vendors and Food Security in Accra. World Dev. 1999, 27, 1977–1991. [Google Scholar] [CrossRef]
- Elijah, O.; Okoruwa, V.; Ajani, O. Analysis of differences in Rural-Urban Households Food Expenditure Share in Kwara and Kogi States of Nigeria. Glob. J. Agric. Sci. 2011, 10, 1–18. [Google Scholar]
- Dodson, B.; Chiweza, A.; Riley, L. Gender and Food Insecurity in Southern Africa Cities. Available online: https://www.alnap.org/system/files/content/resource/files/main/afsun10.pdf (accessed on 24 August 2020).
- Gebre, G.G.; Isoda, H.; Rahut, D.B.; Amekawa, Y.; Nomura, H. Gender differences in agricultural productivity: Evidence from maize farm households in southern Ethiopia. GeoJournal 2019. [Google Scholar] [CrossRef] [Green Version]
- Martey, E.; Prince, M.; Etwire, P.M.; Adogoba, D.; Tengey, T.; Boukar, O. Ousmane Gender Gaps in Adoption, Production and Preferences for Cowpea attributes in Northern Ghana. Final Report. CSIR-SARI 2019; Soybean Innovation Lab, University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2019. [Google Scholar]
- Mugisha, J.; Sebatta, C.; Mausch, K.; Ahikiriza, E.; Okello, D.K.; Njuguna, E.M. Bridging the gap: Decomposing sources of gender yield gaps in Uganda groundnut production. Gender Technol. Dev. 2019, 23, 19–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, T.P. Women’s role in Agricultural Household bargaining and human capital investments. In Agricultural and Resource Economics Handbook; Gardener, B., Rausser, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 383–456. [Google Scholar]
- Peterman, A.; Quisumbing, A.; Behrman, J.; Nkonya, E. Understanding the Complexities Surrounding Gender Differences in Agricultural Productivity in Nigeria and Uganda. J. Dev. Stud. 2011, 47, 1482–1509. [Google Scholar] [CrossRef]
- Palacios-López, A.; López, R. The Gender Gap in Agricultural Productivity: The Role of Market Imperfections. J. Dev. Stud. 2015, 51, 1175–1192. [Google Scholar] [CrossRef]
- Kassie, M.; Ndiritu, S.W.; Stage, J. What Determines Gender Inequality in Household Food Security in Kenya? Application of Exogenous Switching Treatment Regression. World Dev. 2014, 56, 153–171. [Google Scholar] [CrossRef]
- Miguel, E.; Satyanath, S.; Sergenti, E. Economic Shocks and Civil Conflict: An Instrumental Variables Approach. J. Political Econ. 2004, 112, 725–753. [Google Scholar] [CrossRef]
- Lokshin, M.; Sajaia, Z. Maximum Likelihood Estimation of Endogenous Switching Regression Models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Araar, A. The Treatment Effect: Comparing the ESR and PSM Methods with an Artificial Example. 2015. Available online: http://dasp.ecn.ulaval.ca/temp/Annex_ESR_Average_Treatment_Araar.pdf (accessed on 18 April 2019).
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Bidzakin, J.K.; Fialor, S.C.; Awunyo-Vitor, D.; Yahaya, I.; Aye, G. Impact of contract farming on rice farm performance: Endogenous switching regression. Cogent Econ. Finance 2019, 7, 1618229. [Google Scholar] [CrossRef]
- Carter, D.W.; Milon, J.W. Price Knowledge in Household Demand for Utility Services. Land Econ. 2005, 81, 265–283. [Google Scholar] [CrossRef]
- Oaxacca, R. Male-Female wage differentials in urban labour markets. Int. Econ. Rev. 1973, 14, 693–709. [Google Scholar] [CrossRef]
- Blinder, A.S. Wage Discrimination: Reduced Form and Structural Estimates. J. Hum. Resour. 1973, 8, 436. [Google Scholar] [CrossRef]
- Jann, B. The Blinder—Oaxacca decomposition for linear regression. Stata J. 2008, 8, 453–479. [Google Scholar] [CrossRef] [Green Version]
- Vabi, M.B.; Sadiq, A.S.; Mustapha, A.; Suleiman, A.; Affognon, H.; Ajeigbe, H.A.; Kasim, A.A. Patterns and drivers of the adoption of improved groundnut technologies in North-western Nigeria. Afr. J. Agric. 2019, 6, 1–16. Available online: www.internationalscholarsjournal.org (accessed on 24 August 2020).
