The Influence of Urban Climate on Bioclimatic Conditions in the City of Iași, Romania
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
4. Results and Discussion
4.1. General Characteristics of Iași Urban Heat Island
4.2. Thermo-Hygrometric Index (THI)
4.2.1. Annual Characteristics of THI
4.2.2. Monthly Characteristics of THI
4.2.3. Daily Characteristics of THI
4.3. Relative Strain Index (RSI)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jáuregui, E. Urban bioclimatology in developing countries. Experientia 1993, 49, 964–968. [Google Scholar] [CrossRef]
- Xue, J.; You, R.; Liu, W.; Chen, C.; Lai, D. Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review. Sustainability 2020, 12, 8083. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Varquez, A.C.G.; Kanda, M. High-resolution global urban growth projection based on multiple applications of the SLEUTH urban growth model. Sci. Data 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Steinecke, K. Urban climatological studies in the Reykjaík subarctic environment, Iceland. Atmos. Environ. 1999, 33, 4157–4162. [Google Scholar] [CrossRef]
- Sajani, S.Z.; Tibaldi, S.; Scotto, F.; Lauriola, P. Bioclimatic characterisation of an urban area: A case study in Bologna (Italy). Int. J. Biometeorol. 2008, 52, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Pearlmutter, D.; Jiao, D.; Garb, Y. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. Int. J. Biometeorol. 2014, 58, 2111–2127. [Google Scholar] [CrossRef]
- Basarin, B.; Lukić, T.; Matzarakis, A. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia. Int. J. Biometeorol. 2015, 60, 139–150. [Google Scholar] [CrossRef]
- Toy, S.; Yilmaz, S.; Yilmaz, H. Determination of bioclimatic comfort in three different land uses in the city of Erzurum, Turkey. Build. Environ. 2007, 42, 1315–1318. [Google Scholar] [CrossRef]
- De Garín, A.; Bejaran, R. Mortality rate and relative strain index in Buenos Aires city. Int. J. Biometeorol. 2003, 48, 31–36. [Google Scholar] [CrossRef]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N.A. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int. J. Biometeorol. 2010, 54, 319–334. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.-L.; Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Matzarakis, A.; Fröhlich, D. Sport events and climate for visitors—The case of FIFA World Cup in Qatar 2022. Int. J. Biometeorol. 2015, 59, 481–486. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, D.; Hou, Y.; Du, J.; Liu, Z.; Zhang, G.; Shi, L. Outdoor Thermal Comfort of Urban Park—A Case Study. Sustainability 2020, 12, 1961. [Google Scholar] [CrossRef] [Green Version]
- Medina-Ramón, M.; Zanobetti, A.; Cavanagh, D.P.; Schwartz, J. Extreme Temperatures and Mortality: Assessing Effect Modification by Personal Characteristics and Specific Cause of Death in a Multi-City Case-Only Analysis. Environ. Health Perspect. 2006, 114, 1331–1336. [Google Scholar] [CrossRef]
- Mozaffarieh, M.; Gasio, P.F.; Schötzau, A.; Orgül, S.; Flammer, J.; Kräuchi, K. Thermal discomfort with cold extremities in relation to age, gender, and body mass index in a random sample of a Swiss urban population. Popul. Health Metrics 2010, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Mayer, H. The extreme heat wave in Athens in July 1987 from the point of view of human biometeorology. Atmos. Environ. Part B. Urban Atmos. 1991, 25, 203–211. [Google Scholar] [CrossRef]
- Muthers, S.; Laschewski, G.; Matzarakis, A. The Summers 2003 and 2015 in South-West Germany: Heat Waves and Heat-Related Mortality in the Context of Climate Change. Atmosphere 2017, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Sofroni, V.; Puţuntică, A.; Sfîcă, L.; Ichim, P. The cold wave of the 25 January–18 February 2012 period on the territory of the Republic of Moldova. Present Environ. Sustain. Dev. 2013, 7, 5–11. [Google Scholar]
- Croitoru, A.E.; Piticar, A.; Sfîcă, L.; Roșca, C.-F.; Tudose, T.; Horvath, C.; Ionuț, M.; Ciupertea, A.-F.; Scripcă, S.; Harpa, G. Extreme Temperature and Precipitation Events in Romania; The Romanian Academy: Bucharest, Romania, 2018; ISBN 978-973-27-2833-8. [Google Scholar]
