Spatiotemporal Analysis of Environmental Factors on the Birdstrike Risk in High Plateau Airport with Multi-Scale Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Dependent Variable—Monthly Birdstrike Risk (mBRI) at Lhasa Airport
2.3. Independent Variable—Environmental Factors
2.4. Geographical and Temporal Weighted Regression (GTWR) Model
3. Results and Discussion
3.1. Spatial and Temporal Feature of BRI
3.2. Model Comparison
3.3. Spatial Feature of Coefficients
3.4. Temporal Feature of Coefficients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Number | Acronyms | Definitions |
---|---|---|
1 | BRI | Birdstrike Risk Index |
2 | mBRI | monthly Birdstrike Risk Index |
3 | GWR | Geographically Weighted Regression model |
4 | TWR | Temporally Weighted Regression model |
5 | GTWR | Geographically and Temporally Weighted Regression model |
6 | NDVI | Normalized Difference Vegetation Index |
7 | PB | Probability of birds appearing in different land types |
8 | POP | Human population density |
9 | WD | Water distribution |
10 | DEM | Altitude of studied area |
References
- Li, X. Flight performance analysis of plateau airport. J. Civ. Aviat. Univ. China 2005, 23, 91–102. [Google Scholar]
- Yao, G.; Hu, H.; Zhang, X. Speace Ground and Air Guarantees for the Operation of Highland Airports. J. Xi’an Aerotech. Coll. 2011, 29, 15–18. [Google Scholar]
- Allan, J. A heuristic risk assessment technique for birdstrike management at airports. Risk Anal. 2006, 26, 723–729. [Google Scholar] [CrossRef]
- Ning, H.; Chen, W. Bird strike risk evaluation at airports. Aircr. Eng. Aerosp. Technol. 2014, 86, 129–137. [Google Scholar] [CrossRef]
- Soldatini, C.; Georgalas, V.; Torricelli, P.; Albores-Barajas, Y.V. An ecological approach to birdstrike risk analysis. Eur. J. Wildl. Res. 2010, 56, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Soldatini, C.; Albores-Barajas, Y.V.; Lovato, T.; Andreon, A.; Torricelli, P.; Montemaggiori, A.; Corsa, C.; Georgalas, V. Wildlife strike risk assessment in several Italian airports: Lessons from BRI and a new methodology implementation. PLoS ONE 2011, 6, e28920. [Google Scholar] [CrossRef] [Green Version]
- Coccon, F.; Zucchetta, M.; Bossi, G.; Borrotti, M.; Torricelli, P.; Franzoi, P. A land-use perspective for birdstrike risk assessment: The attraction risk index. PLoS ONE 2015, 10, e0128363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justin, D.H.; Alison, C.; John, R.A. Developing bird-strike risk assessment models for open-water restorations. Hum. Wildl. Confl. 2009, 3, 186–198. [Google Scholar]
- Pfeiffer, M.B.; Blackwell, B.F.; DeVault, T.L. Quantification of avian hazards to military aircraft and implications for wildlife management. PLoS ONE 2018, 13, e0206599. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, M.B.; Kougher, J.D.; DeVault, T.L. Civil airports from a landscape perspective: A multi-scale approach with implications for reducing bird strikes. Landsc. Urban. Plan. 2018, 179, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Koh, C.N.; Lee, P.F.; Lin, R.S. Bird species richness patterns of northern Taiwan: Primary productivity, human population density, and habitat heterogeneity. Divers. Distrib. 2006, 12, 546–554. [Google Scholar] [CrossRef]