- Zuza, E.; Muitia, A.; Amane, M.; Brandenburg, R.; Mondjanam, A. Effect of Harvesting time on groundnut Yield and Yield Components in Northern Tanzania. J. Postharvest Technol. 2017, 5, 55–63. [Google Scholar]
- Aryal, J.P.; Mottaleb, K.A.; Rahut, D.B. Untangling gender differentiated food security gaps in Bhutan: An application of exogenous switching treatment regression. Rev. Dev. Econ. 2018, 23, 782–802. [Google Scholar] [CrossRef]
- Paudel, G.P.; Gartaula, H.; Rahut, D.B.; Craufurd, P.Q. Gender differentiated small-scale farm mechanization in Nepal hills: An application of exogenous switching treatment regression. Technol. Soc. 2020, 61, 101250. [Google Scholar] [CrossRef] [PubMed]
- Quisumbing, A.R. Male-female differences in agricultural productivity: Methodological issues and empirical evidence. World Dev. 1996, 24, 1579–1595. [Google Scholar] [CrossRef]
- Aguilar, A.; Carranza, E.; Goldstein, M.; Kilic, T.; Oseni, G. Decomposition of gender differentials in agricultural productivity in Ethiopia. Agric. Econ. 2015, 46, 311–334. [Google Scholar] [CrossRef] [Green Version]
- Ayinde, O.; Abdoulaye, T.; Olaoye, G.; Oloyede, A. Evaluation of Women’s On-Farm Trial of SDrought Tolerant Maize in Southern Guinea Savannah Agro-Ecological Zone of Nigeria. In Building a Resilient and Sustainable Agriculture in Sub Saharan Africa; Shimeles, A., Verdier-Chouchane, A., Boly, A., Eds.; Palgrave Macmillan: Cham, Switzerland, 2018. [Google Scholar]
Variable Name | Variable Label | All (N = 1651) | Male (N = 1518) | Female (N = 133) | Mean Diff |
---|---|---|---|---|---|
yield | Groundnut yield (kg/ha) | 705.247 (559.235) | 721.195 (557.073) | 523.223 (553.662) | 197.973 *** |
gnutvar | Type of the groundnut variety (1 = Improved; 0 = Local) | 0.420 (0.494) | 0.408 (0.492) | 0.556 (0.499) | −0.149 *** |
plotsize | Plot size (ha) | 2.275 (15.438) | 2.333 (16.096) | 1.612 (1.210) | 0.721 |
sowtime | Planted on time (1 = Yes; 0 = No) | 0.912 (0.284) | 0.920 (0.271) | 0.812 (0.392) | 0.108 *** |
harvtime | Harvested on time (1 = Yes; 0 = No) | 0.898 (0.302) | 0.907 (0.290) | 0.797 (0.404) | 0.110 *** |
plotenure | Land ownership (1 = Individual; 0 = Collective) | 0.838 (0.368) | 0.854 (0.353) | 0.662 (0.475) | 0.192 *** |
intercrop | Groundnut plot intercropped (1 = Yes; 0 = No) | 0.517 (0.500) | 0.534 (0.499) | 0.323 (0.470) | 0.210 *** |
roration2 | Crop rotation on the plot (1 = Yes; 0 = No) | 0.445 (0.497) | 0.450 (0.498) | 0.383 (0.488) | 0.066 |
soilfert1 | Poor soil fertility plot (1 = Yes; 0 = No) | 0.025 (0.158) | 0.026 (0.160) | 0.015 (0.122) | 0.011 |
soilfert2 | Fair soil fertility plot (1 = Yes; 0 = No) | 0.157 (0.364) | 0.155 (0.362) | 0.173 (0.380) | −0.017 |
soilfert3 | Good soil fertility plot (1 = Yes; 0 = No) | 0.661 (0.474) | 0.667 (0.472) | 0.594 (0.493) | 0.073 * |
soilfert4 | Very good soil fertility plot (1 = Yes; 0 = No) | 0.157 (0.364) | 0.152 (0.359) | 0.218 (0.414) | −0.067 ** |
seedrate | Groundnut seed rate (kg/ha) | 33.778 (73.017) | 33.436 (73.979) | 37.685 (61.086) | −4.249 |
