New Developments for the Sustainable Exploitation of Ornamental Stone in Carrara Basin
Abstract
:1. Introduction
Sustainable Exploitation of Natural Stone: An Overview of the Main Aspects Involved
- The need for “planned management” and good organization of the activity. In practice, starting from a better knowledge of the stone resources it is essential to plan the use of the land and manage the production/transformation processes adequately.
- The urgency of reducing the generation of quarry waste “at source” through the adoption of the best available exploitation techniques and the introduction of increasingly “precise” technologies. On the other hand, we need to enhance sustainability by a productive utilization of the processing waste.
- The need to guarantee the compatibility and environmental sustainability of the mining activity through an effective evaluation of the quarry planning, the improvement of environmental performance during the activities, and the site’s complete rehabilitation at the end.
- The performance depends on the type of cutting machine as well as the rock/rock mass characteristics. Machine specifications are generally easily known, but the rock/rock mass characteristics are not readily available. The rock/rock mass characteristics are of paramount importance, given the fact that the cutting tool directly engages with the rock to be cut. This fact warrants a geotechnical investigation in conjunction with the equipment used in a given site, as there is a direct interaction of the cutting tools with the rock/rock mass which they are used to cut. Moreover, extraction also requires planning ahead where and how to cut in order to minimize waste.
- To improve the knowledge of the behavior of both the rock mass and the rock material.
- Using advanced technology for a detailed geologic, geomorphologic, and tectonic mapping for the validation of the deducted stress patterns.
- In-quarry aid to direct excavation to areas of the required quality.
- Assessment of the marble characteristics to obtain marketable products for specific uses.
2. Geological Setting of the Carrara Marble Basin
3. Recent Developments in the Characterization of the Fracturing and Natural Stress States
4. Technology Improvements
5. Mechanical Behavior of Marble in Different Environmental Conditions
- The effects of temperature on the physical and mechanical characteristics.
- The combined effect of the thermal and chemical weathering.
- The effect of bowing on the marble slabs.
- Marble slabs in different environmental conditions by developing new models for forecasting the slabs behavior over time and proposing new technologies to improve the strength and durability of the slabs while preserving the aesthetic features of the natural material by using different anchoring systems. New products that can be safer, longer lasting, and of lesser weight can be developed, e.g., by impregnating the full thickness of the slabs with resins or designing composite slabs with backing layer of light material (honeycomb or foam).
- Optimization of tests for the certification of materials and improving predictive tools for structural design and life cycle analysis, to reduce the difference in terms of quality and reliability between natural and artificial materials.
- Improvement of the durability of the slabs with the aim of expanding the ornamental stone market by including applications with more severe environmental conditions (extreme temperature excursions and moisture content in Nordic, hot-humid, and desert environments; erosion by wind-transported particles; resistance to freeze-thaw cycles).
6. Extractive Waste Management and Recovery
- The definition of a working protocol that indicates how to manage the EW and which characteristics are required for each new product (e.g., the crushed materials for embankments must be separated from the high-quality ones so as not to dilute their quality).
- Cooperation between public authorities and industries to define guidelines and operative protocols for the application of SRM at a broader level (e.g., in public works and infrastructure).
- A market ready to accept new products obtained from EW processing. To this end, it is necessary to inform and sensitize the civil society about the necessity of accepting and using products from “waste” processing (End of Waste Criteria). Indeed, the SRM obtained from EW facilities represents an important source, in addition to the RM coming from virgin deposits. Waste must be considered a future resource, and waste facilities have to be considered “new ore-bodies” to exploit following the “mining approach” principles (which deal with the actions that we need to evaluate if the exploitation of the resources present in EW facilities is feasible. Geopolitical, environmental, economic, and social contexts have to be analyzed, together with the characterization and estimation of the resources present in EW facilities [84]).
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cambridge Dictionary. Available online: https://dictionary.cambridge.org/it/ (accessed on 2 November 2020).
- United Nation—Sustained Development. Available online: https://sustainabledevelopment.un.org/topics/mining (accessed on 2 November 2020).
