Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research
Abstract
:1. Introduction
2. Methodology
2.1. Bibliometric Analysis
2.2. Sample Selection
2.3. Data Processing
3. Results
3.1. Evolution of the Main Characteristics in the Sustainable Use of Wastewater in Agriculture Research (SUWA)
3.2. Subject Areas in SUWA Research
3.3. Journals in SUWA Research
3.4. Countries in SUWA Research
3.5. Institutions in SUWA Research
3.6. Authors in SUWA Research
3.7. Keywords in SUWA Research
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Coping with Water Scarcity—An Action Framework for Agriculture and Food Security; Land and Water Division: Rome, Italy, 2012; Available online: http://www.fao.org/3/a-i3015e.pdf (accessed on 9 March 2020).
- Davies, E.G.; Simonovic, S.P. Global water resources modeling with an integrated model of the social–economic–environmental system. Adv. Water Resour. 2011, 34, 684–700. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Yu, Z.; Cao, X.; Tian, L.; Sun, S.; Wu, P. A comprehensive analysis of blue water scarcity from the production, consumption, and water transfer perspectives. Ecol. Indic. 2017, 72, 870–880. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Shi, K.; Yao, X. Research development, current hotspots, and future directions of water research based on MODIS images: A critical review with a bibliometric analysis. Environ. Sci. Pollut. Res. 2017, 24, 15226–15239. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Román-Sánchez, I.M. Sustainable Water Use in Agriculture: A Review of Worldwide Research. Sustainability 2018, 10, 1084. [Google Scholar] [CrossRef] [Green Version]
- The United Nations World Water Development Report 2019—Leaving No One Behind. Available online: Unesdoc.unesco.org/in/rest/annotationSVC/DownloadWatermarkedAttachment/attach_import_77a13b04-19c4-4368-b0d0-8f9c6bf1349f?=367306eng.pdf&to=201&from=1 (accessed on 9 March 2020).
- WWAP (United Nations World Water Assessment Programme)/UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; Available online: http://repo.floodalliance.net/jspui/handle/44111/2726 (accessed on 9 March 2020).
- Bouwer, H. Integrated Water Management for the 21st Century: Problems and Solutions. J. Irrig. Draing. Eng. 2002, 128, 193–202. [Google Scholar] [CrossRef]
- Damkjaer, S.; Taylor, R. The measurement of water scarcity: Defining a meaningful indicator. Ambio 2017, 46, 513–531. [Google Scholar] [CrossRef] [Green Version]
- Kihila, J.M. Indigenous coping and adaptation strategies to climate change of local communities in Tanzania: A review. Clim. Dev. 2017, 10, 406–416. [Google Scholar] [CrossRef]
- Hodúr, C.; Bellahsen, N.; Mikó, E.; Nagypál, V.; Šereš, Z.; Kertèsz, S. The Adsorption of Ammonium Nitrogen from Milking Parlor Wastewater Using Pomegranate Peel Powder for Sustainable Water, Resources, and Waste Management. Sustainability 2020, 12, 4880. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Von Gnechten, R.; Sampson, D.A.; White, D.D. Wastewater Reclamation Holds a Key for Water Sustainability in Future Urban Development of Phoenix Metropolitan Area. Sustainability 2019, 11, 3537. [Google Scholar] [CrossRef] [Green Version]
- Alemu, T.; Mekonnen, A.; Leta, S. Integrated tannery wastewater treatment for effluent reuse for irrigation: Encouraging water efficiency and sustainable development in developing countries. J. Water Process Eng. 2019, 30, 100514. [Google Scholar] [CrossRef]
- United Nations World Water Assessment Programme (WWAP, 2015). The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO. Available online: https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=1711&menu=35 (accessed on 27 October 2020).
