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Abstract: Considering the serious challenges our planet is facing, the building environment and
construction sector must minimize their high negative impacts and maximize their contribution
to sustainability. Many alternatives could promote this change, but to effectively optimize our
architecture, we must take the step of quantifying and qualifying the sustainability of our constructions
by choosing the best assessment alternative in each case. Many assessment methodologies and
tools exist and there have been numerous reviews of them. The main objective and novelty of this
review is to present an updated critical overview of all the sustainability evaluation alternatives
developed in research studies in the fields of architectural design, construction, refurbishment and
restoration. To achieve this, the analysis follows a specific methodology based on recent similar
reviews. The result is a database with 1242 eligible documents analyzed in this review and attached
as supplementary material available for future studies. As a main conclusion, rating tools and life
cycle methods were found to be the most commonly applied methodologies, while the most recent
tendencies use combined methods and probabilistic scenarios. This review could be useful to move
towards a more sustainable building environment.

Keywords: building sustainability assessment systems (BSAS); green buildings; rating tools; life cycle
assessment (LCA); multi-criteria decision making (MCDM); life cycle cost (LCC); building environment

1. Introduction

In response to the serious current environmental problems at a global level [1], the building
environment and its sector could contribute to mitigating their own high negative impacts [2] and
move towards a less polluting model [3]. Architecture design and construction have a long history that
contains numerous examples of low environmental impact buildings, from vernacular architecture [4]
to more recent examples such as Gaudi’s waste-based architecture [5]. These past eco-friendly solutions
have been both cost-effective and socially respectful. They would be sustainable according to the
current holistic definition of sustainability, provided by the Brundtland Commission report [6] and
following studies [7] that have included economic, social and environmental areas. Some later research
projects have addressed technical [8], governance [9] or cultural factors, among others [10]. At present,
there are numerous sustainable architectural designs that result from using building information
modeling (BIM; Appendix A presents a complete list of abbreviations in Table A1) [11], incorporating
intelligent façade layers [12], passive energy solutions [13], nearly zero-energy buildings [14], the use
of recycled construction materials [15] and vertical farming [16], among others.

To choose the best design for each case from all these interesting options, decision makers need
strategies to evaluate and rank the sustainability of potential solutions and measures [17]. There are
numerous alternatives, from compulsory standards [18] to sophisticated methodologies developed
for a particular case study [19]. In between are numerous recognized tools and methodologies [20].
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These may be holistic if they assess all branches, for example most rating tools [21], or partial if they
assess only one branch, for example energy simulations combined with a life cycle assessment (LCA)
that focuses mainly on the environmental requirement [22].

Nevertheless, to decide which assessment tools should be applied in each case, it would be
useful to have a critical review of academic studies on these assessment strategies. Most reviews
have focused on a specific type of assessment alternative such as simulation optimizations to achieve
green buildings [23], LCA for building rehabilitation [24,25], the carbon emissions of buildings [26],
multi-criteria decision making (MCDM) methods for the construction sector [27] and rating tools [28–32].
Consequently, there is lack of reviews that compare all available sustainability assessment approaches.
The most comprehensive reviews exclusively study holistic sustainability assessments [21] or focus on
specific topics such as the resilience of off-site construction [33].

These studies have contributed significantly to advancing towards a more sustainable building
environment. To continue to move forward, this review aims to present an updated analysis of
all the alternatives that are available to assess sustainable architecture and its design, construction,
refurbishment and restoration, including holistic and partial approaches. To the best of the authors’
knowledge, this is the first review that has this scope and perspective. The study is expected to be
useful for decision makers to identify available assessment approaches, choose the best option for
analyzing alternatives that improve the building environment’s sustainability, and therefore apply the
best alternative and contribute to improving sustainability at global level. This report achieves this
by means of two analytic levels. The first evaluates studies on sustainable architecture assessment in
general, while the second focuses on sustainable design, construction, refurbishment and restoration.
The next section explains in depth the methodology followed to carry out this review. Section 3 shows
the results, Section 4 contains a discussion of outcomes and Section 5 describes the conclusions.