- Zaninović, K. Limits of warm and cold bioclimatic stress in different climatic regions. Theor. Appl. Clim. 1992, 45, 65–70. [Google Scholar] [CrossRef]
- Zhu, Z.; Liang, J.; Sun, C.; Han, Y. Summer Outdoor Thermal Comfort in Urban Commercial Pedestrian Streets in Severe Cold Regions of China. Sustainability 2020, 12, 1876. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.; Cheng, V. Urban human thermal comfort in hot and humid Hong Kong. Energy Build. 2012, 55, 51–65. [Google Scholar] [CrossRef]
- Dobrinescu, A.; Busuioc, A.; Birsan, M.; Dumitrescu, A.; Orzan, A. Changes in thermal discomfort indices in Romania and their connections with large-scale mechanisms. Clim. Res. 2015, 64, 213–226. [Google Scholar] [CrossRef]
- Ciobotaru, A.-M.; Andronache, I.; Dey, N.; Petralli, M.; Daneshvar, M.R.M.; Wang, Q.; Radulovic, M.; Pintilii, R.-D. Temperature-Humidity Index described by fractal Higuchi Dimension affects tourism activity in the urban environment of Focşani City (Romania). Theor. Appl. Clim. 2019, 136, 1009–1019. [Google Scholar] [CrossRef]
- Ionac, N.; Ciulache, S. The bioclimatic stress in Dobrudja. Present Environ. Sustain. Dev. 2007, 1, 168–178. [Google Scholar]
- Grigore, E.; Bogan, E.; Cristea, M.-A.; Tatu, F. The thermo-hygrometric index on the territory of the southern Dobrogea plateau—A component of the balneoclimateric treatment. Present Environ. Sustain. Dev. 2020, 14. [Google Scholar] [CrossRef]
- Ionac, N.; Ciulache, S. Bioclimatic considerations on the Moldavian Plain (article in Romanian). In Proceedings of the Geographic seminar “D. Cantemir”, Bucharest, Romania, 27–29 October 2004; Volume 25, pp. 20–29. [Google Scholar]
- Teodoreanu, E. Thermal Comfort Index. Present Environ. Sustain. Dev. 2016, 10, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Mihăilă, D.; Bistricean, P.-I.; Briciu, A.-E. Assessment of the climate potential for tourism. Case study: The North-East Development Region of Romania. Theor. Appl. Clim. 2018, 137, 601–622. [Google Scholar] [CrossRef]
- Géczi, R. Human bioclimatological features of Cluj, Acta Universitatis Lodziensis. Folia Geograph. 1998, 3, 135–144. [Google Scholar]
- Alexe, C. Some thermic differences in the southern metropolitan area of Iași. Present Environ. Sustain. Dev. 2012, 6, 377–393. [Google Scholar]
- Sfîcă, L.; Ichim, P.; Apostol, L.; Ursu, A. The extent and intensity of the urban heat island in Iași city, Romania. Theor. Appl. Clim. 2018, 134, 777–791. [Google Scholar] [CrossRef]
- Apostol, L.; Alexe, C.; Sfîcă, L. Thermic differenciations in the Iași Municipality during a heat wave. Case Study July 10–20 2011. Present Environ. Sustain. Dev. 2012, 6, 395–404. [Google Scholar]
- Ichim, P.; Sfîcă, L.; Kadhim-Abid, A.; Ursu, A.; Jitariu, V. Characteristics of Nocturnal Urban Heat Island of Iaşi During a Summer Heat Wave (1–6 of August 2017). Air Water Compon. Environ. 2018. [Google Scholar] [CrossRef] [Green Version]
- Sfîcă, L.; Croitoru, A.-E.; Iordache, I.; Ciupertea, A.-F. Synoptic Conditions Generating Heat Waves and Warm Spells in Romania. Atmosphere 2017, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Roșu, L. The urban transformations of a post-socialist city centre. The socialist relicts and current identity of Iași historical city centre. Lucrările Seminarului Geografic Dimitrie Cantemir 2015, 40, 159–170. [Google Scholar] [CrossRef]
- Ursu, A.; Andrei, M.; Chelaru, D.A.; Ichim, P. Built-Up Area Change Analysis in Iasi City Using GIS. Present Environ. Sustain. Dev. 2016, 10, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Bulai, A.-T.; Roşu, L.; Bănică, A. Patterns of urban fire occurence in Iasi City (Romania). Present Environ. Sustain. Dev. 2019, 13. [Google Scholar] [CrossRef]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Piticar, A.; Ristoiu, D. Analysis of air temperature evolution in northeastern Romania and evidence of warming trend. Carpathian J. Earth Environ. Sci. 2012, 7, 97–106. [Google Scholar]
- Tiron, M. Consideration on the atmospheric precipitations in the central plateau of Moldavia. Present Environ. Sustain. Dev. 2019, 13. [Google Scholar] [CrossRef]
- SYNOP Hourly Data. Available online: meteomanz.com (accessed on 10 July 2020).