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Straatsma, M.; Droogers, P.; Hunink, J.; Berendrecht, W.; Buitink, J.; Buytaert, W.; Karssenberg, D.; Schmitz, O.; Sutanudjaja, E.H.; Van Beek, L.; et al. Global to regional scale evaluation of adaptation measures to reduce the future water gap. Environ. Model. Softw. 2020, 124, 104578. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; Velasco-Muñoz, J.F.; Valera, D.L. Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 898. [Google Scholar] [CrossRef] [Green Version]
- Hertel, T.; Liu, J. Implications of Water Scarcity for Economic Growth. In Economy-Wide Modeling of Water at Regional and Global Scales. Advances in Applied General Equilibrium Modeling; Wittwer, G., Ed.; Springer: Singapore, 2019; ISBN 978-981-13-6101-2. [Google Scholar]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-Delafuente, A.; Fidelibus, M.D. Sustainable Irrigation in Agriculture: An Analysis of Global Research. Water 2019, 11, 1758. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.W. Integrated concepts in water reuse: Managing global water needs. Desalination 2006, 187, 65–75. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-Delafuente, A.; Fidelibus, M.D. Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.; Tubiello, F.N.; Van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- De Fraiture, C.; Wichelns, D. Satisfying future water demands for agriculture. Agric. Water Manag. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- Forouzani, M.; Karami, E. Agricultural water poverty index and sustainability. Agron. Sustain. Dev. 2010, 31, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Benavides, L.; Avellán, T.; Caucci, S.; Hahn, A.; Kirschke, S.; Müller, A.B. Assessing Sustainability of Wastewater Management Systems in a Multi-Scalar, Transdisciplinary Manner in Latin America. Water 2019, 11, 249. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.; Pandit, D. Determining the provision of wastewater management infrastructure in rural India from the local communities’ perspectives. Water Sci. Technol. 2019, 79, 489–500. [Google Scholar] [CrossRef] [PubMed]
- United Nations Children’s Fund (UNICEF). Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017: Special Focus on Inequalities; United Nations Children’s Fund (UNICEF): New York, NY, USA; World Health Organization (WHO): Geneva, Switzerland, 2019; ISBN 978-92-806-5036-5. [Google Scholar]
- Hernández-Sancho, F.; Molinos-Senante, M.; Sala-Garrido, R. Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain. Sci. Total Environ. 2010, 408, 953–957. [Google Scholar] [CrossRef]
- Ansari, F.A.; Ravindran, B.; Gupta, S.K.; Nasr, M.; Rawat, I.; Bux, F. Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J. Environ. Manag. 2019, 240, 293–302. [Google Scholar] [CrossRef]
- Bixio, D.; Thoeye, C.; De Koning, J.; Joksimovic, D.; Savic, D.; Wintgens, T.; Melin, T. Wastewater reuse in Europe. Desalination 2006, 187, 89–101. [Google Scholar] [CrossRef]
- Oteng-Peprah, M.; De Vries, N.; Acheampong, M. Greywater characterization and generation rates in a peri urban municipality of a developing country. J. Environ. Manag. 2018, 206, 498–506. [Google Scholar] [CrossRef]
- Reznik, A.; Dinar, A.; Hernández-Sancho, F. Treated Wastewater Reuse: An Efficient and Sustainable Solution for Water Resource Scarcity. Environ. Resour. Econ. 2019, 74, 1647–1685. [Google Scholar] [CrossRef]
- Roig, N.; Sierra, J.; Martí, E.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric. Ecosyst. Environ. 2012, 158, 41–48. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Guo, Y.; Zhu, D.; Porter, A.L. Four dimensional Science and Technology planning: A new approach based on bibliometrics and technology roadmapping. Technol. Forecast. Soc. Chang. 2014, 81, 39–48. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; García-Gómez, J.J.; Velasco-Muñoz, J.F.; Carretero-Gómez, A. Mining Waste and Its Sustainable Management: Advances in Worldwide Research. Minerals 2018, 8, 284. [Google Scholar] [CrossRef] [Green Version]