2. Methodology

The methodologies used in similar reviews were considered in this study [21,27]. Figure 1 presents
the steps that were followed.
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The first step (S1) was to organize the review into four subphases. In the first subphase, the review
topic, subtopic, format and the boundaries of the studies that were to be included were defined. In the
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second phase, the databases were defined, and the main and complementary databases were selected.
The main database was the first to be searched and its results were used as the basis of the review,
while the complementary databases added to and confirmed the main database results. In searches
of the complementary databases, duplicates were eliminated and, progressively, negative keywords
were applied according to the previous results. Then, the researchers defined the searches to be
carried out and the exact search keywords. They considered the possibility of using other specific
search options available in the database. Finally, the fourth phase defined the search procedure for
each database, which meant defining limits in the maximum number of studies analyzed in each
database and, if applicable, the order of priority when reviewing them. Section 3.1 explains in detail
the results of applying this phase in state-of-the-art studies. The possibility of searching more articles
from references within each article was also considered in this subphase. In the second step (S2),
the eligibility of studies obtained from the search was analyzed by identifying the outliers that were
beyond the boundaries defined in the first step. Step S3 classified these studies depending on their
general topic and detected studies that were most closely related to the specific topic of this review.
Then, the fourth step (S4) focused on a general analysis of eligible studies, considering chronological
and basic information. Consequently, the eligible studies were also classified depending on how each
related to the main objective of this review. Finally, the most closely related studies were assessed
in detail. The assessment was mainly based on the abstracts and basic information. The following
five research features were considered: (a) general approach, (b) research location, (c) specific topic,
(d) application and (e) assessment type, phase and alternative.

3. Results

This section presents the results of the review’s five steps while the following section presents the
analysis carried out in the last two steps, which were presented in Figure 1.

3.1. Preparation

The research review’s main topic is based on the Section 1: sustainability assessment of
architectural design, construction, refurbishment and restoration. The topic is divided into four
subtopics: (St1) sustainability assessment (SA) in design; (St2) SA in construction; (St3) SA in
refurbishment; and (St4) SA in restoration. The limits of the topic and subtopics are established by
the design scale. Thus, studies at the scale of buildings are most closely related to the review topic.
Articles that are less closely related to the search topic are focused on:

- a larger scale, for example urban planning and landscape;
- a smaller scale, for example materials.

Studies included in the search are in the format of academic studies including research articles,
congress papers, books and book chapters. Other contributions, such as patents, citations and entire
congresses or special issues, are not included.

The main database was the Web of Science Core Collection database [34] as the review was focused
on academic studies, and the results of this search are more limited and could be more completely
studied with the available resources. The complementary databases that were consulted were first
Google Scholar [35] and second Scopus [36]. These databases were selected considering the existing
reviews mentioned in the above sections.

Searches and their keywords in this review were defined considering the aforementioned topics
and subtopics and the general results obtained using the main database. The objective was to obtain
from the main database over 100 results per subtopic by using the aforementioned subtopic title as
keywords or synonyms, and up to three trials. Table 1 presents the resulting keywords that were
selected. The definition of these research words also took into account similar previous reviews
and related technical literature in the general field of architecture [37,38] and in the specific fields of
construction [26,39], refurbishment [40,41] and restoration [42]. Thus, St1 included architecture and its
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design, considering the holistic approach to architecture from the Vitruvian Triad approach [43] and its
conception process. St2 considered the building sector, construction and technologies of architecture
and buildings and, therefore, focused on the technical part of architecture, on the “firmitas” part of
the aforementioned Triad [43]. Both St3 and St4 addressed the renovation of buildings, and focused
on sustainable retrofitting, rehabilitation and refurbishment of existing buildings [44] in the case of
St3, while St4 centered on the sustainability of historical and heritage architecture [45]. The authors
decided not to use other search options, such as the root of the family word and the symbol asterisk,
because the keywords were clear as a whole word from the outset, and the resulting academic studies
were consistent with the research project. Furthermore, due to the number of results, references within
the articles were not searched in depth to find more articles.

