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Abstract: A large amount of the local and first-class road infrastructures in Central Europe lead
through settled areas, such as villages or even historical cities and town centers. The vibrations
generated by passing vehicles around the pavement spread to the subgrade to the environment and
also affect civil engineering structures and buildings. We have decided to adopt the approach of
small-scale modeling of the pavement with the subgrade. Small-scale physical modeling brings
benefits, such as size reduction, simplification, or controlled conditions during the test. To study the
effect of static and dynamic behavior during the occurrence, a simulation mass physical model is
used for testing. A static plate load test is used to determine the bearing capacity and settlement
and consistency of measurement of the plate’s vertical movement at a given load acting on the
plate. The aim of the mass surface simulation’s dynamic testing was to measure the response
in time acceleration forms. Based on the performed experimental measurements undertaken on
the physical model as well as the numerical simulation performed in FEM, we can state that the
gelatin-based simulation mass is usable for the simulation of the earth environment in contact with
building structures.

Keywords: small-scale physical model; static plate load test; dynamic testing of simulation mass

1. Introduction

The interaction between the vehicle and pavement makes up the main part of the research, and its
consequences are being addressed by engineers around the world [1]. In general, the vehicle–pavement
interaction system consists of two individual systems. Even though this phenomenon’s solution
may seem simple, the final solution is actually complex when a wider range of factors are involved.
The vehicle, as a separate part of the interaction system, can be characterized as a very complicated
dynamic system. Therefore, the combination of a vehicle–pavement system is difficult to describe
exactly by the mathematical method.

A large amount of local and first-class road infrastructures in Central Europe lead through settled
areas, such as villages or even historical city and town centers, as a remnant of the historical roads in
past times. However, a large part of the traffic stays in settled areas because new road infrastructure
is still absent in some localities. Local communications cannot keep up with the increasing traffic
load, which leads to the degradation of the pavement parameters and the deterioration of the
environment. In many cases, the service life of the pavements is exceeded, then defects and failures
occur, which ultimately leads to the occurrence of stochastic sources of excitation for the dynamic
vehicle–pavement system.
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In an ideal load condition, when the vehicle is moving on a smooth surface, the dynamic behavior
of the system can be described trivially by the mathematical expression of the problem [2,3].

One of the important parts of the vehicle–pavement interaction system is the pavement. In dynamic
analyses, the pavement is often idealized or replaced by simpler variants, such as an elastic half space
with general parameters. The task of solving the problem of the pavement can also be extended by the
subsoil, which represents an important role in this interactive task.

The vibrations generated by a passing vehicle around the pavement spread to the subgrade
environment and also affect the civil engineering structures and buildings. Limiting the spread of
vibrations to the pavement and subsoil is very complicated due to the necessary heavy tracks and traffic
in our infrastructure and diversity. Rehabilitation of the pavement stressed by dynamic phenomena
focuses on eliminating the source of dynamic excitation and reducing its impact [4–6].

Therefore, this phenomenon needs to be solved, and a detailed investigation into the pavement
is necessary. Observing the behavior of the pavement and subsoil on real structures is possible
but very complicated due to the permanent involvement of measurement instrumentation in the
construction phase and observation equipment thereafter. Considering the above-mentioned statements,
the complexity of the phenomenon requires some generalization level without affecting the reliability
of outputs [7,8]. For this reason, we have decided to adopt the approach of small-scale modeling of the
pavement with the subgrade.

2. Road Infrastructure–Environment Interaction Analysis

2.1. Road Infrastructure Effect

Undoubtedly, the negative effect of the traffic on the surrounding environment is one of the most
important tasks to solve. The negative effects involve various factors, such as vibrations, noise and
air pollution, the risk of health injures, loss of life, or property damage [9–12]. The aim is to analyze
the vibrating effect of traffic on buildings. Vibrations have a negative influence on the condition of
buildings [13–15]. The change in stress peaks leads to fatigue of structural elements. Masonry or
concrete members are especially predisposed to failure occurrences. Cracks or discontinuities in
non-bearing elements are typical for excessive loads from traffic. Additionally, long-term effects of
vibration have negative impacts on the health of inhabitants.