- Albort-Morant, G.; Jörghenselercd, J.; Leal-Millán, A.; Cepeda-Carrión, G. Mapping the Field: A Bibliometric Analysis of Green Innovation. Sustainability 2017, 9, 1011. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.F. Forest Ecosystem Services: An Analysis of Worldwide Research. Forests 2018, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.K.R.; Huang, L.; Guo, Y.; Porter, A.L. Forecasting Innovation Pathways (FIP) for new and emerging science and technologies. Technol. Forecast. Soc. Chang. 2013, 80, 267–285. [Google Scholar] [CrossRef] [Green Version]
- Durieux, V.; Gevenois, P.A. Bibliometric Indicators: Quality Measurements of Scientific Publication. Radiology 2010, 255, 342–351. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Jacsó, P. The h-index, h-core citation rate and the bibliometric profile of the Scopus database. Online Inf. Rev. 2011, 35, 492–501. [Google Scholar] [CrossRef]
- Kumar, A.; Mallick, S.; Swarnakar, P.; Kumar, A. Mapping Scientific Collaboration: A Bibliometric Study of Rice Crop Research in India. J. Sci. Res. 2020, 9, 29–39. [Google Scholar] [CrossRef]
- Ngwenya, S.; Boshoff, N. Participation of ‘international national organisations’ in Africa’s research: A bibliometric study of agriculture and health in Zimbabwe. Science 2020, 124, 533–553. [Google Scholar] [CrossRef]
- Alonso, S.; Cabrerizo, F.; Herrera-Viedma, E.; Herrera, F. h-Index: A review focused in its variants, computation and standardization for different scientific fields. J. Inf. 2009, 3, 273–289. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Kouranos, V.D.; Arencibia-Jorge, R.; Karageorgopoulos, D.E. Comparison of SCImago journal rank indicator with journal impact factor. FASEB J. 2008, 22, 2623–2628. [Google Scholar] [CrossRef]
- Trinh, L.T.; Duong, C.C.; Van Der Steen, P.; Lens, P.N. Exploring the potential for wastewater reuse in agriculture as a climate change adaptation measure for Can Tho City, Vietnam. Agric. Water Manag. 2013, 128, 43–54. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, H.; Jang, T. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea. Water 2016, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Lavrnić, S.; Zapater-Pereyra, M.; Mancini, M.L. Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water Air Soil Pollut. 2017, 228, 251. [Google Scholar] [CrossRef]
- Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; LeBailly, P.; Vivaldi, G. Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region. Sci. Total. Environ. 2019, 660, 1513–1521. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Chen, J.; Tang, C.; Sakura, Y.; Yu, J.; Fukushima, Y. Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain. Hydrogeol. J. 2004, 13, 481–492. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J.; Cao, G. Deep challenges for China’s war on water pollution. Environ. Pollut. 2016, 218, 1222–1233. [Google Scholar] [CrossRef] [Green Version]
- Verbyla, M.E.; Symonds, E.M.; Kafle, R.C.; Cairns, M.R.; Iriarte, M.; Mercado-Guzmán, A.M.; Coronado, O.; Breitbart, M.; Ledo, C.; Mihelcic, J.R. Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing Watersheds. Environ. Sci. Technol. 2016, 50, 6803–6813. [Google Scholar] [CrossRef]
- Khan, S.; Hanjra, M.A.; Mu, J. Water management and crop production for food security in China: A review. Agric. Water Manag. 2009, 96, 349–360. [Google Scholar] [CrossRef]
- Brar, S.K.; Verma, M.; Tyagi, R.; Surampalli, R. Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts. Waste Manag. 2010, 30, 504–520. [Google Scholar] [CrossRef] [PubMed]