Table 1. Search and keywords definition.

Topic Search Keywords NRMD 1

St1
St1a Sustainability + assessment + architecture 332
St1b Sustainability + assessment + architecture + review 50
St1c Sustainability + assessment + architecture + design 201

St2
St2a Sustainability + assessment + architecture + building sector 28
St2b Sustainability + assessment + construction + buildings + architecture 89
St2c Sustainability + assessment + construction + buildings + technologies 184

St3
St3a Sustainability + assessment + refurbishment + buildings 85
St3b Sustainability + assessment + refurbishment + architecture 5
St3c Sustainability + assessment + retrofitting + architecture 11

St4
St4a Sustainability + assessment + restoration + buildings 36
St4b Sustainability + assessment + restoration + architecture 8
St4c Sustainability + assessment + renovation + architecture 9

1 Number of results in the main database. Legend: St1: subtopic one, which is sustainability assessment (SA) in
architecture; St2: subtopic two, which is SA in construction; St3: subtopic three, which is SA in refurbishment;
and St4: subtopic four, which is SA in restoration.

The search procedure was defined as follows. First, the search in the main database was carried
out and all the results were considered. Then, the searches were carried out in the complementary
databases, considering up to the first 100 most relevant studies only. When the secondary databases
were searched, the results that were added dropped to below 10% in the first secondary database and
1% in the last database.

3.2. Identification

The searches were carried out from July to October 2020. The results are depicted in Table 2.
The total results were 2859 studies, from which 53 were directly discarded because they did not meet
the format of documents included in this research, as explained in Section 3.1. Then, after detecting
duplicates, the sample of 1535 documents was defined.

From these 1535 results, 293 were discarded because they were outside the boundaries of the
research review. Out of these discarded documents, 71% were about sustainability but not about
architecture, as they focused on industrial products and civil works, among others. A further 14%
were about architecture but not about sustainability, 8% did not meet important criteria such as having
an abstract in the English language, and 7% had no connection with the topics in this review.



Sustainability 2020, 12, 9741 5 of 18

Table 2. Results from the searches.

Topic Search
No. of Results in Databases No. of New Results in Databases

Main 1st cmp. 2nd cmp. Main 1st cmp. 2nd cmp.

St1
St1a 332 100 100 94 86 34
St1b 50 100 37 49 73 12
St1c 201 100 100 117 43 29

St2
St2a 28 100 31 6 67 12
St2b 89 100 100 70 37 27
St2c 184 100 100 161 54 49

St3
St3a 85 100 72 84 58 23
St3b 5 100 7 0 50 1
St3c 11 100 7 0 71 2

St4
St4a 36 100 44 22 67 18
St4b 8 100 10 0 56 1
St4c 9 100 13 0 61 1

Totals
1038 1200 621 603 723 209

2859 1535

Legend: St1: subtopic one, which is sustainability assessment (SA) in architecture; St2: subtopic two, which is SA in
construction; St3: subtopic three, which is SA in refurbishment; and St4: subtopic four, which is SA in restoration.
No.: number; cmp.: complementary.

3.3. Classification

The 1242 eligible research documents about sustainable architecture were classified according to
their general topic into the following 10 subgroups:

(1) Buildings and its design: 381 documents
(2) Refurbishment and restoration: 305 studies
(3) Construction and technologies: 184 records
(4) Urban planning: 180 studies
(5) Materials: 58 documents
(6) Education: 54 studies
(7) Landscape: 28 records
(8) Energy systems: 27 documents
(9) Management: 17 records
(10) Real estate: 7 documents

From these documents, the most closely related to this review are the 870 studies in the first three
subgroups, as this review focuses on buildings and their construction and refurbishment processes,
without going into detail on other larger scale issues such as urban planning, landscaping and
cities, or smaller scale approaches focused on material properties. Similarly, this review focuses on
architectural solutions that are more closely aligned with passive solutions than with active engineering
solutions. All 1242 eligible studies are described in general in the following subsection, while the three
first subgroups are examined in detail in Section 3.5.