- SUSTAMINING. Available online: https://www.sustamining.eu (accessed on 2 November 2020).
- Alejano, L.R.; Castro-Filgueira, U.; Ferrero, A.M.; Migliazza, M.; Vagnon, F. In situ stress measurement near faults and interpretation by means of discrete element modelling. Acta Geodyn. Geomater. 2017, 14, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Costantini, G.; Comina, C.; Ferrero, A.M.; Umili, G.; Bonetto, S. Underground application of photographic and GPR techniques for discontinuity survey. Riv. Ital. Geotec. 2019, 2, 37–47. [Google Scholar]
- Ferrero, A.M.; Godio, A.; Sambuelli, L.; Voyat, I.H. Geophysical and geomechanical investigations applied to the rock mass characterisation for distinct element modelling. Rock Mech. Rock Eng. 2007, 40, 603–622. [Google Scholar] [CrossRef]
- Ferrero, A.M.; Migliazza, M.; Segalini, A.; Gulli, D. In situ stress measurements interpretations in large underground marble quarry by 3D modeling. Int. J. Rock Mech. Min. Sci. 2013, 60, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Godio, A.; Sambuelli, L.; Ferrero, A.M. Geophysical investigation to optimize excavation of an underground marble quarry in Stazzema, Italy. Lead. Edge (Tulsa, OK) 2003, 22, 574–578. [Google Scholar] [CrossRef]
- Cardu, M.; Giraudi, A.; Murthy, V.M.S.R. Evaluation of dimension stone cutting by diamond wire saw in two marble quarries. Diamond Tooling J. 2011, 3, 1–6. [Google Scholar]
- Cardu, M.; Lovera, E. Extraction of dimension stone as a co-product of civil engineering works: A case study. CIM J. 2011, 2, 1–6. [Google Scholar]
- Cardu, M.; Michelotti, E. Innovative method to recover and recycle the technological materials used in dimension stones processing. CIM J. 2010, 1, 1–4. [Google Scholar]
- Cardu, M.; Zoppo, G. Dimension stone exploitation in the Ossola Basin, Italy. J. Nepal Geol. Soc. 2000, 22, 77–84. [Google Scholar]
- Cardu, M. Analysis of the excavation techniques to optimize the productivity in an Italian dimension stone basin. In Proceedings of the 21st International Symposium on Mine Planning and Equipment Selection (MPES), New Delhi, India, 28–30 November 2012. [Google Scholar]
- Cardu, M.; Giraudi, A.; Murthy, V.M.S.R.; Choudhary, B.S.; Shukla, A. Rock characterization and wire performances for dimension stone cutting by diamond wire saw. J. Undergr. Resour. 2014, 3, 25–37. [Google Scholar]
- Michelotti, E.; Cardu, M. Innovative method to recover and recycle the technological materials used in dimension stones processing. In Proceedings of the Sixteenth International Symposium on Mine Planning and Equipment Selection (MPES 2007), Bangkok, Thailand, 11–13 December 2007. [Google Scholar]
- Cardu, M.; Patrucco, M.; Lovera, E.; Michelotti, E. Quarrying by Explosive and Diamond Wire in Hard Dimension Stones. In Proceedings of the European Federation of Explosives Engineers; 2005. Available online: https://www.academia.edu/29359660/Quarrying_by_explosive_and_diamond_wire_in_hard_dimension_stones (accessed on 1 November 2020).
