Sustainable Management of the Red Palm Weevil: The Nexus between Farmers’ Adoption of Integrated Pest Management and Their Knowledge of Symptoms
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Study Area
2.2. Sampling Procedures
2.3. Survey Data Collection
2.4. Data Analysis
3. Results
3.1. Socioeconomic Characteristics of Farmers
3.2. Knowledge of RPW Symptoms
3.3. Adoption of IPM
3.3.1. Prevention
3.3.2. Legislative Control
3.3.3. Cultural Practices
3.3.4. Mechanical Control
3.3.5. Chemical Control
3.4. Nexus between Farmers’ Adoption of IPM and Knowledge of RPW Symptoms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sallam, A.; El-Shafie, H.; Al-Abdan, S. Influence of farming practices on infestation by red palm weevil rhynchophorus ferrugineus (olivier) in date palm: A case study. Int. Res. J. Agric. Sci. Soil Sci. 2012, 2, 370–376. [Google Scholar]
- FAOSTAT. Crop Statistics; FAO: Rome, Italy, 2019. [Google Scholar]
- Ministry of Environment, Water and Agriculture (MEWA). Annual Statistical Book; Ministry of Environment, Water and Agriculture (MEWA): Riyadh, Saudi Arabia, 2019. [Google Scholar]
- Nadeem, M.; Qureshi, T.M.; Ugulu, I.; Riaz, M.N.; An, Q.; Khan, Z.I.; Ahmad, K.; Ashfaq, A.; Bashir, H.; Dogan, Y. Mineral, vitamin and phenolic contents and sugar profiles of some prominent date palm (phoenix dactylifera) varieties of pakistan. Pak. J. Bot. 2019, 51, 171–178. [Google Scholar] [CrossRef]
- Yasin, B.R.; El-Fawal, H.A.; Mousa, S.A. Date (phoenix dactylifera) polyphenolics and other bioactive compounds: A traditional islamic remedy’s potential in prevention of cell damage, cancer therapeutics and beyond. Int. J. Mol. Sci. 2015, 16, 30075–30090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dosary, N.M.; Al-Dobai, S.; Faleiro, J.R. Review on the management of red palm weevil rhynchophorus ferrugineus olivier in date palm Phoenix dactylifera L. Emir. J. Food Agric. 2016, 34–44. [Google Scholar] [CrossRef]
- Aleid, S.M.; Al-Khayri, J.M.; Al-Bahrany, A.M. Date Palm Status and Perspective in Saudi Arabia. In Date Palm Genetic Resources and Utilization; Springer: Berlin/Heidelberg, Germany, 2015; pp. 49–95. [Google Scholar]
- Abdel-Raheem, M.; ALghamdi, H.A.; Reyad, N.F. Nano essential oils against the red palm weevil, rhynchophorus ferrugineus olivier (coleoptera: Curculionidae). Entomol. Res. 2020, 50, 215–220. [Google Scholar] [CrossRef]
- Koubaa, A.; Abdulrahman, A.; Bassel, S.; Abdullatif, H.; Mohanned, A.; Abdulrahman, S.; Hesham, A.; Adel, A.; Mohamed, A. Smart palm: An iot framework for red palm weevil early detection. Agronomy 2020, 10, 987. [Google Scholar] [CrossRef]
- AlJabr, A.M.; Hussain, A.; Rizwan-ul-Haq, M.; Al-Ayedh, H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules 2017, 22, 169. [Google Scholar] [CrossRef] [Green Version]
- Haq, I.U.; Shams, S.; Khan, S.; Khan, A.; Hameed, A. A novel report on morphological study of red palm weevil (rhynchophorus ferrugineus) from district bannu kpk, pakistan. Cogent Food Agric. 2018, 4, 1425117. [Google Scholar]
- Dembilio, Ó.; Jaques, J.A. Biology and Management of Red Palm Weevil. In Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges; Springer: Berlin/Heidelberg, Germany, 2015; pp. 13–36. [Google Scholar]