3.4. General Results

The 1242 eligible documents are dated from 1994 to 2020 and distributed as shown in Figure 2.
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Figure 2. Distribution over the years of the eligible research studies.

The document types were as follows: 59% research papers, 37% congress contributions and 4%
book chapters.

3.5. Detailed Results

Out of the 870 studies that were most closely related to this review topic, 436 mainly had a
theoretical approach as they described a new theory or model; 382 analyzed case studies using
existing or new building sustainability assessment systems; and 52 reviewed part of the sustainability
assessment in architecture. The distribution of these three groups of documents had an irregular,
increasing curve during the study period, starting from the 1990s in the case studies and theoretical
documents, and the 2010s in the case of reviews. Most documents had an international approach to
their topic, while 336 dealt with a specific location. The specific locations were in Europe in 169 cases,
in Asia in 119, America in 24, Africa in 22 and Australia in 7. The six countries in which the highest
number of specific case studies were analyzed were Italy, Malaysia, Spain, Portugal, the United
Kingdom and China. As expected, most studies were carried out in developed countries, but 25%
centered on developing economies, starting from the 2000s. Most of these studies, 544, did not consider
a specific building application. The most analyzed specific application was residential in 180 studies.
Figure 3 presents the specific applications of these research projects.
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Within the three general topics, 12 main specific topics were found, as depicted in Table 3.
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Table 3. Main specific 12 topics within the general topics studied in depth.

General Topic Specific Main Topics Number of Studies

(1) Buildings and their design

(1.1) Sustainable solutions 244
(1.2) Design process 66

(1.3) Policies, legislations and strategies 31
(1.4) Users’ perspective 24

(1.5) Affordable buildings and economic issues 16

(2) Refurbishment and restoration
(2.1) Rehabilitation 155

(2.2) Energy retrofitting 73
(2.3) Heritage 77

(3) Construction and technologies

(3.1) Technologies 75
(3.2) Construction processes 48
(3.3) Construction elements 37

(3.4) Construction sector and industry 24

The first general topic included five specific topics. The first, “(1.1) Sustainable solutions”,
covered assessment, monitoring and case studies about green [46,47], smart and intelligent buildings [48]
among others. The second, “(1.2) Design process”, was about the conception process of green
architecture [49,50]. The third, “(1.3) Policies, legislations, strategies”, included these issues and
competitions [51,52]. The fourth, “(1.4) Users’ perspective”, was about the inhabitants’ perspective of
sustainable buildings [53,54]. Finally, “(1.5) affordable green buildings and economic issues” focused
on economic issues and the affordability of sustainable architecture [55,56]. The second general topic
had three sections. The first, “(2.1) Rehabilitation”, was on the renovation of buildings, with a focus
on maintenance and refurbishment of components [57,58]. The second, “(2.2) Energy retrofitting”,
addressed the energy-based renovation of buildings [59,60]. Finally, “(2.3) Heritage” included valuable
historical buildings and their restoration [61,62]. The third general topic had four subtopics. The first,
“(3.1) Technologies”, studied construction methods, systems and techniques [63,64]. The second,
“(3.2) Construction processes”, included building procedures and their phases [8,39]. The third,
“(3.3) Construction elements”, was about building components such as facades and structures [65,66].
Finally, “(3.4) Construction sector & industry” dealt with the building business, including new circular
economic models [67,68].