fertizerate | Groundnut fertilizer rate (kg/ha) | 177.294 (1250.602) | 171.761 (1197.186) | 240.450 (1753.315) | −68.690 |
manurate | Groundnut manure rate (kg/ha) | 693.834 (2469.259) | 726.407 (2547.946) | 322.058 (1206.185) | 404.349 * |
lvstckrate | Livestock grazing rate on groundnut plot (# livestock/ha) | 6.045 (23.349) | 5.838 (23.474) | 8.414 (21.810) | −2.576 |
malelbrate | Male labor rate on groundnut plot (#male/ha) | 9.848 (47.313) | 9.853 (46.874) | 9.794 (52.258) | 0.059 |
femalelbrate | Female labor rate on groundnut plot (#female/ha) | 2.589 (35.032) | 2.698 (36.526) | 1.345 (2.469) | 1.353 |
childlbrate | Children labor rate on groundnut plot (#children/ha) | 2.274 (30.912) | 2.366 (32.226) | 1.218 (2.820) | 1.148 |
strigacontrol | Striga control on the plot (1 = Yes; 0 = No) | 0.121 (0.326) | 0.119 (0.323) | 0.143 (0.351) | −0.024 |
ageHH | Age of the household head (years) | 45.752 (11.907) | 46.291 (11.800) | 39.609 (11.430) | 6.681 *** |
yrsfschoolHH | Household head years of formal education (years) | 3.077 (6.933) | 3.194 (7.115) | 1.737 (4.130) | 1.457 ** |
mainoccupHH1 | Farming (crop + livestock) main occupation of household head (1 = Yes; 0 = No) | 0.865 (0.342) | 0.868 (0.339) | 0.835 (0.373) | 0.033 |
mstatusHH2 | Household head marital status (1 = Married; 0 = Otherwise) | 0.965 (0.184) | 0.980 (0.139) | 0.789 (0.409) | 0.191 *** |
experience | Household head farming experience (years) | 22.471 (12.954) | 23.037 (12.945) | 16.008 (11.225) | 7.029 *** |
frmlabourHH1 | Household head full time labor participation (1 = Yes; 0 = No) | 0.803 (0.398) | 0.813 (0.390) | 0.684 (0.467) | 0.129 *** |
involved | Household head involved in field trials/tests/demonstrations (1 = Yes; 0 = No) | 0.364 (0.481) | 0.354 (0.478) | 0.481 (0.502) | −0.127 *** |
hvisite | Number of visits by agricultural extension staff | 4.236 (7.727) | 4.312 (7.605) | 3.376 (8.994) | 0.936 |
tmale | Total male household members | 5.435 (4.483) | 5.568 (4.577) | 3.925 (2.827) | 1.643 *** |
tfemale | Total female household members | 4.420 (4.689) | 4.548 (4.793) | 2.962 (2.906) | 1.586 *** |
engtrain | At least household members engaged in training/technology (1 = Yes; 0 = No) | 0.207 (0.405) | 0.196 (0.397) | 0.331 (0.472) | −0.135 *** |
nplots | Number of cultivated plots | 2.900 (2.938) | 2.999 (3.018) | 1.774 (1.357) | 1.224 *** |
jigawa | Jigawa State (1 = Yes; 0 = No) | 0.242 (0.428) | 0.227 (0.419) | 0.406 (0.493) | −0.179 *** |
kano | Kano State (1 = Yes; 0 = No) | 0.182 (0.386) | 0.195 (0.396) | 0.038 (0.191) | 0.157 *** |
katsina | Katsina State (1 = Yes; 0 = No) | 0.186 (0.389) | 0.188 (0.391) | 0.165 (0.373) | 0.022 |
kebbi | Kebbi State (1 = Yes; 0 = No) | 0.196 (0.397) | 0.207 (0.405) | 0.075 (0.265) | 0.132 *** |
bauchi | Bauchi State (1 = Yes; 0 = No) | 0.194 (0.395) | 0.183 (0.387) | 0.316 (0.467) | −0.133 *** |
Gender of the Household Head | MHH Characteristics | FHH Characteristics | Gender Effect |
---|---|---|---|