Besides the published works, the study is based on the in-situ observations of the authors.
The locality is affected by heavy traffic, which inflicts failures in the non-bearing members of nearby
buildings. The level of the road is higher than the entrances to the houses. This difference is secured by
the concrete retaining wall along the communication supported by the concrete ribs connected with
the buildings’ foundation (Figure 1a).

Figure 1. Supporting rib of the retaining wall along the communication: (a) The rib without interruption;
(b) Interrupted rib at the house foundation.
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The influence of traffic is intensified by the increasing extensiveness of pavement unevenness and
irregularities. In this case, the settlement of sewer inlets created an obstacle in the track of the wheels.
The impact of the tire on the inlet induces an increase in the loading amplitude. Insufficient technical
conditions of the vehicles bring another deterioration of the state. An assumed major contribution of
the rigid concrete rib led to a proposal to disconnect the rib and the foundation. Some of the ribs were
modified in this way (Figure 1b).

Velocities in all three directions were measured at selected sites near the road: on the top of the
retaining wall, on the rib, and in a pit below the rib. The values of the effective velocity in a particular
direction lay in the interval from 0.01 to 0.24 mm·s−1. The typical propagation of the velocity during
the measurement is plotted in Figure 2. The energy of vibrations was evaluated through effective
values of velocity instead of peak values, which only occur occasionally. The effective values better
describe the overall energy potential of the wave and its influence.
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Figure 2. Time propagation of velocity of vibration at the top of the retaining wall in the vertical
direction. Effective velocity v(RMS) = 0.154 mm·s−1.

According to Eurocode 8, the structures subjected to seismic effects are evaluated by the maximum
effective velocity at the foundation. For these types of buildings, the limit value is v(RMS) = 1.0 mm·s−1 [16].
While the overall stability is not threatened by the technical seismicity, some failures, such as cracks,
may occur in non-bearing elements.

The ground and the building’s frequency response sometimes leads to the strongest perception of
the dynamic events. Thus, dominant frequencies were investigated. The typical propagation of the
dominant frequencies is plotted in Figure 3.
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Figure 3. Power spectral density at the top of the retaining wall in the vertical direction; f(max) = 19.46 Hz.

The dominant frequencies varied from 8.9 to 22.5 Hz. This is a typical interval for a road traffic
load. Typical dominant frequencies of masonry family houses are 2 to 6 Hz, so the resonant state of the
buildings is not reached [17].

Measurements on the disconnected ribs showed some increase in the velocity. We assumed
that the rigidity of the rib helps to reduce the energy of the wave. Disconnections of the rib did
not influence the remediation of the state; even the polystyrene inlay did not work. A huge part
of the vibration energy advanced through the ground and further below the building foundation.
Accordingly, the ground represents an important part of the vibration transfer mechanism, and its
investigation was the main goal in this study during the physical modeling.

2.2. Small-Scale Physical Modeling

Small-scale physical modeling brings benefits, such as size reduction, simplification, or controlled
conditions during the test [18–24]. Partial problems can be investigated to verify the proposed
hypothesis. On the other hand, some limitations should be taken into account: It is difficult to adopt
the full behavior of the structure; more elements or partial mechanism aimed modeling is applicable;
preparation of the test stand should be implemented at all know inputs.

The scaling has different influences on the parameters of the test. Some of them had a length of 1/n,
which was smaller on the scale than in reality. The area was 1/n2 smaller. The stress observed during
the test was the same as in real structure. Table 1 contains the scaling factors for the usual quantities.

Table 1. Scaling effect.

Parameter Dimension Scale 1:n

length L m 1:n
area A m2 1:n2

force F N 1:n2

stress σ = F/A N/m2 1:n
one dimensional stiffness F/L N/m 1:n

settlement/distance m/m 1:1

The scaling also depends on the test approach. Table 2 shows a comparison of scale factors for 1-g
and centrifuge environments. Small-scale physical models have limitations in inducing sufficient stress
levels, so constitutive behavior of the soil can be affected. Centrifuge apparatus creates an enhanced
gravity field to compensate for the low stresses.
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Table 2. Scaling factors for 1-g and centrifuge physical modeling [24].