Only 366 studies (42%) had a holistic approach to sustainability and studied its three branches of
sustainability—according to its current holistic definition [6,7]—while the rest took a partial approach;
236 focused on environmental and economic issues such as energy efficiency studies [69,70] or studies
incorporating LCA and life cycle costs (LCC) [71,72]; 182 focused on the environmental branch such as
LCA [73,74] or low carbon studies [75,76]; 36 were on socio-environmental issues, for example [77,78];
25 emphasized the social branch with social life cycle assessment (S-LCA) [79,80] and other methods; 13
centered on economic aspects with LCC [81,82]; and 12 on socio-economic aspects, for example [83,84].
Few studies focused on other sustainability branches or specific indicators [85]; for example, only 37
studies addressed cultural issues, from which 25 were about heritage [86], six about refurbishment [87]
and six about architecture [38]. These cultural studies were published from 1994 to 2020, irregularly
distributed over the years, with a slight increase in the last two years. Figure 4 shows the indicators
that were considered in depth in the eligible studies over the years while Figure 5 presents these results
in relation to the four main studied topics: design, construction, refurbishment and restoration.
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Figure 5. Distribution of the branches of sustainability within the four main topics.

Most studies focused on a specific phase: 362 on post-occupancy [88,89] and 256 on the design
period [90,91]. Most of the eligible documents contained an analysis: 444 used quantitative methods [92,93],
80 studies mixed quantitative and qualitative methods [94,95] and 106 analyses were based on qualitative
analyses [96,97]. As mentioned in the introduction, these studies were expected to address different
sustainability assessment alternatives. There were five main groups of well-known methodologies
and numerous other specific evaluation approaches. The first and largest group was rating tools,
which was the topic of 185 studies and included numerous certification systems. Some of the systems
were international, with the most commonly applied being Leadership in Energy and Environmental
Design (LEED) [98,99] with 41 studies and the Building Research Establishment Environmental
Assessment Methodology (BREEAM) [100,101] with 27. Other studies described specific systems
for particular locations [102,103] or historical buildings since 2014 [86,104]. The second largest
group was the 179 life cycle approaches, composed of 141 LCA, 35 LCC, but only three life cycle
energy assessments (LCEA) [105], three life cycle sustainability assessments (LCSA) [106,107] and
five S-LCA [108]. The third group comprised 82 MCDM studies, such as the integrated value
model for the evaluation of sustainability method known as MIVES [109–112]. The fourth was
a heterogeneous group of 63 studies that adopted transversal techniques such as questionnaires,
surveys [113,114], guidelines and checklist definitions [115,116], strengths, weaknesses, opportunities,
and threats [117] or designing techniques [118]. Then, there was a set of 42 energy and thermal
simulations [119] and monitoring [120]. Finally, there were 351 studies on other less commonly known
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or specific methodologies, including specific frameworks [121,122] and searches of key performance
indicators [123,124], software developments [125], specific calculations [126] and methodologies for
reviews, among others [40,127]. The aforementioned specific methodologies were combined and used
together in 52 studies. A total of 28 studies combined life cycle methodologies [128,129]. A total of
16 studies combined BIM with other assessment methodologies [130], from which nine focused on
design topic, four on construction, two on refurbishment and one on restoration [131]. Only four
BIM-combined articles had a holistic approach to sustainability, eight focused on environmental
issues and five on environmental and economic issues. The most recurrent combination was LC
methodologies with BIM [132,133] in 14 studies. Apart from these, seven projects combined rating tools
with life cycle methodologies [134], four combined LCA with MCDM [135,136], and two combined
energy modeling with BIM [137,138]. Figure 6 presents the applications of the most common groups of
methodologies (rating tools, life cycle and MCDM) and the combination of them over the years.
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In terms of combined studies, the first methodologies that incorporated BIM emerged in 2013.
In the last two years, 2019 and 2020, BIM was the most frequently combined alternative. Less than 2%
of the articles incorporated probabilistic scenarios, and most were from the late 2010s.

4. Analysis

This section discusses the results presented in the previous section, which were obtained using
the methodology explained in Section 2. This methodology enabled a review to be carried out with
the limited available resources, without compromising the rigor of the results. At the same time,
the methodology could be used for a more detailed review given greater resources. Although this
version focused on the abstracts of papers and limited the number of papers from complementary
databases, it did consider the most relevant information in the articles and included the most relevant
articles according to database criteria.