- Udom, I.; Zaribaf, B.H.; Halfhide, T.; Gillie, B.; Dalrymple, O.; Zhang, Q.; Ergas, S.J. Harvesting microalgae grown on wastewater. Bioresour. Technol. 2013, 139, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.; Hanif, A.; Sharvelle, S.; Bradley, T.H. Microalgae to biofuels: Life cycle impacts of methane production of anaerobically digested lipid extracted algae. Bioresour. Technol. 2014, 171, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, L.; Riddicka, B.A.; Li, R.; Able, J.R.; Boakye-Boaten, N.A.; Shahbazi, A. Sustainable Production of Algal Biomass and Biofuels Using Swine Wastewater in North Carolina, US. Sustainability 2016, 8, 477. [Google Scholar] [CrossRef]
- Gao, H.; Scherson, Y.D.; Wells, G.F. Towards energy neutral wastewater treatment: Methodology and state of the art. Environ. Sci. Process. Impacts 2014, 16, 1223–1246. [Google Scholar] [CrossRef]
- Bušić, A.; Kundas, S.; Morzak, G.; Belskaya, H.; Marđetko, N.; Šantek, M.I.; Komes, D.; Novak, S.; Šantek, B. Recent Trends in Biodiesel and Biogas Production. Food Technol. Biotechnol. 2018, 56, 152–173. [Google Scholar] [CrossRef]
- Metz, F.; Ingold, K. Sustainable Wastewater Management: Is it Possible to Regulate Micropollution in the Future by Learning from the Past? A Policy Analysis. Sustainability 2014, 6, 1992–2012. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef]
- Madoni, P.; Romeo, M.G. Acute toxicity of heavy metals towards freshwater ciliated protists. Environ. Pollut. 2006, 141, 1–7. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; McGrath, S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 1998, 30, 1389–1414. [Google Scholar] [CrossRef]
- Yoshizaki, S.; Tomida, T. Principle and Process of Heavy Metal Removal from Sewage Sludge. Environ. Sci. Technol. 2000, 34, 1572–1575. [Google Scholar] [CrossRef]
- Pontoni, L.; Van Hullebusch, E.D.; Pechaud, Y.; Fabbricino, M.; Esposito, G.; Pirozzi, F. Colloidal Mobilization and Fate of Trace Heavy Metals in Semi-Saturated Artificial Soil (OECD) Irrigated with Treated Wastewater. Sustainability 2016, 8, 1257. [Google Scholar] [CrossRef] [Green Version]
- Melgarejo-Moreno, J.; Prats, D.; Molina-Giménez, A.; Trapote-Jaume, A. A case study of urban wastewater reclamation in Spain: Comparison of water quality produced by using alternative processes and related costs. J. Water Reuse Desalin. 2015, 6, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Pearce, G. UF/MF pre-treatment to RO in seawater and wastewater reuse applications: A comparison of energy costs. Desalination 2008, 222, 66–73. [Google Scholar] [CrossRef]
- Kazner, C.; Jamil, S.; Phuntsho, S.; Shon, H.K.; Wintgens, T.; Vigneswaran, S. Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: Process performance and fouling control. Water Sci. Technol. 2014, 69, 2431–2437. [Google Scholar] [CrossRef]
- Rodríguez, J.J.; Jiménez, V.; Trujillo, O.; Veza, J. Reuse of reverse osmosis membranes in advanced wastewater treatment. Desalination 2002, 150, 219–225. [Google Scholar] [CrossRef]
- Pazouki, P.; Stewart, R.A.; Bertone, E.; Helfer, F.; Ghaffour, N. Life cycle cost of dilution desalination in off-grid locations: A study of water reuse integrated with seawater desalination technology. Desalination 2020, 491, 114584. [Google Scholar] [CrossRef]
- Shahmansouri, A.; Bellona, C. Nanofiltration technology in water treatment and reuse: Applications and costs. Water Sci. Technol. 2015, 71, 309–319. [Google Scholar] [CrossRef]
- Ong, C.B.; Mohammad, A.W.; Abdullah, S.R.S.; Abu Hasan, H.; Koo, C.H. Pilot study for sewage wastewater reclamation and reuse using RO membrane: Comparison of different pre-treatment systems. Desalin. Water Treat. 2014, 54, 900–907. [Google Scholar] [CrossRef]