- Kyle, W.J. Summer and winter patterns of human thermal stress in Hong Kong. In Proceedings of the 2nd International Conference on East Asia and Western Pacific Meteorology and Climate, Hong Kong, China, 7–10 September 1992; Kyle, W.J., Chang, C.P., Eds.; World Scientific: Singapore, 1992; pp. 575–583. [Google Scholar]
- Thom, E.C. The Discomfort Index. Weather 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Unger, J. Comparisons of urban and rural bioclimatological conditions in the case of a Central-European city. Int. J. Biometeorol. 1999, 43, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Asghari, M.; Ghalhari, G.F.; Abbasinia, M.; Shakeri, F.; Tajik, R.; Ghannadzadeh, M.J. Feasibility of Relative Strain Index (RSI) for the Assessment of Heat Stress in Outdoor Environments: Case Study in Three Different Climates of Iran. Open Ecol. J. 2020, 13, 11–18. [Google Scholar] [CrossRef]
- Ionac, N. The Heat stress in Moldavian Counties. In Proceedings of the Geographic Seminar “D. Cantemir”, Bucharest, Romania, 28–29 October 2005; Volume 26, pp. 53–60. [Google Scholar]
- Prudhomme, C.; Reed, D. Mapping extreme rainfall in a mountainous region using geostatistical techniques: A case study in Scotland. Int. J. Climatol. 1999, 19, 1337–1356. [Google Scholar] [CrossRef]
- Patriche, C.V. Statistical Methods Applied in Climatology; Terra Nostra: Iaşi, Romania, 2009. (In Romanian) [Google Scholar]
- Minea, I. The evaluation of the water chemistry and quality for the lakes from the south of the Hilly Plain of Jijia (Bahlui drainage basin). Rom. J. Limnol. Lakes Reserv. Ponds 2010, 4, 131–144. [Google Scholar]
- Cheval, S.; Popa, A.-M.; Șandric, I.; Iojă, I.-C. Exploratory analysis of cooling effect of urban lakes on land surface temperature in Bucharest (Romania) using Landsat imagery. Urban Clim. 2020, 34, 100696. [Google Scholar] [CrossRef]
- Ichim, P.; Apostol, L.; Sfîcă, L.; Kadhim-Abid, A.-L.; Istrate, V. Frequency of Thermal Inversions Between Siret and Prut Rivers in 2013. Present Environ. Sustain. Dev. 2014, 8, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Toy, S.; Yilmaz, S. Evaluation of Urban-Rural Bioclimatic Comfort Differences over a Ten-Year Period in the Sample of Erzincan City Reconstructed after a Heavy Earthquake. Atmósfera 2010, 23, 387–402. [Google Scholar]
- Alessandro, A.P.; De Garín, A.B. A study on predictability of human physiological strain in Buenos Aires City. Meteorol. Appl. 2003, 10, 263–271. [Google Scholar] [CrossRef]
- Ap, A.; Ao, N.; Om, E.; Ks, P.; Oo, A. An Assessment of Effective Temperature, Relative Strain Index and Dew Point Temperature Over Southwest Nigeria. J. Clim. Weather Forecast. 2017, 5, 192. [Google Scholar] [CrossRef] [Green Version]
THI Category | THI Values (°C) |
---|---|
Extremely cold | −19.9 to −10.0 |
Very cold | −9.9 to −1.8 |
Cold | −1.7 to 12.9 |
Cool | 13.0 to 14.9 |
Comfortable | 15.0 to 19.9 |
Hot | 20.0 to 26.4 |
Very Hot | 26.5 to 29.9 |
Torrid | >30.0 |
RSI Values after Kyle 1992 | Proportion of Persons Unstress/Distress (%) | Bioclimatic Comfort/Discomfort |
---|---|---|
0 to 0.10 | 100 unstressed | Bioclimatic comfort |
0.10 to 0.20 | 75 unstressed | Bioclimatic discomfort for more sensitive persons 1 |
0.20 to 0.30 | 0 unstressed | Bioclimatic discomfort for more than 50% of the population |