As presented in Figure 2, the evolution of the number of eligible studies per year since the early
1990s has been irregular but has increased steadily, except for occasional drops in some years. The result
was similar in the three general topics of buildings, refurbishment, construction, and others. As a
set, these eligible studies had an irregular, increasing tendency from 1994 to 2013. After this date,
the number of studies remained more constant until 2019. Nevertheless, the general trend was an
increase that could be attributed to growing research interest that was detected in previous similar
reviews [17,139].

Focusing on the 758 eligible documents, this review found that sustainability assessment in
architecture and its design, construction, refurbishment and restoration has been relatively recent.
This area started to be studied in research projects published at scientific level in the 1990s, while the
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reviews of this area started in the 2010s. As expected, the locations of the studied case studies were
mainly in Europe, followed closely by Asia, and mainly in developed countries. The ranking of the
specific applications of the documents presented in Figure 3 also coincides with previous similar
reviews [21].

The most studied specific topics cover green sustainable solutions, rehabilitation and technologies.
These studies were mainly partial instead of holistic, as indicated in previous research [33,140]. The most
studied branches were environmental and economic issues, as depicted in Figure 4. Within the four
main subtopics in this research, the study of these four branches had a similar common tendency as
depicted in Figure 5. In all design, construction, refurbishment and restoration, the most analyzed
branch was environmental, while the least studied was the social pillar. Construction was the subtopic
with the most studies about the environmental branch, while refurbishment has more articles dealing
with the economic pillar. Restoration has more studies on the social branch and differs from the other
subtopics as there are less differences in the number of studies related to each branch. This coincides
with the fact that this subtopic has far more studies focused on cultural issues and, therefore, could be
labelled as the most social and cultural subtopic.

From the main groups of well-known methodologies, the most commonly used were the rating
tools. These take a holistic approach to sustainability and are used for the certification of buildings.
Versions of each rating tool for each country are available within the Green Building Council [141]
and inspired by the pioneer BREEAM in the 1990s [142] and the GBTool [143]. These certification
systems evaluate the design or post-occupancy of buildings using checklists that cover numerous
indicators on economic, environmental and social issues and give a score that is normally used as an
added value for buildings. In some cases, this is mandatory [100]. Some are internationally applicable
and applied. The most widely used is LEED and BREEAM according to the number of certified
projects, among other indicators [30]. This number of applications coincides with the trend in academic
studies found in this review. The second most broadly applied assessment methods are the life cycle
tools, such as LCA, LCC, LCSA, S-LCA and LCEA. Other environmental tools have been used less
frequently, including material flow analysis [144], material and energy flow analysis [145] and other
environmental indexes [146]. Both of these rating and life cycle methods are used at a professional
level and are probably also the most used along with energy simulations and studies. In this present
review, these energy studies were the fifth group of tools used, which the authors explain because this
review focused on sustainability but not on energy. No search word covered this field because it was
outside the scope of the study.

Finally, this study also discovered as new tendencies from the early 2010s the combination
of sustainability tools [134], the combination of BIM and sustainability assessment tools [147],
and the incorporation of probabilistic scenarios and uncertainty [148]. The first studies on the
sustainability of artificial intelligence, digital fabrication and robotics are dated from the late 2010s
onwards. To the best of the authors’ knowledge, these new tendencies have not focused on cultural
issues, apart from one article integrating heritage BIM tools for the sustainability assessment [131].
Since 2013, sustainability assessment models combined with BIM have been applied to design [130],
construction [149], refurbishment [132] and restoration [131]. These models have been developed
in theoretical articles [138], applied to case studies [150] and studied in reviews [107]. Therefore,
the authors foresee that this BIM combination will continue the previously mentioned current increasing
tendency in the upcoming years.