- Giblin-Davis, R.M.; Faleiro, J.R.; Jacas, J.A.; Peña, J.E.; Vidyasagar, P. Biology and management of the red palm weevil, rhynchophorus ferrugineus. In Potential Invasive Pests of Agricultural Crops; Peña, J.E., Ed.; CABI: Wallingford, UK, 2013; pp. 1–34. [Google Scholar]
- Ashry, I.; Mao, Y.; Al-Fehaid, Y.; Al-Shawaf, A.; Al-Bagshi, M.; Al-Brahim, S.; Ng, T.K.; Ooi, B.S. Early detection of red palm weevil using distributed optical sensor. Sci. Rep. 2020, 10, 3155. [Google Scholar] [CrossRef] [Green Version]
- Rasool, K.G.; Khan, M.A.; Aldawood, A.S.; Tufail, M.; Mukhtar, M.; Takeda, M. Identification of proteins modulated in the date palm stem infested with red palm weevil (rhynchophorus ferrugineus oliv.) using two dimensional differential gel electrophoresis and mass spectrometry. Int. J. Mol. Sci. 2015, 16, 19326–19346. [Google Scholar] [CrossRef] [Green Version]
- Faleiro, J.; Ferry, M.; Yaseen, T.; Al-Dobai, S. Overview of the Gaps, Challenges and Prospects of Red Palm Weevil Management. In Proceedings of the International Scientific Meeting on ‘Innovative and Sustainable Approaches to Control the Red Palm Weevil’, Bari, Italy, 23–25 October 2018; pp. 23–25. [Google Scholar]
- Zanariah, M.N.; Athirah, N.I. In-service needs for knowledge & practice and perceived innovative characteristics among frontline officers on integrated pest management extension campaign in terengganu. J. Agrobiotech. 2018, 9, 194–213. [Google Scholar]
- Hussain, A.; Rizwan-ul-Haq, M.; Al-Ayedh, H.; AlJabr, A.M. Susceptibility and immune defence mechanisms of rhynchophorus ferrugineus (olivier)(coleoptera: Curculionidae) against entomopathogenic fungal infections. Int. J. Mol. Sci. 2016, 17, 1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ayedh, H.; Hussain, A.; Rizwan-ul-Haq, M.; Al-Jabr, A.M. Status of insecticide resistance in field-collected populations of rhynchophorus ferrugineus (olivier)(coleoptera: Curculionidae). Int. J. Agric. Biol. 2016, 18, 103–110. [Google Scholar] [CrossRef]
- Mendesil, E.; Shumeta, Z.; Anderson, P.; Rämert, B. Smallholder farmers’ knowledge, perceptions and management of pea weevil in north and north-western ethiopia. Crop Prot. 2016, 81, 30–37. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Integrated pest management for sustainable intensification of agriculture in asia and africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef]
- Rossi, V.; Sperandio, G.; Caffi, T.; Simonetto, A.; Gilioli, G. Critical success factors for the adoption of decision tools in ipm. Agronomy 2019, 9, 710. [Google Scholar] [CrossRef] [Green Version]
- Sawinska, Z.; Świtek, S.; Głowicka-Wołoszyn, R.; Kowalczewski, P.Ł. Agricultural practice in poland before and after mandatory ipm implementation by the european union. Sustainability 2020, 12, 1107. [Google Scholar] [CrossRef] [Green Version]
- FAO. Proceedings of the Scientific Consultation and High-Level Meeting on Red Palm Weevil Management, Rome, Italy, 29–31 March 2017; Shoki Al-Dobai, M.E., Romeno, F., Eds.; FAO: Rome, Italy, 2017; p. 200. [Google Scholar]
- FAO. Red Palm Weevil Guidelines on Management Practices; FAO: Rome, Italy, 2020. [Google Scholar]