- Zhang, C.; Lei, F. The distribution pattern of bird species richness in the Tibetan Plateau determined by topographic heterogeneity. In Proceedings of the The 12th National Ornithological Symposium and the 10th Cross-Straits Ornithological Symposium, Hangzhou, China, 8 November 2013; Zhejiang Association For Science and Technology: Hangzhou, China, 2013; p. 45. [Google Scholar]
- Dolbeer, R.A. Increasing trend of damaging bird strikes with aircraft outside the airport boundary: Implications for mitigation measures. Hum. Wildl. Interact. 2011, 5, 235–248. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Ding, C.; Wang, Y. A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership. Comput. Environ. Urban. Syst. 2018, 70, 113–124. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, L.; Duan, W.; Zhen, Z. Global and geographically and temporally weighted regression models for modeling PM2.5 in Heilongjiang, China from 2015 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 5107. [Google Scholar] [CrossRef] [Green Version]
- Levatich, T.; Ligocki, S. EOD—eBird Observation Dataset. Cornell Lab. Ornithol. 2020. Available online: https://www.gbif.org/ (accessed on 13 July 2020). [CrossRef]
- Shamoun-Baranes, J.; van Loon, E.; van Gasteren, H.; van Belle, J.; Bouten, W.; Buurma, L. A comparative analysis of the influence of weather on the flight altitudes of birds. Bull. Am. Meteorol. Soc. 2006. [Google Scholar] [CrossRef]
- Meinertzhagen, R. The speed and altitude of bird flight. Ibis1 1955, 97, 81–117. [Google Scholar] [CrossRef]
- Rugel, E.J.; Henderson, S.B.; Carpiano, R.M.; Brauer, M. Beyond the Normalized Difference Vegetation Index (NDVI): Developing a Natural Space Index for population-level health research. Environ. Res. 2017, 159, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and Temporal Weighted Regression (GTWR). Geogr. Anal. 2015, 47, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Metz, I.C.; Ellerbroek, J.; Mühlhausen, T.; Kügler, D.; Hoekstra, J.M. The bird strike challenge. Aerospace 2020, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Leveau, L.M.; Isla, F.I.; Bellocq, M.I. Predicting the seasonal dynamics of bird communities along an urban-rural gradient using NDVI. Landsc. Urban. Plan. 2018, 177, 103–113. [Google Scholar] [CrossRef]
- Blackwell, B.F.; Schafer, L.M.; Helon, D.A.; Linnell, M.A. Bird use of stormwater-management ponds: Decreasing avian attractants on airports. Landsc. Urban. Plan. 2008, 86, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Dolbeer, R.A. Height Distribution of Birds Recorded by Collisions with Civil Aircraft. J. Wildl. Manag. 2006, 70, 1345–1350. [Google Scholar] [CrossRef] [Green Version]
- Dekker, A.; van Gasteren, H. Eurbase: Military Bird Strike Frequency in Europe. Available online: https://canadianbirdstrike.ca/wp-content/uploads/2018/02/Dekker__van_Gasteren_2005.pdf (accessed on 2 November 2020).
- van Gasteren, H.; Krijgsveld, K.L.; Klauke, N.; Leshem, Y.; Metz, I.C.; Skakuj, M.; Sorbi, S.; Schekler, I.; Shamoun-Baranes, J. Aeroecology meets aviation safety: Early warning systems in Europe and the Middle East prevent collisions between birds and aircraft. Ecography 2019, 42, 899–911. [Google Scholar] [CrossRef]
Group ID | Species Group | Some Examples | Ag | EOF95 | |
---|---|---|---|---|---|
1 | Corvidae | Pyrrhocorax pyrrhocorax; Corvus macrorhynchos | 359.1 | 3 | 1 |