Parameter Scale Factor

length n
area n2

force n2

N·n2
in centrifuge
in other cases

stress 1
N

in centrifuge
in other cases

displacement n
strain 1

Where N is the stress scale factor, and x is the geometric scale ratio.

These measures solve the task from a static point of view, but the dynamic behavior of the structure
makes the task more complex. Besides the scale transformation, the test materials’ properties have a
significant influence on the model output. A simple conversion of quantities using the implemented
scale mentioned above leads to unreliable results [22]. The behavior of the materials at such a small
scale is not linearly dependent on the scale factor. Some corrections are then required to obtain usable
results. Additionally, the “dynamic” behavior of the test material itself should be taken into account.
The properties are often stress-, frequency-, or time-dependent. The application of proper material
depends on the purpose of the physical modeling and desired scale factor.

Considering the effect of the traffic load on the pavement subgrade, the effect of a vehicle passing
has a short duration, and the subgrade and also layers of the pavement should be described by the
dynamic parameters. In terms of overall test conditions, the “apparent” behavior of the test material
becomes important at any given load, time, and frequency interval. The overall response of the
subgrade should match the prerequisites taken from the in-situ measurements. Partial parameters of
the test material do not have to fit the scaling rule if the above-mentioned condition is fulfilled.

Besides the investigation of specific parameters of the selected simulation mass for the subgrade,
we kept in mind the overall response of the mass to the traffic load and its potential utilization for
various test conditions, such as scale factor, load level, or frequency spectrum.

3. Simulation Mass Material Properties

A physical model of simulation mass was used for testing to study the effect of static and dynamic
behavior during the occurrence. A gelatin-based material was chosen for the needs of physical modeling,
whereas the material parameters of this material were very suitable for the approximation of the
dynamic behavior of soil materials [25]. Physical models that use the viscoelastic properties of modeling
materials are suitable for modeling dynamic phenomena in rock environments, such as pavement
subgrades. This realistic prototype scale model was simplified to define the small-scale model.

3.1. Material Properties

The bulk density determined on the test material sample was 1200 kg/m3 at a standard ambient
temperature of 20 ◦C. Poisson’s ratio was 0.5 for the given material.

3.1.1. Infrared Spectroscopy

Infrared spectroscopy belongs to the group of non-destructive analytical methods, where the
examined sample is not damaged in any way by the analysis while providing information about its
composition. The obtained values of vibrational energies were related to the strength of chemical
bonds and also to the molecular geometry with molecular structure. Although infrared spectroscopy is
used in the analysis of macroscopic samples, its essence is the interaction of microparticles (molecules)
forming this macroscopic sample with infrared radiation. The main focus of infrared spectroscopy
is the interaction of infrared radiation with the studied sample. By infrared radiation, we mean
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electromagnetic radiation in the wavelength range 20 to 12,500 cm−1 and wavelengths of 0.5 nm to
800 mm.

When infrared radiation interacts with a molecule, only the radiation whose energy corresponds to
the difference between the individual vibrational levels of the respective oscillator is absorbed or emitted.
If the current source frequency corresponds to a certain energy level difference, absorption occurs, and an
absorption band appears in the infrared spectrum. The infrared spectrum of a substance represents the
dependence of permeability T, absorbance A, reflectance on the wavenumber R, and wavelength λ,

T =
Φ
Φ0

; A = log
Φ0

Φ
; R =

Φre f lected

Φ0
(1)

where Φ0, Φ reflections represent the flux of radiation in front of and behind the cuvette and the flux
of radiation reflected by the sample [26,27].

3.1.2. Material Sample Tested with Infrared Spectroscopy

Infrared absorption measurements were carried out with an FTIR Spectrometer Nicolet 5700 suitable
for the widest range of analytical applications. For diagnostic purposes, a portion of the sample was
taken and tested using this technology. Infrared spectrum of the tested sample is shown in Figure 4.