- Cardu, M.; Lovera, E.; Michelotti, E.; Fornato, M. The exploitation of syenite in the Piedmont Alps (Italy): Present relevance of the stone and future technological outlook for its sustainable exploitation. In Proceedings of the International Conference on Dimension Stone, Prague, Czech Republic, 14–17 June 2004. [Google Scholar]
- Mancini, R.; Cardu, M.; Garibaldi, L.; Fsana, A. Vibrations and stresses induced in the rock by the detonating cord splitting of dimension stone blocks. In Proceedings of the 7th International Symposium on Rock Fragmentation by Blasting—FRAGBLAST-7, Beijing, China, 11–15 August 2002. [Google Scholar]
- Vagnon, F.; Colombero, C.; Colombo, F.; Comina, C.; Ferrero, A.M.; Mandrone, G.; Vinciguerra, S.C. Effects of thermal treatment on physical and mechanical properties of Valdieri Marble - NW Italy. Int. J. Rock Mech. Min. Sci. 2019, 116, 75–86. [Google Scholar] [CrossRef]
- Ferrero, A.M.; Migliazza, M.; Spagnoli, A.; Zucali, M. Micromechanics of intergranular cracking due to anisotropic thermal expansion in calcite marbles. Eng. Fract. Mech. 2014, 130, 42–52. [Google Scholar] [CrossRef]
- Spagnoli, A.; Migliazza, M.; Zucali, M.; Ferrero, A.M. Thermal degradation in Carrara marbles as the cause of deformation of cladding slabs. Frat. Integrita Strutt. 2014, 30, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Migliazza, M.; Ferrero, A.M.; Spagnoli, A. Experimental investigation on crack propagation in Carrara marble subjected to cyclic loads. Int. J. Rock Mech. Min. Sci. 2011, 48, 1038–1044. [Google Scholar] [CrossRef]
- Ito, W.H.; Ferrero, A.M.; Vagnon, F.; Migliazza, M.R.; De Queiroz, P.I.B. Thermomechanical numerical analysis of bowing in marble slabs. In Proceedings of the Rock Mechanics for Natural Resources and Infrastructure Development- Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, ISRM 2019, Spa Resort, Foz do Iguassu, Brazil, 13–18 September 2020; pp. 2649–2657. [Google Scholar]
- Dino, G.A.; Borghi, A.; Castelli, D.; Canali, F.; Corbetta, E.; Cooper, B. The Candoglia marble and the “veneranda fabbrica del duomo di milano”: A renowned georesource to be potentially designed as global heritage stone. Sustainability 2019, 11, 4725. [Google Scholar] [CrossRef] [Green Version]
- Dino, G.A.; Chiappino, C.; Rossetti, P.; Franchi, A.; Baccioli, G. Extractive waste management: A new territorial and industrial approach in Carrara quarry basin. Ital. J. Eng. Geol. Environ. 2017, 2017, 47–55. [Google Scholar] [CrossRef]
- Careddu, N.; Dino, G.A. Reuse of residual sludge from stone processing: Differences and similarities between sludge coming from carbonate and silicate stones—Italian experiences. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Carmignani, L.; Conti, P.; Massa, G.; Vaselli, L.; Mancini, S. Lineamenti geologici delle Alpi Apuane. Acta Apuana Suppl. 2006, 5, 9–23. [Google Scholar]
- Molli, G.; Giorgetti, G.; Meccheri, M. Structural and petrological constraints on the tectono-metamorphic evolution of the Massa unit (Alpi apuane, NW Tuscany, Italy). Geol. J. 2000, 35, 251–264. [Google Scholar] [CrossRef]
- Cortopassi, A.; Molli, G.; Ottria, G. Studio della deformazione fragile nel bacino marmifero di Fantiscritti (Alpi Apuane, Carrara) finalizzato alla ricostruzione del campo di paleostress. Geol. Tec. Amb. 2006, 1–2, 27–45. [Google Scholar]
- Ottria, G.; Molli, G. Superimposed brittle structures in the late-orogenic extension of the Northern Apennine: Results from the Carrara area (Alpi Apuane, NW Tuscany). Terra Nov. 2000, 12, 52–59. [Google Scholar] [CrossRef]
- Brady, B.H.G.; Brown, E.T.; Brady, B.H.G.; Brown, E.T. Pre-mining state of stress. In Rock Mechanics; Springer: Berlin/Heidelberg, Germany, 1999; pp. 141–161. [Google Scholar]