- Ferry, M.; Aldobai, S.; Elkakhy, H. The State of Art of the Control of the Red Palm Weevil. In Proceedings of the Sixth International Date Palm Conference, Abu Dhabi, UAE, 19–21 March 2018; pp. 19–21. [Google Scholar]
- Grasswitz, T.R. Integrated pest management (ipm) for small-scale farms in developed economies: Challenges and opportunities. Insects 2019, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Damalas, C.A. Farmers’ knowledge about common pests and pesticide safety in conventional cotton production in pakistan. Crop Prot. 2015, 77, 45–51. [Google Scholar] [CrossRef]
- Islam, A.H.M.S.; Schreinemachers, P.; Kumar, S. Farmers’ knowledge, perceptions and management of chili pepper anthracnose disease in bangladesh. Crop Prot. 2020, 133, 105139. [Google Scholar] [CrossRef]
- Munyuli, T.; Cihire, K.; Rubabura, D.; Mitima, K.; Kalimba, Y.; Tchombe, N.; Mulangane, E.K.; Birhashwira, O.; Umoja, M.; Cinyabuguma, E. Farmers′ perceptions, believes, knowledge and management practices of potato pests in south-kivu province, eastern of democratic republic of congo. Open Agric. 2017, 2, 362–385. [Google Scholar] [CrossRef]
- Nampeera, E.L.; Nonnecke, G.R.; Blodgett, S.L.; Tusiime, S.M.; Masinde, D.M.; Wesonga, J.M.; Murungi, L.K.; Baidu-Forson, J.J.; Abukutsa-Onyango, M.O. Farmers’ knowledge and practices in the management of insect pests of leafy amaranth in kenya. J. Integr. Pest Manag. 2019, 10, 31. [Google Scholar] [CrossRef]
- GAS. Demographics of Saudi Arabia; General Authority for Statistics: Riyadh, Saudi Arabia, 2019. [Google Scholar]
- GAS. Detailed Results of Agricultural Census; General Authority for Statistics: Riyadh, Saudi Arabia, 2018. [Google Scholar]
- Alqarni, S.; Babiker, A.; Salih, A. Detection, mapping and assessment change in urban and croplands area in al-hassa oasis, eastern region in saudi arabia using remote sensing and geographic information system. Int. J. Geogr. Inf. Syst. 2018, 10, 659–685. [Google Scholar] [CrossRef] [Green Version]
- PME. The Meteorology of Al-Hasa; Presidency of Meteorology and Environment: Riyadh, Saudi Arabia, 2019. [Google Scholar]
- Allbed, A.; Kumar, L.; Sinha, P. Mapping and modelling spatial variation in soil salinity in the al hassa oasis based on remote sensing indicators and regression techniques. Remote Sens. 2014, 6, 1137–1157. [Google Scholar] [CrossRef] [Green Version]
- Alhawas, I.; Hassaballa, A.A. Representation of the spatial association between salinity and water chemical properties in al-hassa oasis. Int. J. Agric. Biol. Eng. 2020, 13, 168–174. [Google Scholar]
- Singer, E.; Couper, M.P. Some methodological uses of responses to open questions and other verbatim comments in quantitative surveys. Methods Data Anal. (MDA) 2017, 11, 115–134. [Google Scholar]
- McDonald, J.H. Handbook of Biological Statistics; Sparky House Publishing: Baltimore, MD, USA, 2009; Volume 2. [Google Scholar]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Ali-Bob, M. Management of the red palm weevil rhynchophorus ferrugineus (olivier) using sustainable options in saudi arabia. Arab. J. Plant Protect. 2019, 37, 163–169. [Google Scholar] [CrossRef]