Figure 4. Infrared (IR) spectrum of the tested sample.

Relatively sharp absorption bands throughout the mid-infrared (IR) region from 4000 to 550 cm−1

characterize the IR spectrum of the sample. Much wider absorption bands were visible in amorphous
trehalose. The sample showed the presence of one sharp band around 3350 cm−1 and a few shoulder
peaks in the OH stretching region between 3100 and 2600 cm−1 that are indicative of hydrogen bonds
of defined geometric positions, see Figure 4. The broad features of the OH band of the amorphous
trehalose indicated a wide range of hydrogen-bond lengths and orientations. In the area of stretching
C-H of the range 3000 and 2600 cm−1, it was possible to identify bands. These FIR results are
characteristic for glycerol - 98% - nonaromatic alcohol [28,29]. The shape of the region between 1700
and 1100 cm−1 describes peaks consisted of six local peaks. The increase in absorbance at 1630 cm−1 may
also be associated with the formation of deformation bands of adsorbed water molecules. The amide II
region (deformation vibrations -CN and -CNH) was less sensitive to changes in the secondary structure
than amide I but was strongly affected by hydration. A comparison of the IR spectra of the tested
sample and dedicated chemical element can be seen in the Figure 5. This course and scattering are
characteristic of the material composition of gelatin mixture on a natural basis [30,31].
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Figure 5. IR spectrum of the tested sample compared with (a) Gelatin; (b) Glycerol.

3.2. Methodology

However, the real behavior of the vehicle–pavement interaction system is more complicated as it
is influenced by factors, such as

• The degree of generalization of the real vehicle to the model;
• The non-homogeneity of the masses and their distribution in the vehicle;
• The difficult estimation of the dynamic parameters of the vehicle subsystems, such as stiffness,

damping, etc.;
• Additional excitation sources from the moving vehicle part, such as clutch, gearbox, other engine

parts, or suspension;
• The change in the dynamic parameters due to the change in temperature, humidity, or

aging processes;
• The material parameters of the pavement layers and the subgrade and their inhomogeneity

and imperfections;
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• The change in parameters in time due to the temperature, humidity, or other phenomena, such as
groundwater flow or flooding;

• The harmonic and stochastic unevenness of the pavement surface;
• Defects and failures in the pavement, such as potholes, cracks, or sinkholes;
• Other factors, including retarders or joints.

3.3. Numerical and Theoretical Approach

For the best evaluation of experimental measurements, it is a very suitable step to create a
numerical model. In the Adina computational system based on the finite element method, a pre-primary
computational model was created, which served as the first approximation to the real physical model.
This model was created under the assumption of a linearly elastic homogenous material for small
deformations. Hence, the relative deformations in the initial stages of the experimental determination
of experimental characteristics can be deduced. The model was composed of a solid type of 3D finite
element, and a static analysis was performed. The numerical model’s boundary conditions were
chosen to accurately reflect the real state of the physical model. The degrees of freedom taken from the
undersides and bounders ides of the model should reflect the metal container’s behavior. In Figure 6,
the 3D finite element numerical model is shown. The model will still be calibrated and will be used for
future research in static and dynamic analyses.

Figure 6. (a) 3D mesh model with load; (b) Course of deformation static analysis of the model.

To describe the behavior of viscoelastic materials, differential equations of the simplest rheological
models are most often used in static or dynamic loads. The simplest model of viscoelastic material
consists of a linear spring representing elasticity and a linear (Newtonian) damper representing viscosity.
These basic elements can be combined either serially (Maxwell model) or in parallel (Voigt model).
The static tests presented in this paper show that the material used as the simulation mass can be
represented by the Maxwell material model.

4. Real Testing Stand

4.1. Test Stand Parameters

To test the simulation mass, a steel tank was assembled. The mass was poured into the tank after
warming. The mass was then leveled to create a flat surface. The stand was stored in a room with a
stable ambient temperature of 20 ◦C. Gelatin-like materials are sensitive to temperature changes when
their viscosity varies. Because of the dynamic nature of testing, the steel tank was placed on rubber
damping pads to reduce the influence of the vibrations traveling from the actuator, which served as a
testing apparatus along the steel frame to the floor.
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The steel frame was mounted above the tank without any direct contact with it. The testing
apparatus was attached to the steel frame, and its height above the mass surface was adjusted in terms
of test conditions. The scheme and geometric parameters are displayed in Figure 7.