0.30 to 0.40 | 75 distressed | Overheating risk for more than 50% of the population |
0.40 to 0.50 | 100 distressed | Heat-stroke risk for all population |
Winter | January | Spring | April | Summer | July | Autumn | October | Cold Season | Warm Season | Annual | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T mean | Urban | 0.2 | −1.7 | 12.4 | 12.8 | 22.7 | 23 | 11.9 | 11.1 | 4.1 | 19.5 | 11.8 |
Rural | −0.4 | −2.3 | 11.9 | 12.3 | 22.1 | 22.4 | 11.3 | 10.5 | 3.5 | 18.9 | 11.2 | |
Diff | 0.6 | 0.6 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | |
T max | Urban | 20.7 | 12.8 | 33.5 | 32.8 | 39.9 | 39.4 | 38.9 | 29.7 | 29.7 | 39.9 | 39.9 |
OPs | 3.0 | 3 | 3.0 | 2 | 3.0 | 3 | 3.0 | 3 | 3 | 3 | 3 | |
Rural | 20.7 | 12.1 | 34.2 | 32.1 | 39.3 | 38.4 | 38.1 | 29.7 | 29.7 | 39.3 | 39.3 | |
OPs | 7.0 | 6 | 6.0 | 6 | 6.0 | 6 | 3.0 | 6 | 6 | 6 | 6 | |
Diff | 0.0 | 0.7 | −0.7 | 0.7 | 0.6 | 1 | 0.8 | 0 | 0 | 0.6 | 0.6 | |
T min | Urban | −22.8 | −21.5 | −16.3 | −4.1 | 6.1 | 10.1 | −12.2 | −6.2 | −22.8 | −4.1 | −22.8 |
OPs | 5.0 | 5 | 5.0 | 5 | 5.0 | 5 | 3.0 | 5 | 5 | 5 | 5 | |
Rural | −22.8 | −22.8 | −19.3 | −4.2 | 6.3 | 9.2 | −12.3 | −5.2 | −22.8 | −4.2 | −22.8 | |
OPs | 6.0 | 6 | 7.0 | 6 | 7.0 | 9 | 9.0 | 9 | 6 | 6 | 6 | |
Diff | 0.0 | 1.3 | 3.0 | 0.2 | −0.2 | 0.9 | 0.1 | −1 | 0 | −0.1 | 0 |
Winter | January | Spring | April | Summer | July | Autumn | October | Cold Season | Warm Season | Annual | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RHmean | Urban | 83.9 | 84.7 | 66.6 | 63.7 | 64.7 | 65.1 | 73.6 | 75.0 | 79.9 | 64.5 | 72.2 |
Rural | 86.4 | 87.0 | 69.4 | 66.3 | 68.9 | 69.5 | 76.9 | 78.5 | 82.5 | 68.3 | 75.4 | |
Diff | −2.6 | −2.3 | −2.8 | −2.6 | −4.2 | −4.4 | −3.3 | −3.5 | −2.7 | −3.8 | −3.2 | |
RHmax | Urban | 98.9 | 98.9 | 97.2 | 96.6 | 97.1 | 97.1 | 98.5 | 98.1 | 98.9 | 97.1 | 98.9 |
OPs | 2 | 2 | 2 | 2 | 5 | 5 | 2 | 5 | 2 | 5 | 2 | |
Rural | 99.1 | 99 | 98.5 | 98.2 | 98.7 | 98 | 99 | 99 | 99.1 | 98.7 | 99.1 | |
OPs | 6 | 6 | 6 | 6 | 6 | 7 | 6 | 6 | 6 | 6 | 6 | |
Diff | −0.2 | −0.1 | −1.3 | −1.6 | −1.6 | −0.9 | −0.5 | −0.9 | −0.2 | −1.6 | −0.2 | |
RHmin | Urban | 42.1 | 46.2 | 21.8 | 21.8 | 22 | 25.1 | 23.8 | 30.8 | 42.1 | 21.8 | 21.8 |
OPs | 2 | 3 | 2 | 2 | 5 | 1 | 5 | 3 | 2 | 2 | 2 | |
Rural | 38.9 | 42.1 | 19.6 | 19.6 | 20.1 | 25.3 | 22.1 | 26.3 | 38.9 | 19.6 | 19.6 | |
OPs | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
Diff | 3.2 | 4.1 | 2.2 | 2.2 | 1.9 | -0.2 | 1.7 | 4.5 | 3.2 | 2.2 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichim, P.; Sfîcă, L. The Influence of Urban Climate on Bioclimatic Conditions in the City of Iași, Romania. Sustainability 2020, 12, 9652. https://doi.org/10.3390/su12229652
Ichim P, Sfîcă L. The Influence of Urban Climate on Bioclimatic Conditions in the City of Iași, Romania. Sustainability. 2020; 12(22):9652. https://doi.org/10.3390/su12229652
Chicago/Turabian StyleIchim, Pavel, and Lucian Sfîcă. 2020. "The Influence of Urban Climate on Bioclimatic Conditions in the City of Iași, Romania" Sustainability 12, no. 22: 9652. https://doi.org/10.3390/su12229652
APA StyleIchim, P., & Sfîcă, L. (2020). The Influence of Urban Climate on Bioclimatic Conditions in the City of Iași, Romania. Sustainability, 12(22), 9652. https://doi.org/10.3390/su12229652