- Rach, M.M.; Gomis, H.M.; Granado, O.L.; Malumbres, M.P.; Campoy, A.M.; Martín, J.J.S. On the design of a bioacoustic sensor for the early detection of the red palm weevil. Sensors 2013, 13, 1706–1729. [Google Scholar] [CrossRef]
- Muriithi, B.W.; Gathogo, N.G.; Diiro, G.M.; Mohamed, S.A.; Ekesi, S. Potential adoption of integrated pest management strategy for suppression of mango fruit flies in east africa: An ex ante and ex post analysis in ethiopia and kenya. Agriculture 2020, 10, 278. [Google Scholar] [CrossRef]
- Massimo, P.; Alberto, R.A.; Roberto, M.; Khalid, A.-R.; Ali, A.-M. Devices to detect red palm weevil infestation on palm species. Precis. Agric. 2018, 19, 1049–1061. [Google Scholar] [CrossRef]
- Soroker, V.; Harari, A.; Faleiro, J.R. The Role of Semiochemicals in Date Pest Management. In Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges; Springer: Berlin/Heidelberg, Germany, 2015; pp. 315–346. [Google Scholar]
- Mankin, R. Towards User Friendly Early Detection Acoustic Devices and Automated Monitoring for Red Palm Weevil Management. In Proceedings of the Scientific Consultation and High-Level Meeting on Red Palm Weevil Management, Organized by FAO and CIHEAM, Rome, Italy, 29–31 March 2017; pp. 29–31. [Google Scholar]
- Cardim Ferreira Lima, M.; Damascena de Almeida Leandro, M.E.; Valero, C.; Pereira Coronel, L.C.; Gonçalves Bazzo, C.O. Automatic detection and monitoring of insect pests—A review. Agriculture 2020, 10, 161. [Google Scholar] [CrossRef]
- Mulley, M.; Kooistra, L.; Bierens, L. High-resolution multisensor remote sensing to support date palm farm management. Agriculture 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Lagos-Ortiz, K.; Salas-Zárate, M.d.P.; Paredes-Valverde, M.A.; García-Díaz, J.A.; Valencia-García, R. Agrient: A knowledge-based web platform for managing insect pests of field crops. Appl. Sci. 2020, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Steiro, Å.L.; Kvakkestad, V.; Breland, T.A.; Vatn, A. Integrated pest management adoption by grain farmers in norway: A novel index method. Crop Protect. 2020, 135, 105201. [Google Scholar] [CrossRef]
- Abd Rabou, A.F.N.; Radwan, E.S. Visual symptoms and control of the red palm weevil (rhynchophorus ferrugineus) in the gaza strip, palestine. Nusant. Biosci. 2017, 9, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [Google Scholar] [CrossRef]
- Loko, Y.L.E.; Akohonwe, J.; Toffa, J.; Orobiyi, A.; Assogba, P.; Dansi, A.; Tamò, M. Farmers knowledge, perceptions and management of kersting’s groundnut (macrotyloma geocarpum harms) insect pests in Benin. J. Basic Appl. Zool. 2019, 80, 41. [Google Scholar] [CrossRef]
- Moinina, A.; Lahlali, R.; MacLean, D.; Boulif, M. Farmers’ knowledge, perception and practices in apple pest management and climate change in the fes-meknes region, morocco. Horticulturae 2018, 4, 42. [Google Scholar] [CrossRef] [Green Version]
Farmers’ Characteristics | Number of Farmers = 183 | |
---|---|---|
Frequency | % | |
Age (Min. = 23; Max. = 85; mean = 55.08; SD = 14.53) | ||
Less than 40 years | 27 | 14.75 |
40–60 years | 90 | 49.18 |
More than 60 years | 66 | 36.07 |
Education (Min. = 0; Max. = 16; mean = 7.64; SD = 3.08) | ||
Less than 7 years | 88 | 48.08 |