MHH | [A] | [D] | [F] = [A] − [D] |
− | |||
FHH | [E] | [B] | [G] = [E] − [B] |
Heterogeneity effect | [H] = [A] − [E] | [I] = [D] − [B] | [C] = [A] − [B] |
− | − | − |
Sex of the Household Head | Characteristics of the Household Head | ||
---|---|---|---|
MHHs | FHHs | Endowment Effect | |
MHHs (N = 1518) | [A] | [D] | [F] = [A] − [D] |
6.240 | 5.969 | 0.271 *** | |
(0.012) | (0.063) | (0.064) | |
FHHs (N = 133) | [E] | [B] | [G] = [E] − [B] |
5.988 | 5.676 | 0.312 *** | |
(0.040) | (0.073) | (0.083) | |
Returns Effect | [H] = [A] − [E] | [I] = [D] − [B] | [C] = [A] − [B] |
0.252 *** | 0.293 | 0.564 *** | |
(0.043) | (0.214) | (0.046) |
Predicted Yield Differential (Log of kg/ha) | Results |
---|---|
FHHs | 5.679 *** |
(0.112) | |
MHHs | 6.244 *** |
(0.024) | |
Difference (proportion) | −0.565 *** |
(0.114) | |
Decomposition share | |
Endowments | −0.258 *** |
(0.059) | |
Coefficients | −0.270 |
(0.263) | |
Interaction term | −0.037 |
(0.256) | |
Decomposition share (percent) | |
Endowments | 45.627 |
Coefficients | 47.739 |
Interaction term | 6.634 |
Variable | Endowments | Coefficients | Interaction Term |
---|---|---|---|
Adoption of improved varieties | 0.0314 *** | 0.113 | 0.042 |
(0.0118) | (0.101) | (0.040) | |
Groundnut plot tenure | −0.024 * | 0.056 | −0.013 |
(0.014) | (0.276) | (0.063) | |
Household involved in demos/trials | −0.016 * | 0.147 | 0.054 |
(0.009) | (0.127) | (0.050) | |
Age of the household head | −0.041 ** | 0.049 | −0.007 |
(0.018) | (0.690) | (0.097) | |
Total male household members | 0.038 *** | 0.159 | −0.046 |
(0.012) | (0.343) | (0.100) | |
Total female household members | −0.035 *** | −0.198 | 0.068 |
(0.011) | (0.283) | (0.098) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muricho, G.; Lokossou, J.; Affognon, H.; Ahmed, B.; Desmae, H.; Ajeigbe, H.; Vabi, M.; Yila, J.; Akpo, E.; Ojiewo, C. Estimating and Decomposing Groundnut Gender Yield Gap: Evidence from Rural Farming Households in Northern Nigeria. Sustainability 2020, 12, 8923. https://doi.org/10.3390/su12218923
Muricho G, Lokossou J, Affognon H, Ahmed B, Desmae H, Ajeigbe H, Vabi M, Yila J, Akpo E, Ojiewo C. Estimating and Decomposing Groundnut Gender Yield Gap: Evidence from Rural Farming Households in Northern Nigeria. Sustainability. 2020; 12(21):8923. https://doi.org/10.3390/su12218923
Chicago/Turabian StyleMuricho, Geoffrey, Jourdain Lokossou, Hippolyte Affognon, Benjamin Ahmed, Haile Desmae, Hakeem Ajeigbe, Michael Vabi, Jummai Yila, Essegbemon Akpo, and Christopher Ojiewo. 2020. "Estimating and Decomposing Groundnut Gender Yield Gap: Evidence from Rural Farming Households in Northern Nigeria" Sustainability 12, no. 21: 8923. https://doi.org/10.3390/su12218923
APA StyleMuricho, G., Lokossou, J., Affognon, H., Ahmed, B., Desmae, H., Ajeigbe, H., Vabi, M., Yila, J., Akpo, E., & Ojiewo, C. (2020). Estimating and Decomposing Groundnut Gender Yield Gap: Evidence from Rural Farming Households in Northern Nigeria. Sustainability, 12(21), 8923. https://doi.org/10.3390/su12218923