Figure 7. Test stand: (a) Basic arrangement for measurements; (b) Scheme with the testing apparatus.
Dimensions in millimeters.

The test apparatus and the whole steel frame could be positioned so that static and dynamic
testing could be carried out at any point on the simulation mass. The steel frame was constructed
using heavy steel U profiles to provide sufficient rigidity of the structure and to avoid the excessive
vibration effects from the actuator.

4.2. Quasistatic Tests

For the purpose of material identification in terms of static parameters, static tests were performed
on a small-scale physical model. Numerous variations of static testing can be applied to real structures.
A standard static plate load test was performed due to the physical model’s geometry and material
parameters. It is a non-destructive method for determining the static strength of a material. The static
plate load test with a diameter of 60 mm was completed in 5 measurement cycles.

The static plate load test is used to determine the bearing capacity and settlement, which consists
of measuring the plate settlement at a given load acting on the plate. If we know the boundary
conditions as the diameter of the circular plate r and the absolute value of the proportion of relative
deformations µ, we are able to calculate the modulus of elasticity E for the given pressure interval
under the plate ∆p and the corresponding elastic plate settlement ye [32].

Ein f =
[
0.5·π·

(
1− µ2

)
·∆p·r

]
/ye (2)

The circular load plate with a diameter of 60 mm was made of wood, had a thickness of 15 mm,
and a weight of 156 g. The circular plate was characterized by its rigidity and lightness as well.
Hardened plexiglass with a diameter of 120 mm was placed on this circular plate. This plexiglass was
used as a rigid body, from which the measured values could be subtracted from digital indicators.
Both plates were placed on the test apparatus, which made it possible to load and lighten the
test material. The measuring device used for static testing was a strain gauge used as a sensor to
indirectly measure the mechanical stress on the surface of a part by measuring and its deformation.
Digital indicators were used to subtract the deformation values. The equipment consisted of one whole
facility and was installed on a rigid steel frame. Moreover, the vehicle wheel’s dynamic load acts only
for a short period, and a longer loading stage gives underestimated values of the modulus of elasticity.
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For this reason, the static test was performed for a period of 30 s. The scheme of the static load test is
displayed in Figure 8.

Figure 8. Arrangement for quasistatic load test: (a) Measurement unit with digital indicators; (b) Scheme
of the equipment.

4.3. Dynamic Tests

The simulation mass surface’s dynamic testing aimed to measure the response in time acceleration
forms. The analysis of the recorded data was focused on the frequency sensitivity of the investigated area
and the damping. For this purpose, including surface wave propagation characteristics, the polar system
of the sensor positions was created. The dimensions and the positions of the sensors in the polar net can
be seen in Figure 9. Because the experiment holds the assumption of homogeneity, geometrical symmetry,
and border conditions, the circular quadrant of the investigated area was selected. In this figure, the real
experimental setup photo with accelerometers connections and measuring central can also be seen. Brüel
and Kjær in-labo measuring equipment for the dynamic testing was used. The system BK Pulse with all
modules is a powerful tool for measurements of all vibration types [33,34]. The specific members of the
measuring line were

• 18 pcs—Accelerometers BK 4508B–002, CCLD variants are equipped with TEDS (transducer
electronic data sheet) with original mounting Clip UA-1407 fixed to special light, stiff plastic foil;

• 18 pcs—AO-0038 Super low-noise, single-screened cable with 10–32 UNF connectors;
• 3 pcs—6-channel Input Module Type 3050, 51.2 kHz, in a BK original power frame Type 3660-C-100,
• A Laptop HP EliteBook with full BK Pulse system installed, connected to power frame with

LAN cable.
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The vibration excitation was applied to the surface in the middle of the rectangle area through the
rigid thick disc with a diameter of 40 mm (plastic plate). The reference accelerometer was situated
near the center of this part of the excitation line. Additionally, this part was connected to an exciter
with a rectification steel rod to ensure the ideal forced excitation. The excitation line consisted of the
following parts:

• A TIRA Vibration exciter S 51110 fixed to the massive steel frame over the simulation mass box;
• A power Amplifier DA 200 connected to a vibration exciter;
• An NTI MR2 Analog Audio Signal Generator with functions for external data file uploading from

PC generators.