- Villaescusa, E.; Seto, M.; Baird, G. Stress measurements from oriented core. Int. J. Rock Mech. Min. Sci. 2002, 39, 603–615. [Google Scholar] [CrossRef]
- Maerten, L.; Maerten, F.; Lejri, M.; Gillespie, P. Geomechanical paleostress inversion using fracture data. J. Struct. Geol. 2016, 89, 197–213. [Google Scholar] [CrossRef]
- Amadei, B.; Stephansson, O. Rock Stress and Its Measurement; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Célérier, B.; Etchecopar, A.; Bergerat, F.; Vergely, P.; Arthaud, F.; Laurent, P. Inferring stress from faulting: From early concepts to inverse methods. Tectonophysics 2012, 581, 206–219. [Google Scholar] [CrossRef]
- Lisle, R.; Orife, T.; Arlegui, L. A stress inversion method requiring only fault slip sense. J. Geophys. Res. Solid Earth 2001, 106, 2281–2289. [Google Scholar] [CrossRef]
- Lisle, R.J. A critical look at the Wallace-Bott hypothesis in fault-slip analysis. Bull. Soc. Geol. France 2013, 184, 299–306. [Google Scholar] [CrossRef]
- Fossen, H.; Fossen, H. Structural geology and structural analysis. In Structural Geology; Cambridge University Press: Cambridge, UK, 2010; pp. 1–20. [Google Scholar]
- Rawnsley, K.D.; Rives, T.; Petti, J.P.; Hencher, S.R.; Lumsden, A.C. Joint development in perturbed stress fields near faults. J. Struct. Geol. 1992, 14, 939–951. [Google Scholar] [CrossRef]
- Sousa, L.M.O.; Oliveira, A.S.; Alves, I.M.C. Influence of fracture system on the exploitation of building stones: The case of the Mondim de Basto granite (north Portugal). Environ. Earth Sci. 2016, 75, 1–16. [Google Scholar] [CrossRef]
- Mosch, S.; Nikolayew, D.; Ewiak, O.; Siegesmund, S. Optimized extraction of dimension stone blocks. Environ. Earth Sci. 2011, 63, 1911–1924. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, A.M.; Umili, G.; Vagnon, F. Analysis of discontinuity data obtained with remote sensing tools to generate input for EC7 design. In Proceedings of the Rock Mechanics and Rock Engineering: From the Past to the Future; CRC Press: Boca Raton, FL, USA, 2016; Volume 2, pp. 1115–1120. [Google Scholar]
- Lu, P.; Latham, J.P. Developments in the assessment of in-situ block size distributions of rock masses. Rock Mech. Rock Eng. 1999, 32, 29–49. [Google Scholar] [CrossRef]
- Loorents, K.J.; Björklund, L.; Stigh, J. Effect of induced fracturing based on a natural fracture system in a dimension stone quarry in the Offerdal Nappe, Sweden. Bull. Eng. Geol. Environ. 2000, 58, 215–225. [Google Scholar] [CrossRef]
- Mutlutürk, M. Determining the amount of marketable blocks of dimensional stone before actual extraction. J. Min. Sci. 2007, 43, 67–72. [Google Scholar] [CrossRef]
- Umili, G.; Ferrero, A.; Einstein, H.H. A new method for automatic discontinuity traces sampling on rock mass 3D model. Comput. Geosci. 2013, 51, 182–192. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhu, H. A new method for automated discontinuity trace mapping on rock mass 3D surface model. Comput. Geosci. 2016, 89, 118–131. [Google Scholar] [CrossRef]
- Cao, T.; Xiao, A.; Wu, L.; Mao, L. Automatic fracture detection based on Terrestrial Laser Scanning data: A new method and case study. Comput. Geosci. 2017, 106, 209–216. [Google Scholar] [CrossRef]
- Ehlen, J. Fractal analysis of joint patterns in granite. Int. J. Rock Mech. Min. Sci. 2000, 37, 909–922. [Google Scholar] [CrossRef]
- Rafiee, A.; Vinches, M. Application of geostatistical characteristics of rock mass fracture systems in 3D model generation. Int. J. Rock Mech. Min. Sci. 2008, 45, 644–652. [Google Scholar] [CrossRef]