2 | Anatidae | Tadorna ferruginea; Anser indicus | 1413.8 | 4 | 4 |
3 | Columbidae | Columba rupestris; Streptopelia orientalis | 241.4 | 4 | 2 |
4 | Phasianidae | Crossoptilon harmani; Perdix hodgsoniae | 1233.7 | 6 | 0 |
5 | Swallow and warbler | Ptyonoprogne rupestris; Delichon dasypus; Phylloscopus affinis | 31.5 | 3 | 1 |
6 | Laridae | Chroicocephalus brunnicephalus; Ichthyaetus ichthyaetus | 905.1 | 3 | 4 |
7 | Wader and Natatores | Grus nigricollis; Fulica atra; Tringa totanus | 1788.2 | 3 | 1 |
8 | Bird of prey—large | Buteo hemilasius; Gyps himalayensis; Aquila chrysaetos | 4328.4 | 1 | 1 |
9 | Bird of prey—small | Falco tinnunculus; Accipiter nisus | 277.7 | 1 | 4 |
10 | Flocking passerine | Passer montanus; Montifringilla ruficollis; Eremophila alpestris | 33.5 | 10 | 3 |
11 | Not-flocking passerine | Phoenicurus ochruros; Carpodacus rubicilloides; Parus minor; Prunella fulvescens | 35.2 | 1.5 | 1 |
Variable | Description | Min. | 1st Qu. | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|---|
NDVI 1 | Normalized Difference Vegetation Index | 0.00 | 0.15 | 0.24 | 0.32 | 0.90 |
PB 1 | Probability of birds appearing in different land types | 0.00 | 0.32 | 1.80 | 3.00 | 7.46 |
POP 1 | Human population density | 3.65 | 19.06 | 22.01 | 23.75 | 111.94 |
WD 2 | Water Distribution | 0.08 | 0.18 | 0.63 | 1.00 | 2.00 |
DEM 1 | Altitude of studied area | 3553 | 3653 | 4114 | 4464 | 5398 |
Period | Variable | 2*SE (OLS) | IQR (GWR) | Extra Local Variation | IQR (TWR) | Extra Local Variation | IQR (GTWR) | Extra Local Variation |
---|---|---|---|---|---|---|---|---|
Dry season | Intercept | 0.024 | 0.502 | Yes | 1.353 | Yes | 0.436 | Yes |
NDVI | 0.032 | 0.226 | Yes | 0.365 | Yes | 0.159 | Yes | |
PB | 0.026 | 0.242 | Yes | 0.123 | Yes | 0.079 | Yes | |
POP | 0.026 | 0.043 | Yes | 0.029 | Yes | 0.031 | Yes | |
WD | 0.032 | 0.105 | Yes | 0.149 | Yes | 0.092 | Yes | |
DEM | 0.034 | 0.131 | Yes | 0.012 | No | 0.077 | Yes | |
Rainy season | Intercept | 0.018 | 0.724 | Yes | 1.022 | Yes | 1.268 | Yes |
NDVI | 0.022 | 0.222 | Yes | 0.105 | Yes | 0.173 | Yes | |
PB | 0.020 | 0.203 | Yes | 0.043 | Yes | 0.053 | Yes | |
POP | 0.020 | 0.079 | Yes | 0.018 | No | 0.080 | Yes | |
WD | 0.024 | 0.128 | Yes | 0.011 | No | 0.161 | Yes | |
DEM | 0.024 | 0.150 | Yes | 0.210 | Yes | 0.128 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Q.; Zhou, Y.; Zhu, P. Spatiotemporal Analysis of Environmental Factors on the Birdstrike Risk in High Plateau Airport with Multi-Scale Research. Sustainability 2020, 12, 9357. https://doi.org/10.3390/su12229357
Shao Q, Zhou Y, Zhu P. Spatiotemporal Analysis of Environmental Factors on the Birdstrike Risk in High Plateau Airport with Multi-Scale Research. Sustainability. 2020; 12(22):9357. https://doi.org/10.3390/su12229357
Chicago/Turabian StyleShao, Quan, Yan Zhou, and Pei Zhu. 2020. "Spatiotemporal Analysis of Environmental Factors on the Birdstrike Risk in High Plateau Airport with Multi-Scale Research" Sustainability 12, no. 22: 9357. https://doi.org/10.3390/su12229357
APA StyleShao, Q., Zhou, Y., & Zhu, P. (2020). Spatiotemporal Analysis of Environmental Factors on the Birdstrike Risk in High Plateau Airport with Multi-Scale Research. Sustainability, 12(22), 9357. https://doi.org/10.3390/su12229357