- Raikova, S.; Piccini, M.; Surman, M.K.; Allen, M.J.; Chuck, C.J. Making light work of heavy metal contamination: The potential for coupling bioremediation with bioenergy production. J. Chem. Technol. Biotechnol. 2019, 94, 3064–3072. [Google Scholar] [CrossRef]
- Al Chami, Z.; Amer, N.; Al Bitar, L.; Cavoski, I. Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int. J. Environ. Sci. Technol. 2015, 12, 3957–3970. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Zhou, Q.; Peng, S.; Li, K. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. J. Hazard. Mater. 2010, 183, 731–737. [Google Scholar] [CrossRef]
- Marques, A.P.; Pires, C.; Moreira, H.; Rangel, A.O.; Castro, P.M. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 2010, 42, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Ching, Y.C.; Redzwan, G. Biological Treatment of Fish Processing Saline Wastewater for Reuse as Liquid Fertilizer. Sustainability 2017, 9, 1062. [Google Scholar] [CrossRef] [Green Version]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 2012, 49, 723–733. [Google Scholar] [CrossRef]
- Wéry, N.; Lhoutellier, C.; Ducray, F.; Delgenès, J.-P.; Godon, J.-J. Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res. 2008, 42, 53–62. [Google Scholar] [CrossRef]
- Garcia-Gomez, A. Growth of ornamental plants in two composts prepared from agroindustrial wastes. Bioresour. Technol. 2002, 83, 81–87. [Google Scholar] [CrossRef]
- Paredes, C.; Cegarra, J.; Bernal, M.P.; Roig, A. Influence of olive mill wastewater in composting and impact of the compost on a Swiss chard crop and soil properties. Environ. Int. 2005, 31, 305–312. [Google Scholar] [CrossRef]
- Martí, E.; Aumatell, J.; Godé, L.; Poch, M.; Sabater, F. Nutrient Retention Efficiency in Streams Receiving Inputs from Wastewater Treatment Plants. J. Environ. Qual. 2004, 33, 285–293. [Google Scholar] [CrossRef]
- Dietz, M.E. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, G.; Lawlor, P.G.; Harrington, C.; Gardiner, G. Microbial removal from the separated liquid fraction of anaerobically digested pig manure in meso-scale integrated constructed wetlands. Bioresour. Technol. 2011, 102, 9425–9431. [Google Scholar] [CrossRef] [PubMed]
- Corbalá-Robles, L.; Sastafiana, W.; Van Linden, V.; Volcke, E.I.; Schaubroeck, T. Life cycle assessment of biological pig manure treatment versus direct land application—A trade-off story. Resour. Conserv. Recycl. 2018, 131, 86–98. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, D.; Yang, J.; Zeng, W. The effect of using pig manure as an internal carbon source in a traditional piggery wastewater treatment system for biological denitrification. Ecol. Eng. 2020, 143, 105638. [Google Scholar] [CrossRef]
- Li, K.; Liu, L.; Zhan, J.; Scippo, M.-L.; Hvidtfeldt, K.; Liu, Y.; Dalsgaard, A. Sources and fate of antimicrobials in integrated fish-pig and non-integrated tilapia farms. Sci. Total. Environ. 2017, 595, 393–399. [Google Scholar] [CrossRef]
- Zarkadas, I.S.; Pilidis, G.A. Anaerobic Co-Digestion of table olive debittering & washing Effluent, cattle manure and pig manure in batch and high volume laboratory anaerobic digesters: Effect of temperature. Bioresour. Technol. 2011, 102, 4995–5003. [Google Scholar] [CrossRef]
- Marti, R.; Dabert, P.; Pourcher, A.-M. Pig Manure Contamination Marker Selection Based on the Influence of Biological Treatment on the Dominant Fecal Microbial Groups. Appl. Environ. Microbiol. 2009, 75, 4967–4974. [Google Scholar] [CrossRef] [Green Version]
- Nyenje, P.; Foppen, J.; Uhlenbrook, S.; Kulabako, R.; Muwanga, A. Eutrophication and nutrient release in urban areas of sub-Saharan Africa—A review. Sci. Total. Environ. 2010, 408, 447–455. [Google Scholar] [CrossRef]