- Taboada, J.; Vaamonde, A.; Saavedra, A.; Alejano, L. Application of geostatistical techniques to exploitation planning in slate quarries. Eng. Geol. 1997, 47, 269–277. [Google Scholar] [CrossRef]
- Bastante, F.G.; Taboada, J.; Ordónez, C. Design and planning for slate mining using optimisation algorithms. Eng. Geol. 2004, 73, 93–103. [Google Scholar] [CrossRef]
- Sohrabian, B.; Ozcelik, Y. Determination of exploitable blocks in an andesite quarry using independent component kriging. Int. J. Rock Mech. Min. Sci. 2012, 55, 71–79. [Google Scholar] [CrossRef]
- Fernández-de Arriba, M.; Díaz-Fernández, M.E.; González-Nicieza, C.; Álvarez-Fernández, M.I.; Álvarez-Vigil, A.E. A computational algorithm for rock cutting optimisation from primary blocks. Comput. Geotech. 2013, 50, 29–40. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellán, A.; Tomás, R.; Jaboyedoff, M. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci. 2014, 68, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Vagnon, F.; Bonetto, S.M.R.; Ferrero, A.M.; Migliazza, M.R.; Umili, G. Rock-Engineering Design and NTC2018: Some Open Questions. In Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 40, pp. 519–528. [Google Scholar]
- Umili, G.; Bonetto, S.M.R.; Mosca, P.; Vagnon, F.; Ferrero, A.M. In situ block size distribution aimed at the choice of the design block for rockfall barriers design: A case study along gardesana road. Geosciences 2020, 10, 223. [Google Scholar] [CrossRef]
- Bonetto, S.; Facello, A.; Ferrero, A.M.; Umili, G. A tool for semi-automatic linear feature detection based on DTM. Comput. Geosci. 2015, 75, 1–12. [Google Scholar] [CrossRef]
- Coli, M.; Pini, G.; Piccibi, L.; Mariottoni, E.; Frosini, S.; Rossi, M.L.; Livi, V.; Appelius, V.; Carmignani, L.; Meccheri, M.; et al. Studi Conoscitivi sui Bacini Marmiferi Industriali di Carrara: Un Contributo per la gestione Pianificata dell’Attività. GEAM Georisorse Ambiente 2002, 24, 1–104. [Google Scholar]
- Lovera, E. Razionalizzazione e Sviluppo di Attività Estrattive per Pietre Ornamentali. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2001. [Google Scholar]
- Tantussi, G.; Lanzetta, M.; Romoli, V. Diamond Wire Cutting of Marble: State of the Art, Modeling and Experiments with a New Testing Machine. In Proceedings of the 6th Italian Association of Mechanical Technology, Enhancing the Science of Manufacturing, Carrino, Gaeta (LT), Italy, 8–10 September 2003; pp. 113–126. [Google Scholar]
- Auletta, N. Caratterizzazione di Laboratorio Mirata All’analisi Delle Prestazioni di Fili Diamantati per il Taglio di Materiali Carbonatici. Master’s Thesis, Politecnico di Torino, Turin, Italy, 2019. [Google Scholar]
- Tantussi, G. Studio del comportamento del filo diamantato a seguito di rottura. In Atti del Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione; Università di Pisa: Pisa, Italy, 2008. [Google Scholar]
- Fresia, P. Valutazione Delle Prestazioni di Tagliatrici a filo Diamantato Mediante Analisi Sperimentali in Cave di Marmo. Master’s Thesis, Politecnico di Torino, Turin, Italy, 2019. [Google Scholar]
- UNI EN 15163. Machines and Installations for the Exploitation and Processing of Natural Stone—Safety—Requirements for Diamond Wire Saws; BSI: London, UK, 2017. [Google Scholar]
- Weydt, L.M.; Bär, K.; Colombero, C.; Comina, C.; Deb, P.; Lepillier, B.; Mandrone, G.; Milsch, H.; Rochelle, C.A.; Vagnon, F.; et al. Outcrop analogue study to determine reservoir properties of the Los Humeros and Acoculco geothermal fields, Mexico. Adv. Geosci. 2018, 45, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Eurostat Packaging waste statistics. Eurostat 2013, 17. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Packaging_waste_statistics (accessed on 1 November 2020).