The two dynamic load stages were applied to the simulation mass. Both load stages were in the
frequency range of 1 to 20 Hz. The first signal was generated as a continuous sweep, and the second
was a stepped sweep with an increase of 1 Hz a step with a duration of 20 sec per step. The excitation
was performed with a constant amplitude of vibration displacement.

After the measuring procedure, recorded data was verified through integration processes in
the SigView analyzer to see if the vibration displacement amplitude was really constant. In the
small amplitude loading process, vehicle vibration can be comparable. After the initial data check,
the Operational Modal Analysis Pro evaluation process started as a module of the BK Pulse. This module
is based on the ARTEMIS system. Original non-modified, non-filtered recorded data were prepared
and transformed into the ARTEMIS data format. After programming, a script with parameters for
a run of the dynamic analysis with variable computation settlements was evaluated. Analysis of
evaluation enabling by processing system was

• Frequency domain decomposition;
• Enhanced frequency domain decomposition;
• Analysis using curve-fit frequency domain decomposition;
• Stochastic subspace identification—unweighted principal component;
• Stochastic subspace identification—principal component;
• Stochastic subspace identification—canonical variate analysis [34].

5. Results and Discussions

5.1. Quasistatic Test Results

The measuring string was recalibrated before and after each measurement, and the transformation
equation between voltage increase and force load was ∆F= ∆I·118+4.28 [N]. Where ∆I is the voltage
increase, and ∆F is the load force increase. The results of the static analysis are represented in Figure 10.
This figure shows the relaxation effect of the material for five load stages.

Figure 10. The stress relaxation analysis of material during the static load test, where X-axis is strain
stage, Y-axis is time (s) a Z-axis is force (N).
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The results of the static load tests are represented in Table 3. This table contains statistically
evaluated values of material constants for five load stages. The stages are divided due to the deflection
of the rigid disc.

Table 3. Modulus of elasticity as a result of a static plate load test.

Deflection
[mm]

ε
[-]

Finf
[N]

Fpeak
[N]

σinf
[Pa]

σpeak
[Pa]

Einf
[Pa]

Epeak
[Pa]

16 0.0400 20.5 36.1 7260 12,761 181,496 319,017
15 0.0357 16.3 32.2 5752 11,399 161,069 319,173
14 0.0327 12.0 28.4 4245 10,041 129,778 306,965
13 0.0298 7.7 24.5 2738 8679 91,818 291,089
12 0.0271 3.5 20.7 1230 7325 45,316 269,792

5.2. Dynamic Test Results

As an example of the identification of dominant frequency bands in the harmonic wave propagation
process over the testing surface in Figure 11, the peak detection of overall spectral characteristics can be
seen. This figure also shows how the averaged spectrum changed over measuring time—spectrogram.

Figure 11. The frequency transmission identification: (a) Peak detection of averaged spectra; (b) Spectrogram
of the averaged spectrum, where SVD is Singular value decomposition.
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The identified frequency peaks, appearing in each method of measurement processing, and the
vibration mode shapes are interpreted in Figure 12. Because the reference accelerometer was a rigid
disc and there was no damping effect of the simulation mass, the displacement in figures contained
strong peaks in the middle of the circular quarter. In the other measured points, however, the wave
behavior characteristics could be observed mainly when the mode was animated [35].

Figure 12. The surface experimental model (a), the mode shapes for the dominant frequencies
f(D1) = 9.5 Hz (b) and f(D2) = 17.5 Hz (c).