- Lado, L.R.; Macías, F. Eutrophication trends in forest soils in Galicia (NW Spain) caused by the atmospheric deposition of nitrogen compounds. Chemosphere 2006, 63, 1598–1609. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
Year | Articles | Authors | Journals | Countries | Citations | Average Citations 1 |
---|---|---|---|---|---|---|
2000 | 28 | 75 | 25 | 20 | 0 | 0.0 |
2001 | 18 | 33 | 14 | 13 | 19 | 0.4 |
2002 | 31 | 73 | 27 | 18 | 42 | 0.8 |
2003 | 33 | 97 | 30 | 24 | 64 | 1.1 |
2004 | 36 | 108 | 30 | 24 | 132 | 1.8 |
2005 | 49 | 158 | 32 | 28 | 184 | 2.3 |
2006 | 54 | 164 | 43 | 32 | 269 | 2.9 |
2007 | 58 | 200 | 41 | 33 | 349 | 3.4 |
2008 | 85 | 271 | 55 | 39 | 549 | 4.1 |
2009 | 95 | 293 | 65 | 45 | 836 | 5.0 |
2010 | 84 | 334 | 72 | 37 | 1077 | 6.2 |
2011 | 109 | 405 | 77 | 41 | 1434 | 7.3 |
2012 | 106 | 364 | 86 | 52 | 1654 | 8.4 |
2013 | 115 | 485 | 83 | 49 | 2184 | 9.8 |
2014 | 130 | 541 | 97 | 52 | 2548 | 11.0 |
2015 | 165 | 668 | 109 | 50 | 3010 | 12.0 |
2016 | 162 | 746 | 106 | 58 | 3678 | 13.3 |
2017 | 173 | 760 | 118 | 64 | 4142 | 14.5 |
2018 | 221 | 982 | 126 | 65 | 4740 | 15.4 |
2019 | 234 | 1097 | 132 | 60 | 6155 | 16.6 |
Journal | Articles | SJR 1 | H Index 2 | Country | Citation | Average Citation 3 | 1st Article | Last Article |
---|---|---|---|---|---|---|---|---|
Science of the Total Environment | 70 | 1.661 (Q1) | 19 | The Netherlands | 904 | 12.9 | 2002 | 2019 |
Water Science and Technology | 67 | 0.471 (Q2) | 17 | UK | 792 | 11.8 | 2004 | 2018 |
Journal of Cleaner Production | 63 | 1.886 (Q1) | 20 | The Netherlands | 1389 | 22.1 | 2006 | 2019 |
Journal of Environmental Management | 51 | 1.321 (Q1) | 19 | USA | 1567 | 30.7 | 2000 | 2019 |
Agricultural Water Management | 37 | 1.369 (Q1) | 20 | The Netherlands | 1383 | 37.4 | 2000 | 2019 |
Desalination | 33 | 1.814 (Q1) | 17 | The Netherlands | 1110 | 33.6 | 2001 | 2019 |
Bioresource Technology | 30 | 2.430 (Q1) | 20 | The Netherlands | 2108 | 70.3 | 2002 | 2019 |
Environmental Science and Pollution Research | 30 | 0.788 (Q2) | 11 | Germany | 541 | 18.1 | 2005 | 2019 |
Sustainability Switzerland | 30 | 0.581 (Q2) | 8 | Switzerland | 207 | 6.9 | 2013 | 2019 |
Desalination and Water Treatment | 29 | 0.327 (Q2) | 5 | USA | 80 | 2.8 | 2009 | 2019 |
Country | Articles | Average per Capita Articles 1 | Citation | Average Citation 2 | H Index 3 | 1st Article | Last Article |
---|---|---|---|---|---|---|---|
USA | 293 | 0.210 | 7109 | 24.3 | 42 | 2000 | 2019 |
China | 242 | 0.740 | 3453 | 14.3 | 29 | 2000 | 2019 |
India | 180 | 0.133 | 1959 | 10.9 | 23 | 2000 | 2019 |
Spain | 126 | 2.697 | 1926 | 15.3 | 25 | 2000 | 2019 |
Italy | 122 | 2.019 | 1748 | 14.3 | 24 | 2004 | 2019 |
Australia | 112 | 4.481 | 2916 | 26.1 | 27 | 2000 | 2019 |
UK | 108 | 1.624 | 3146 | 29.1 | 30 | 2000 | 2019 |
Brazil | 107 | 0.511 | 1124 | 10.5 | 19 | 2005 | 2019 |
Germany | 99 | 1.194 | 1415 | 14.3 | 24 | 2000 | 2019 |
The Netherlands | 61 | 3.540 | 1315 | 21.6 | 17 | 2000 | 2019 |
Country | Percentage of Collaboration 1 | Number of Collaborators | Main Collaborators | Average Citation | |
---|---|---|---|---|---|
Collaboration 2 | Non Collaboration 3 | ||||
USA | 40.6 | 57 | China, UK, Spain, Australia, India | 20.2 | 27.0 |
China | 32.2 | 34 | USA, Australia, Canada, Germany, UK | 19.7 | 11.7 |
India | 24.4 | 34 | UK, USA, Germany, The Netherlands, South Korea | 18.7 | 8.4 |
Spain | 41.3 | 36 | USA, Italy, Germany, Portugal, Denmark | 11.8 | 17.8 |
Italy | 36.9 | 32 | Spain, UK, Belgium, The Netherlands, Tunisia | 15.2 | 13.8 |
Australia | 45.5 | 35 | USA, China, UK, The Netherlands, New Zealand | 28.6 | 23.9 |
UK | 56.5 | 45 | USA, India, Australia, Ireland, Italy | 16.8 | 45.2 |
Brazil | 15.9 | 19 | USA, UK, Australia, Chile, Italy | 14.8 | 9.7 |