7–12 years | 66 | 36.07 |
More than 12 years | 29 | 15.85 |
Main occupation | ||
Farmer | 68 | 37.16 |
Trader | 28 | 15.30 |
Craftsman | 11 | 6.01 |
Employee | 76 | 41.53 |
Farming experience (Min. = 3; Max. = 73; mean = 25.34; SD = 17.52) | ||
Less than 16 years | 63 | 34.4 |
16–30 years | 64 | 35.0 |
More than 30 years | 56 | 30.6 |
Farm size (Min. = 1; Max. = 19; mean = 6.87; SD = 4.05) | ||
Less than 6 hectares | 85 | 46.45 |
6–10 hectares | 60 | 32.79 |
More than 10 hectares | 38 | 20.76 |
Palm trees on the farm (Min. = 20; Max. = 2600; mean = 551.19; SD = 552.21) | ||
Less than 500 trees | 112 | 61.20 |
500–1500 trees | 60 | 32.79 |
More than 1500 trees | 11 | 6.01 |
Intercropping | ||
Yes | 22 | 12.02 |
No | 161 | 87.98 |
Regular contact with extension workers | ||
Yes | 58 | 31.69 |
No | 125 | 68.31 |
Membership in agricultural associations | ||
Yes | 51 | 27.86 |
No | 132 | 72.14 |
Knowledge Level | Number of Farmers = 183 | |
---|---|---|
Frequency | Percentage | |
Low (less than 4 symptoms) | 83 | 45.4 |
Moderate (4–6 symptoms) | 67 | 36.6 |
High (more than 6 symptoms) | 33 | 18 |
Practice | Adoption Level | Rank | ||
---|---|---|---|---|
Mean | SD | Within Group | Overall | |
Prevention | ||||
P1—Checking trees at regular intervals to detect early infestation | 2.13 | 1.01 | 4 | 21 |
P2—Removing offshoots as a protective measure | 2.52 | 1.07 | 2 | 12 |
P3—Removing fonds by applying pruning in the winter | 2.54 | 1.17 | 1 | 11 |
P4—Using pheromone traps to detect early infestation | 2.12 | 1.09 | 5 | 22 |
P5—Treating wounds resulted from removing frond bases and offshoots by using contact pesticides | 2.32 | 1.03 | 3 | 16 |
Legislative control | ||||
L1—Adhering to not transferring infested trees or offshoots to non-infested areas | 3.28 | 0.79 | 2 | 2 |
L2—Burning and burying the infested palm far away after cutting it into small portions | 2.30 | 1.00 | 5 | 18 |
L3—Adhering to not transferring infested palm waste to other areas | 2.85 | 1.01 | 3 | 4 |
L4—Surveying RPW-infested palms and informing authorities when necessary | 2.60 | 1.18 | 4 | 10 |
L5—Not allowing anyone to transfer infested offshoots from an infested farm | 3.43 | 0.84 | 1 | 1 |
Cultural practices | ||||
C1—Adhering to the time and depth specified for planting offshoots | 2.75 | 1.18 | 1 | 5 |
C2—Applying moderate irrigation to reduce humidity on farms | 2.67 | 1.13 | 3 | 7 |
C3—Adhering to good plowing before planting | 2.65 | 0.94 | 4 | 8 |
C4—Maintaining the recommended distance between trees | 2.69 | 1.23 | 2 | 6 |
Mechanical control | ||||
M1—Covering roots of small trees with soil to a height of 20 cm to prevent insect attacks | 2.22 | 1.06 | 5 | 20 |
M2—Removing weeds and dry trunks and disposing of them in the recommended way | 2.63 | 1.10 | 2 | 9 |
M3—Eradicating infested palms | 3.18 | 0.95 | 1 | 3 |
M4—Removing infested or dead trees and the pruning products on neglected farms | 1.96 | 0.63 | 6 | 23 |
M5—Closing all openings on the trunks of palms | 2.51 | 1.28 | 3 | 13 |
M6—Scraping infested areas until healthy tissue is exposed | 2.29 | 1.03 | 4 | 19 |
Chemical control | ||||
CH1—Spraying according to extension recommendations | 2.47 | 1.23 | 1 | 14 |