- European Commission. Communication from the Commission EUROPE 2020: A Strategy for Smart, Sustainable and Inclusive Growth; Working Paper COM(2010); European Commission: Brussels, Belgium, 2010. [Google Scholar]
- European Commission. Communication from the Commission: Sustainable Europe for a Better World: A European Union Strategy for Sustainable Development; Working Paper COM(2001), 264 final; European Commission: Brussels, Belgium, 2001. [Google Scholar]
- European Commission. Communication from the Commission to the Council and the European Parliament Draft Declaration on Guiding Principles for Sustainable Development; Working Paper COM(2005), 218 final; European Commission: Brussels, Belgium, 2005. [Google Scholar]
- UNFCCC. United Nations Framework Convention on Climate Change. Paris Agreement; UNFCCC: New York, NY, USA, 2015. [Google Scholar]
- Danielsen, S.W.; Wigum, B.J. Short-traveled aggregates, since society needs sustainable building materials. Byggeindustrien 2015, 6, 104–107. (In Norwegian) [Google Scholar]
- Dino, G.A.; Rossetti, P.; Biglia, G.; Sapino, M.L.; Di Mauro, F.; Särkkä, H.; Coulon, F.; Gomes, D.; Parejo-Bravo, L.; Aranda, P.Z.; et al. Smart ground project: A new approach to data accessibility and collection for raw materials and secondary raw materials in Europe. Environ. Eng. Manag. J. 2017, 16, 1673–1684. [Google Scholar] [CrossRef]
- André, A.; De Brito, J.; Rosa, A.; Pedro, D. Durability performance of concrete incorporating coarse aggregates from marble industry waste. J. Clean. Prod. 2014, 65, 389–396. [Google Scholar] [CrossRef]
- Careddu, N.; Siotto, G.; Siotto, R.; Tilocca, C. From landfill to water, land and life: The creation of the Centre for stone materials aimed at secondary processing. Resour. Policy 2013, 38, 258–265. [Google Scholar] [CrossRef]
- Felekoglu, B. Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resour. Conserv. Recycl. 2007, 51, 770–791. [Google Scholar] [CrossRef]
- Gencel, O.; Ozel, C.; Koksal, F.; Erdogmus, E.; Martínez-Barrera, G.; Brostow, W. Properties of concrete paving blocks made with waste marble. J. Clean. Prod. 2012, 21, 62–70. [Google Scholar] [CrossRef]
- Galetakis, M.; Alevizos, G.; Leventakis, K. Evaluation of fine limestone quarry by-products, for the production of building elements—An experimental approach. Constr. Build. Mater. 2012, 26, 122–130. [Google Scholar] [CrossRef]
- Luodes, H.; Kauppila, P.M.; Luodes, N.; Aatos, S.; Kallioinen, J.; Luukkanen, S.; Aalto, J. Characteristics and the environmental acceptability of the natural stone quarrying waste rocks. Bull. Eng. Geol. Environ. 2012, 71, 257–261. [Google Scholar] [CrossRef]
- Careddu, N.; Marras, G.; Siotto, G. Recovery of sawdust resulting from marble processing plants for future uses in high value-added products. J. Clean. Prod. 2014, 84, 533–539. [Google Scholar] [CrossRef]
- Marras, G.; Careddu, N.; Internicola, C.; Siotto, G. Recovery and Reuse of Marble Powder By-Product. Glob. Stone Congr. 2010, 214, 1–5. [Google Scholar]
- Dino, G.A.; Passarella, I.; Ajmone-Marsan, F. Quarry rehabilitation employing treated residual sludge from dimension stone working plant. Environ. Earth Sci. 2015, 73, 7157–7164. [Google Scholar] [CrossRef]