5. Conclusions

This research project has produced a database containing basic information from the 1535 studied
documents, general information from the 1242 eligible research papers, and a more detailed study
of the 870 records that were closest to this review topic. The database is attached as supplementary
material on state-of-the-art studies. From this database, the main findings of the review refer to the
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evolution of the most relevant studies on sustainability assessment alternatives for architecture and its
construction, refurbishment and restoration. These findings are as follows:

1. The number of studies per year increased from 1994 to 2013, then remained more or less constant
until 2019.

2. General theoretical and case studies emerged in the 1990s, while reviews started to appear in
the 2010s.

3. The most commonly applied methodologies are rating tools, followed by life cycle methods.
4. The combination of assessment tools, the combination of BIM and sustainability assessment

tools, and the incorporation of probabilistic scenarios and uncertainty started in the early 2010s.
However, the first studies about the sustainability of artificial intelligence, digital production
and robots in architecture are dated from the late 2010s onwards. Based on the analysis of the
BIM-combined tools, the authors foresee an increase in the publication of related studies in
the future.

5. The most analyzed sustainability branch was environmental, while the least studied was the
social pillar. Construction was the subtopic with the most articles about environmental issues,
while refurbishment has more studies dealing with economic aspects and restoration has more
articles on the social pillar.

These findings may be useful to gain an overview of the alternatives applied over these years
as well as examples of their applications. This review, like similar previous state-of-the-art studies,
focused on searches using content keywords related to the topic. Nevertheless, there were results in
which assessment tools were combined and integrated. The authors foresee future interesting reviews
that focus on incorporating concepts such as integrated or integral approaches, which are considered
crucial in some present and future research projects, studies, models or processes [151]. This study
was limited to research studies and projects, as a basis to be extended through integrated and integral
models and processes. The next research steps should include data from professional practice to
determine to what extent these conclusions are related to the professional world. This could help active
professionals to move towards more sustainable architecture.
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Appendix A

Table A1. Abbreviations used in the text.

Abbreviations Relevant Values

BIM Building information modeling

NZEB Nearly zero-energy building

LCA Life cycle assessment

MCDM Multi-criteria decision making

Mt Main topic
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Table A1. Cont.

Abbreviations Relevant Values

St Subtopic

SA Sustainability assessment

LCC Life cycle cost

S-LCA Social life cycle assessment

LEED Leadership in energy and environmental design

BREEAM Building research establishment environmental assessment methodology

LCEA Life cycle energy assessment

LCSA Life cycle sustainability assessment
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134. Raslanas, S.; Stasiukynas, A.; Jurgelaitytė, E. Sustainability Assessment Studies of Recreational Buildings.
Procedia Eng. 2013, 57, 929–937. [CrossRef]

135. Pons, O.; Aguado, A. Integrated value model for sustainable assessment applied to technologies used to
build schools in Catalonia, Spain. Build. Environ. 2012, 53, 49–58. [CrossRef]

136. Hosseini, S.M.A.; de la Fuente, A.; Pons, O. Multi-criteria decision-making method for assessing the
sustainability of post-disaster temporary housing units technologies: A case study in Bam. Sustain. Cities Soc.
2016, 20, 38–51. [CrossRef]

137. Jiang, S.; Lei, W. The Application of BIM in Green Building Energy Saving: Take Helsinki Music Center as an
Example. Adv. Mater. Res. 2014, 935, 3–7. [CrossRef]

138. Shoubi, M.V.; Shoubi, M.V.; Bagchi, A.; Barough, A.S. Reducing the operational energy demand in buildings
using building information modeling tools and sustainability approaches. Ain Shams Eng. J. 2015, 6, 41–55.
[CrossRef]

139. Stojčić, M.; Zavadskas, E.K.; Pamučar, D.; Stević, Ž.; Mardani, A. Application of MCDM Methods in
Sustainability Engineering: A Literature Review 2008. Symmetry 2019, 11, 350. [CrossRef]

140. Jensen, S.R.; Kamari, A.; Strange, A.; Kirkegaard, P.H. Towards a Holistic Approach to Retrofitting: A Critical
Review of Stateof-the-art Evaluation Methodologies for Architectural Transformation. In Proceedings of the
World Sustainable Built Conference 2017, Hong Kong, China, 5–7 June 2017; pp. 689–696.