CH2—Spraying pesticides of a proper quantity and quality and within the specified time frame | 2.42 | 1.18 | 2 | 15 |
CH3—Dusting farms | 2.32 | 1.11 | 3 | 17 |
Adoption Level | Number of Farmers = 183 | |
---|---|---|
Frequency | Percentage (%) | |
Low (fewer than 50%) | 76 | 41.53 |
Moderate (50–75%) | 83 | 45.36 |
High (more than 75%) | 24 | 13.11 |
Practice | Knowledge of Symptoms | Kruskal–Wallis Test | Dunn’s Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | Moderate | High | ||||||||||
Mean | SD | Mean | SD | Mean | SD | Chi-Square | p-value | Mean Difference | Std. Error | p-Value | ||
P1 | 1.65 | 0.67 | 2.12 | 0.87 | 3.37 | 0.96 | 61.17 ** | 0.00 | L-M | −25.49 ** | 7.98 | 0.00 |
L-H | −78.08 ** | 9.99 | 0.00 | |||||||||
M-H | −52.58 ** | 10.33 | 0.00 | |||||||||
P2 | 2.01 | 0.99 | 2.70 | 0.88 | 3.40 | 0.95 | 40.99 ** | 0.00 | L-M | −33.55 ** | 8.23 | 0.00 |
L-H | −62.62 ** | 10.32 | 0.00 | |||||||||
M-H | 29.06 ** | 10.66 | 0.00 | |||||||||
P3 | 1.71 | 0.79 | 3.00 | 0.92 | 3.67 | 0.98 | 82.48 ** | 0.00 | L-M | −57.57 ** | 8.25 | 0.00 |
L-H | −82.00 ** | 10.34 | 0.00 | |||||||||
M-H | −24.42 * | 10.69 | 0.02 | |||||||||
P4 | 1.28 | 0.27 | 2.44 | 0.76 | 3.59 | 10.02 | 124.19 ** | 0.00 | L-M | −63.18 ** | 7.89 | 0.00 |
L-H | −99.87 ** | 9.89 | 0.00 | |||||||||
M-H | −36.68 ** | 10.22 | 0.00 | |||||||||
P5 | 1.80 | 0.89 | 2.68 | 0.84 | 2.91 | 10.06 | 44.38 ** | 0.00 | L-M | −46.54 ** | 8.14 | 0.00 |
L-H | −53.38 ** | 10.2 | 0.00 | |||||||||
M-H | −6.83 | 10.54 | 0.51 | |||||||||
L1 | 2.86 | 0.66 | 3.48 | 0.59 | 3.93 | 0.83 | 49.03 ** | 0.00 | L-M | −39.58 ** | 7.77 | 0.00 |
L-H | −61.40 ** | 9.73 | 0.00 | |||||||||
M-H | −21.81 * | 10.06 | 0.03 | |||||||||
L2 | 1.50 | 0.50 | 2.79 | 0.72 | 3.29 | 0.92 | 107.90 ** | 0.00 | L-M | −69.36 ** | 8.10 | 0.00 |
L-H | −86.79 ** | 10.15 | 0.00 | |||||||||
M-H | −17.42 | 10.49 | 0.09 | |||||||||
L3 | 2.28 | 0.97 | 3.20 | 0.79 | 3.56 | 0.70 | 49.14 ** | 0.00 | L-M | −44.81 ** | 8.08 | 0.00 |
L-H | −60.57 ** | 10.12 | 0.00 | |||||||||
M-H | −15.75 | 10.46 | 0.13 | |||||||||
L4 | 1.71 | 0.88 | 2.98 | 0.68 | 4.09 | 0.64 | 103.94 ** | 0.00 | L-M | −56.24 ** | 8.25 | 0.00 |
L-H | −98.74 ** | 10.34 | 0.00 | |||||||||
M-H | −42.22 ** | 10.69 | 0.00 | |||||||||
L5 | 3.10 | 0.78 | 3.50 | 0.69 | 4.12 | 0.79 | 35.75 ** | 0.00 | L-M | −22.86 ** | 7.52 | 0.00 |
L-H | −55.57 ** | 9.42 | 0.00 | |||||||||
M-H | −32.71 ** | 9.74 | 0.00 | |||||||||
C1 | 1.91 | 0.98 | 3.30 | 0.77 | 3.78 | 0.85 | 79.38 ** | 0.00 | L-M | −58.56 ** | 8.20 | 0.00 |
L-H | −77.39 ** | 10.28 | 0.00 | |||||||||
M-H | −18.83 | 10.62 | 0.07 | |||||||||
C2 | 2.00 | 0.89 | 3.04 | 0.90 | 3.63 | 10.09 | 58.05 ** | 0.00 | L-M | −48.19 ** | 8.28 | 0.00 |
L-H | −69.21 ** | 10.37 | 0.00 | |||||||||
M-H | −21.02 | 10.72 | 0.15 | |||||||||
C3 | 2.25 | 0.96 | 3.02 | 0.84 | 2.91 | 0.67 | 26.24 ** | 0.00 | L-M | −31.60 ** | 10.16 | 0.00 |
L-H | −39.84 ** | 8.11 | 0.00 | |||||||||
M-H | 8.24 | 10.50 | 0.43 | |||||||||
C4 | 1.71 | 0.88 | 3.22 | 0.65 | 4.05 | 0.88 | 104.26 ** | 0.00 | L-M | −63.83 ** | 8.27 | 0.00 |
L-H | −93.34 ** | 10.37 | 0.00 | |||||||||
M-H | −29.50 ** | 10.71 | 0.00 | |||||||||
M1 | 1.28 | 0.19 | 2.48 | 0.15 | 4.09 | 0.56 | 174.38 ** | 0.00 | L-M | −72.07 ** | 8.05 | 0.00 |