Germany | 48.5 | 41 | India, Spain, Switzerland, China, The Netherlands | 12.8 | 15.7 |
The Netherlands | 70.5 | 36 | Australia, USA, Germany, India, Italy | 27.9 | 6.3 |
Institution | Country | Articles | Citation | Average Citation 1 | H Index 2 | Percentage of Collaboration 3 | Average Citation | |
---|---|---|---|---|---|---|---|---|
Collaboration 4 | Non Collaboration 5 | |||||||
Chinese Academy of Sciences | China | 47 | 1070 | 22.8 | 14 | 34.0 | 23.6 | 22.4 |
Sveriges lantbruksuniversitet | Sweden | 21 | 752 | 35.8 | 15 | 47.6 | 30.2 | 40.9 |
Ben-Gurion University | Israel | 20 | 463 | 23.2 | 12 | 35.0 | 7.0 | 31.8 |
Ministry of Education China | China | 19 | 383 | 20.2 | 11 | 52.6 | 16.5 | 24.2 |
Universidade de Sao Paulo | Brazil | 19 | 473 | 24.9 | 9 | 21.1 | 17.3 | 26.9 |
Wageningen University and Research Centre | The Netherlands | 18 | 720 | 40.1 | 10 | 66.7 | 55.1 | 9.8 |
University of Arizona | USA | 18 | 221 | 12.3 | 9 | 38.9 | 9.7 | 13.9 |
Universidade Estadual Paulista | Brazil | 15 | 81 | 5.4 | 6 | 6.7 | 11.0 | 5.0 |
Università degli Studi di Bari | Italy | 15 | 200 | 13.3 | 7 | 53.3 | 22.4 | 3.0 |
USDA Agricultural Research Service | USA | 14 | 719 | 51.4 | 10 | 21.4 | 9.0 | 62.9 |
Author | Articles | Citations | Average Citations 1 | H Index 2 | Country | Affiliation 3 | 1st Article | Last Article |
---|---|---|---|---|---|---|---|---|
Fedler, Clifford B. | 7 | 28 | 4.0 | 3 | USA | Texas Tech University | 2006 | 2019 |
Gillerman, Leonid | 7 | 113 | 16.1 | 6 | Israel | Ben-Gurion University | 2006 | 2017 |
Gross, Amit | 7 | 287 | 41.1 | 7 | Israel | Ben-Gurion University | 2005 | 2017 |
Lobo, Thomaz Figueiredo | 7 | 33 | 4.7 | 4 | Brazil | Universidade Estadual Paulista | 2012 | 2019 |
Oron, Gideon | 7 | 113 | 16.1 | 6 | Israel | Ben-Gurion University | 2006 | 2017 |
Filho, Hélio Grassi | 6 | 21 | 3.5 | 3 | Brazil | Universidade Estadual Paulista | 2012 | 2019 |
Scholz, Miklas | 6 | 88 | 14.7 | 5 | UK | University of Salford | 2004 | 2018 |
Alarcón, Juan José | 5 | 125 | 25.0 | 4 | Spain | Centro de Edafología y Biología Aplicada del Segura | 2013 | 2017 |
Bick, Amos | 5 | 97 | 19.4 | 4 | Israel | Bick & Associates | 2006 | 2013 |
Duan, Runbin | 5 | 28 | 5.6 | 3 | China | Taiyuan University of Technology | 2011 | 2016 |
Fawzy, Mariam E. | 5 | 39 | 7.8 | 3 | Egypt | National Research Centre | 2011 | 2018 |
Hernández-Moreno, José M. | 5 | 21 | 4.2 | 3 | Spain | Universidad de Las Palmas de Gran Canaria | 2011 | 2019 |
Meers, Erik | 5 | 109 | 21.8 | 4 | Belgium | Universiteit Gent | 2012 | 2019 |
Nicolás, Emilio | 5 | 101 | 20.2 | 4 | Spain | Centro de Edafología y Biología Aplicada del Segura | 2014 | 2017 |
Suthar, Surendra | 5 | 119 | 23.8 | 4 | India | Doon University | 2008 | 2013 |
Tack, Filip M.G. | 5 | 109 | 21.8 | 4 | Belgium | Universiteit Gent | 2012 | 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Serrano, M.J.; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Román-Sánchez, I.M. Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research. Sustainability 2020, 12, 8948. https://doi.org/10.3390/su12218948
López-Serrano MJ, Velasco-Muñoz JF, Aznar-Sánchez JA, Román-Sánchez IM. Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research. Sustainability. 2020; 12(21):8948. https://doi.org/10.3390/su12218948
Chicago/Turabian StyleLópez-Serrano, María J., Juan F. Velasco-Muñoz, José A. Aznar-Sánchez, and Isabel M. Román-Sánchez. 2020. "Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research" Sustainability 12, no. 21: 8948. https://doi.org/10.3390/su12218948
APA StyleLópez-Serrano, M. J., Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., & Román-Sánchez, I. M. (2020). Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research. Sustainability, 12(21), 8948. https://doi.org/10.3390/su12218948