141. Herazo, B.; Lizarralde, G. The influence of green building certifications in collaboration and innovation
processes. Constr. Manag. Econ. 2015, 33, 279–298. [CrossRef]

142. Libby, S. The Cultural Role of Science in Policy Implementation: Voluntary Self-Regulation in the UK Building
Sector. In Fields of Knowledge: Science, Politics and Publics in the Neoliberal Age; Political Power and Social Theory;
Emerald Group Publishing Limited: Bingley, UK, 2014; Volume 27, pp. 157–191, ISBN 978-1-78350-668-2.

143. Chang, K.-F.; Chiang, C.-M.; Chou, P.-C. Adapting aspects of GBTool 2005—Searching for suitability in
Taiwan. Build. Environ. 2007, 42, 310–316. [CrossRef]

144. Guo, D.; Huang, L. The State of the Art of Material Flow Analysis Research Based on Construction and
Demolition Waste Recycling and Disposal. Buildings 2019, 9, 207. [CrossRef]

145. Albelwi, N.; Kwan, A.; Rezgui, Y. Using Material and Energy Flow Analysis to Estimate Future Energy
Demand at the City Level. Energy Procedia 2017, 115, 440–450. [CrossRef]

146. Giannetti, B.F.; Demétrio, J.C.C.; Agostinho, F.; Almeida, C.M.V.B.; Liu, G. Towards more sustainable social
housing projects: Recognizing the importance of using local resources. Build. Environ. 2018, 127, 187–203.
[CrossRef]

147. Nguyen, T.H.; Shehab, T.; Gao, Z. Evaluating Sustainability of Architectural Designs Using Building
Information Modeling. Open Constr. Build. Technol. J. 2010, 4, 1–8. [CrossRef]

148. Yu, J.Q.; Dang, B.; Clements-Croome, D.; Xu, S. Sustainability Assessment Indicators and Methodology for
Intelligent Buildings. Adv. Mater. Res. 2012, 368–373, 3829–3832. [CrossRef]

149. Oti, A.H.; Tizani, W. BIM extension for the sustainability appraisal of conceptual steel design. Adv. Eng. Inform.
2015, 29, 28–46. [CrossRef]

150. Yang, X.; Hu, M.; Wu, J.; Zhao, B. Building-information-modeling enabled life cycle assessment, a case
study on carbon footprint accounting for a residential building in China. J. Clean. Prod. 2018, 183, 729–743.
[CrossRef]

151. Seghier, T.E.; Ahmad, M.H.; Wah, L.Y.; Samuel, W.O. Integration Models of Building Information Modelling
and Green Building Rating Systems: A Review. Adv. Sci. Lett. 2018, 24, 4121–4125. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/17452007.2018.1502655
http://dx.doi.org/10.1016/j.proeng.2013.04.118
http://dx.doi.org/10.1016/j.buildenv.2012.01.007
http://dx.doi.org/10.1016/j.scs.2015.09.012
http://dx.doi.org/10.4028/www.scientific.net/AMR.935.3
http://dx.doi.org/10.1016/j.asej.2014.09.006
http://dx.doi.org/10.3390/sym11030350
http://dx.doi.org/10.1080/01446193.2015.1047879
http://dx.doi.org/10.1016/j.buildenv.2005.08.015
http://dx.doi.org/10.3390/buildings9100207
http://dx.doi.org/10.1016/j.egypro.2017.05.041
http://dx.doi.org/10.1016/j.buildenv.2017.10.033
http://dx.doi.org/10.2174/18748368010040100001
http://dx.doi.org/10.4028/www.scientific.net/AMR.368-373.3829
http://dx.doi.org/10.1016/j.aei.2014.09.001
http://dx.doi.org/10.1016/j.jclepro.2018.02.070
http://dx.doi.org/10.1166/asl.2018.11554
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Results 
	Preparation 
	Identification 
	Classification 
	General Results 
	Detailed Results 

	Analysis 
	Conclusions 
	
	References