5.3. Discussions

The results of the static load tests are represented in Table 3. Based on these results, we can
conclude the following investigation. Total deformation was in good agreement with propagation,
which was induced by the simulation mass. The deformation amplitudes corresponded with the FEM
(Finite Element Method) model outputs, based on the simple linear elastic material model. The loading
stages coincided together in terms of the variable strain. The loading and unloading phases of the
stage were almost identical. Peak values of vertical loading forces were in the interval from 2 to
3.6 kg, considering the gravitation acceleration of 9.81 m/s2. There was an assumption of a small
increment of deformation because of the mechanism of the loading apparatus. The viscoelastic nature
causes dissipation of the value of peak loading forces. This dissipation is more obvious within an
increasing loading interval duration. This phenomenon was proved by the test where Finf was from an
interval of 0.3 to 2 kg. Stresses were calculated for the given contact area of the loading plate, and they
were related to the forces obtained from the tensometer. Because of sufficient rigidity of the testing
equipment, no relaxation was allowed. The modulus of elasticity E characterized the deformation
response of the simulation mass to the induced load. The testing aimed to determine two types of
elastic moduli: one related to the peak load and the second one related to the infinite values of loading.
The moduli’s peak values were in the interval from 269 to 319 kPa, which is in good agreement with
the previous research. The selection of the appropriate modulus depends on the loading mode applied
to the soil body. Short-term cases require high moduli values because of the short-time influences on
the soil body [36,37].

In the dynamic investigation of the simulation mass in-labo, all wave processes determined for
the real soils or viscoelastic half space could be applied. The behavior of the simulation mass indicated
this fact based on dynamic measurements. There were two important frequencies f(D1) = 9.5 Hz
and f(D2) = 17.5 Hz. These frequencies impact the potential amplifying properties of the simulation
mass model (including fixed steel box border). The analysis was performed for the frequency band
close to the dominant frequencies of further simulations (passing the vehicle at physical models).
In dominant mode shapes of vibration, a huge damping effect for cross-correlation responses could
be observed for distanced points. In the peak detection process using variable evaluating methods,
other questionable frequencies also appeared. In these cases, the dumping ratio was unstable or
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with large dispersion, and the frequency transmission was not guaranteed. As seen in Figure 11,
the spectrogram decelerated the relevant smooth sweep over the whole forced vibration during
excitation. The other peak amplitudes in this graphic interpretation (less significant rays) represented
reflections and harmonic mirroring [38,39].

6. Conclusions

Based on the performed experimental measurements on the physical model as well as the
numerical simulation performed in FEM, we can state that the gelatin-based simulation mass is usable
for the simulation of the earth environment in contact with building structures.

The utilization of gelatin-like materials for simulation purposes has not been widely investigated.
These materials are defined by specific properties, which are usable for simulating quasistatic and
dynamic phenomena. Parameters are highly condition-dependent, but parameters of these materials
can be used to describe the real materials when these conditions are specified. As presented in this
study, the simulation mass based on gelatin-like material had certain properties, which allowed it to
simulate soft materials, such as fine-grained soils. Such soils are often present in the pavement subgrade.
This paper contributes to a better understanding of a research area that is not much investigated yet.

The presented study investigated the possibility of applying simulation mass for physical modeling
of a pavement. The utilization of this material depends on the determined deformation characteristics
that need to be taken into account when selecting the physical scale model. Additionally, the loading
mode of the proposed model and appropriate values of moduli should reflect the real case loading
mechanism (long-term and short-term conditions). Considering the presented case study described
in Chapter 2, it allows a detailed investigation into the mode of transfer mechanism of vibrations
through the soil body. The physical and numerical outputs modeling can be extrapolated for real cases,
which are usually restrained in terms of survey, design, time, and costs. The results of the research
should be added to the standards dedicated to the technical seismicity events.

The variety of conditions encountered in practice, for example, possible slopes of pavement,
various materials, potential damage and discontinuities, and the presence of filtration processes,
requires a more careful conclusion from the case considered in this research.

Future research in this area involves investigating particular pavement construction layers and the
whole pavement structure in mutual interaction. Additionally, the transfer of traffic-induced vibrations
and their negative effects on the building structures will be examined.
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