L-H | −123.69 ** | 10.08 | 0.00 | |||||||||
M-H | −51.56 ** | 10.42 | 0.00 | |||||||||
M2 | 1.97 | 0.95 | 2.96 | 0.80 | 3.63 | 0.90 | 61.53 ** | 0.00 | L-M | −46.64 ** | 8.26 | 0.00 |
L-H | −73.49 ** | 10.35 | 0.00 | |||||||||
M-H | −26.85 ** | 10.69 | 0.01 | |||||||||
M3 | 2.37 | 0.60 | 3.65 | 0.39 | 4.28 | 0.70 | 130.05 ** | 0.00 | L-M | −71.94 ** | 8.01 | 0.00 |
L-H | −98.23 ** | 10.04 | 0.00 | |||||||||
M-H | −26.29 ** | 10.38 | 0.01 | |||||||||
M4 | 1.55 | 0.53 | 2.25 | 0.49 | 2.38 | 0.48 | 64.39 ** | 0.00 | L-M | −51.41 ** | 7.50 | 0.00 |
L-H | −59.60 ** | 9.39 | 0.00 | |||||||||
M-H | −8.18 | 9.71 | 0.39 | |||||||||
M5 | 1.26 | 0.13 | 3.24 | 0.69 | 4.16 | 0.59 | 161.87 ** | 0.00 | L-M | −81.34 ** | 8.13 | 0.00 |
L-H | −111.15 ** | 10.18 | 0.00 | |||||||||
M-H | −29.81 | 10.52 | 0.00 | |||||||||
M6 | 1.74 | 0.91 | 2.61 | 0.86 | 3.03 | 0.93 | 50.21 ** | 0.00 | L-M | −45.03 ** | 8.13 | 0.00 |
L-H | −62.29 ** | 10.19 | 0.00 | |||||||||
M-H | −17.26 | 10.53 | 0.1 | |||||||||
CH1 | 1.28 | 0.27 | 3.26 | 0.61 | 3.86 | 0.84 | 154.32 ** | 0.00 | L-M | −83.90 ** | 8.11 | 0.00 |
L-H | −102.80 ** | 10.16 | 0.00 | |||||||||
M-H | −18.89 | 10.50 | 0.07 | |||||||||
CH2 | 1.32 | 0.40 | 3.22 | 0.65 | 3.56 | 0.89 | 143.85 ** | 0.00 | L-M | −84.84 ** | 8.15 | 0.00 |
L-H | −94.79 ** | 10.21 | 0.00 | |||||||||
M-H | −9.95 | 10.55 | 0.34 | |||||||||
CH3 | 1.32 | 0.35 | 3.07 | 0.66 | 3.33 | 0.97 | 143.02 ** | 0.00 | L-M | −86.20 ** | 8.15 | 0.00 |
L-H | −91.92 ** | 10.22 | 0.00 | |||||||||
M-H | −5.72 | 10.56 | 0.58 |
Knowledge Level of Symptoms | Adoption Level | Total | Kendall’s Correlation Coefficient | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | Moderate | High | ||||||||
Freq. | % | Freq. | % | Freq. | % | Freq. | % | |||
Low | 73 | 96.1 | 10 | 12.0 | 0 | 0.0 | 83 | 45.5 | 0.81 ** | 0.00 |
Moderate | 3 | 3.9 | 58 | 69.9 | 6 | 25 | 67 | 36.6 | ||
High | 0 | 0.0 | 15 | 18.1 | 18 | 75.0 | 33 | 18.0 | ||
Total | 76 | 100 | 83 | 100 | 24 | 100 | 183 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassem, H.S.; Alotaibi, B.A.; Ahmed, A.; Aldosri, F.O. Sustainable Management of the Red Palm Weevil: The Nexus between Farmers’ Adoption of Integrated Pest Management and Their Knowledge of Symptoms. Sustainability 2020, 12, 9647. https://doi.org/10.3390/su12229647
Kassem HS, Alotaibi BA, Ahmed A, Aldosri FO. Sustainable Management of the Red Palm Weevil: The Nexus between Farmers’ Adoption of Integrated Pest Management and Their Knowledge of Symptoms. Sustainability. 2020; 12(22):9647. https://doi.org/10.3390/su12229647
Chicago/Turabian StyleKassem, Hazem S., Bader Alhafi Alotaibi, Ali Ahmed, and Fahd O. Aldosri. 2020. "Sustainable Management of the Red Palm Weevil: The Nexus between Farmers’ Adoption of Integrated Pest Management and Their Knowledge of Symptoms" Sustainability 12, no. 22: 9647. https://doi.org/10.3390/su12229647
APA StyleKassem, H. S., Alotaibi, B. A., Ahmed, A., & Aldosri, F. O. (2020). Sustainable Management of the Red Palm Weevil: The Nexus between Farmers’ Adoption of Integrated Pest Management and Their Knowledge of Symptoms. Sustainability, 12(22), 9647. https://doi.org/10.3390/su12229647