- Dino, G.A.; Rossetti, P.; Perotti, L.; Alberto, W.; Sarkka, H.; Coulon, F.; Wagland, S.; Griffiths, Z.; Rodeghiero, F. Landfill mining from extractive waste facilities: The importance of a correct site characterisation and evaluation of the potentialities. A case study from Italy. Resour. Policy 2018, 59, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Dino, G.A.; Mehta, N.; Rossetti, P.; Ajmone-Marsan, F.; De Luca, D.A. Sustainable approach towards extractive waste management: Two case studies from Italy. Resour. Policy 2018, 59, 33–43. [Google Scholar] [CrossRef]
- Prescott, P.I.; Pruett, R.J. Graund Calcium carbonate: Ore mineralogy, processing and markets. Min. Eng. 1996, 48, 79–84. [Google Scholar]
In-Situ Stress Measurements | Paleostress | |||||
---|---|---|---|---|---|---|
Depth of Investigation [m] | Principal Stress | Magnitude [MPa] | Plunge [°] | Trend [°] | Plunge [°] | Trend [°] |
6.9 | σ1 | 16.5 | 79 | 242 | 78 | 47 |
σ2 | 1.3 | 10 | 086 | 10 | 263 | |
σ3 | 0.5 | 4 | 355 | 6 | 171 | |
9.65 | σ1 | 16.5 | 81 | 293 | 78 | 47 |
σ2 | 2.2 | 9 | 117 | 10 | 263 | |
σ3 | 0.6 | 1 | 027 | 6 | 171 |
Physical Characteristics | Value |
---|---|
Bulk density | 2688 kg/m3 |
Simple compression strength | 1209 kg/cm3 |
Compression strength after freezing | 1181 kg/cm3 |
Indirect Tensile Strength (Brazilian test) | 174 kg/cm3 |
Impact strength test | 73.8 cm |
Moisture absorption (by weight) | 0.16% |
Sample Name | Grain Size Distribution | Atterberg Limits | Density (Average) | Los Angeles Test % | Freezing and Heat Test (Average) % | Shape Index (%) | Flatness Index (%) | |
---|---|---|---|---|---|---|---|---|
Liquid Limit WL% | Plastic Limit WP% | |||||||
C 0.5–4 | Sand slightly gravelly | - | 2.55 | - | - | - | ||
C 0–25 | Sandy gravel slightly silty | Not plastic | 2.59 | 68 | 0.8 | 16.5 | 27.2 | |
C 0–150 | Gravel slightly sandy-silty | Not plastic | 1.96 | 69 | 0.3 | 17.4 | 19.5 | |
L 0.5–4 | Sand slightly gravelly | - | 2.46 | - | - | - | ||
L 0–25 | Sandy gravel slightly silty | Not plastic | 2.40 | 43 | 0.4 | 21.9 | 25.7 | |
L 0–150 | Gravel slightly sandy-silty | Not plastic | 1.98 | 42 | 0.3 | 28.8 | 29.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagnon, F.; Dino, G.A.; Umili, G.; Cardu, M.; Ferrero, A.M. New Developments for the Sustainable Exploitation of Ornamental Stone in Carrara Basin. Sustainability 2020, 12, 9374. https://doi.org/10.3390/su12229374
Vagnon F, Dino GA, Umili G, Cardu M, Ferrero AM. New Developments for the Sustainable Exploitation of Ornamental Stone in Carrara Basin. Sustainability. 2020; 12(22):9374. https://doi.org/10.3390/su12229374
Chicago/Turabian StyleVagnon, Federico, Giovanna Antonella Dino, Gessica Umili, Marilena Cardu, and Anna Maria Ferrero. 2020. "New Developments for the Sustainable Exploitation of Ornamental Stone in Carrara Basin" Sustainability 12, no. 22: 9374. https://doi.org/10.3390/su12229374
APA StyleVagnon, F., Dino, G. A., Umili, G., Cardu, M., & Ferrero, A. M. (2020). New Developments for the Sustainable Exploitation of Ornamental Stone in Carrara Basin. Sustainability, 12(22), 9374. https://doi.org/10.3390/su12229374