Using a DEA–AutoML Approach to Track SDG Achievements
Abstract
:1. Introduction
2. Materials and Methods
- implementing a stratification DEA to evaluate the ES and ET, and to examine the PO that will turn an inefficient DMU into an efficient DMU;
- applying AutoML to predict the three outcomes of the DEA using classification algorithms to determine the ET and regression algorithms to predict the ES and PO;
- using a back-propagation neural network (BPNN) to produce a series of the same results to validate the AutoML outputs by comparing the rates of precision and accuracy along with the number of DMUs within an acceptable percentage error (PRED);
- employing DEA by using the predicted PO from the AutoML and BPNN to evaluate the ES and compare them to validate the integrative approach.
2.1. Stratification DEA
2.2. Automated Machine Learning
2.3. Integration Between DEA and Machine Learning
- first evaluate the ES using DEA, then manually group the DMUs based on the ES ranges, and finally predict the groups using an NN [52];
- first evaluate the ET and PO using a stratification DEA and then predict the ET and PO with an NN [5];
- first evaluate the ET using a stratification DEA to preprocess the NN learning datasets and then predict groups using each stratified learning datasets with an NN [56].
2.4. Data Description of the Sustainability Study in the BRI Region
2.5. Data Description of the COVID-19 Pandemic Study
3. The BRI Sustainability Study
3.1. Result of the DEA Experiment
3.2. Result of the AutoML Experiment
4. The COVID-19 Pandemic Study
4.1. Result of the DEA Experiment
4.2. Result of the AutoML Experiment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDG7 | SDG8 | SDG9 | Distance | SDG7 | SDG8 | SDG9 | Distance | SDG7 | SDG8 | SDG9 | Distance | SDG7 | SDG8 | SDG9 | Distance | SDG7 | SDG8 | SDG9 | Distance | SDG7 | SDG8 | SDG9 | Distance | SDG7 | SDG8 | SDG9 | Distance | |
AE | 1.000 | 0.944 | 1.000 | 0.056 | 1.000 | 0.892 | 1.000 | 0.108 | 1.000 | 0.933 | 1.000 | 0.067 | 1.000 | 0.961 | 1.000 | 0.039 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
AO | 1.000 | 0.271 | 0.386 | 0.953 | 1.000 | 0.272 | 0.381 | 0.956 | 1.000 | 0.301 | 0.364 | 0.945 | 1.000 | 0.297 | 0.375 | 0.941 | 1.000 | 0.302 | 0.336 | 0.964 | 1.000 | 0.303 | 0.332 | 0.965 | 1.000 | 0.316 | 0.330 | 0.957 |
AT * | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
AZ | 1.000 | 0.281 | 0.953 | 0.720 | 1.000 | 0.287 | 0.905 | 0.719 | 1.000 | 0.299 | 1.000 | 0.701 | 1.000 | 0.306 | 1.000 | 0.694 | 1.000 | 0.304 | 1.000 | 0.696 | 1.000 | 0.306 | 1.000 | 0.694 | 1.000 | 0.314 | 1.000 | 0.686 |
BA | 0.997 | 0.735 | 1.000 | 0.265 | 1.000 | 0.697 | 1.000 | 0.303 | 1.000 | 0.729 | 1.000 | 0.271 | 1.000 | 0.778 | 1.000 | 0.222 | 1.000 | 0.741 | 1.000 | 0.259 | 1.000 | 0.678 | 1.000 | 0.322 | 1.000 | 0.656 | 0.997 | 0.344 |
BD | 1.000 | 0.216 | 0.949 | 0.785 | 1.000 | 0.223 | 0.963 | 0.778 | 1.000 | 0.224 | 0.986 | 0.776 | 1.000 | 0.234 | 1.000 | 0.766 | 1.000 | 0.266 | 1.000 | 0.734 | 1.000 | 0.296 | 1.000 | 0.704 | 1.000 | 0.307 | 1.000 | 0.693 |
BG | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.979 | 0.021 | 1.000 | 1.000 | 0.964 | 0.036 | 1.000 | 0.974 | 0.956 | 0.051 | 1.000 | 1.000 | 0.950 | 0.050 |
BJ | 0.659 | 0.181 | 1.000 | 0.887 | 0.691 | 0.175 | 1.000 | 0.881 | 0.699 | 0.180 | 1.000 | 0.873 | 0.710 | 0.182 | 0.953 | 0.869 | 0.682 | 0.183 | 0.991 | 0.877 | 0.637 | 0.181 | 1.000 | 0.896 | 0.643 | 0.183 | 1.000 | 0.891 |
BO | 0.925 | 0.493 | 0.896 | 0.523 | 0.921 | 0.542 | 0.901 | 0.475 | 0.904 | 0.580 | 0.842 | 0.459 | 0.913 | 0.646 | 0.901 | 0.378 | 0.915 | 0.669 | 0.946 | 0.345 | 0.918 | 0.763 | 0.818 | 0.310 | 0.918 | 0.825 | 0.818 | 0.265 |
BY | 1.000 | 0.419 | 1.000 | 0.581 | 1.000 | 0.433 | 1.000 | 0.567 | 1.000 | 0.396 | 1.000 | 0.604 | 1.000 | 0.412 | 1.000 | 0.588 | 1.000 | 0.416 | 1.000 | 0.584 | 1.000 | 0.424 | 1.000 | 0.576 | 1.000 | 0.436 | 1.000 | 0.564 |
CG | 0.929 | 0.128 | 0.921 | 0.879 | 0.955 | 0.128 | 0.941 | 0.875 | 0.915 | 0.124 | 0.893 | 0.886 | 0.934 | 0.130 | 0.866 | 0.883 | 0.932 | 0.131 | 0.893 | 0.878 | 1.000 | 0.131 | 0.912 | 0.873 | 1.000 | 0.132 | 0.900 | 0.874 |
CI | 1.000 | 0.130 | 0.979 | 0.870 | 0.980 | 0.138 | 0.903 | 0.867 | 0.967 | 0.143 | 0.914 | 0.862 | 0.978 | 0.151 | 0.930 | 0.852 | 0.986 | 0.158 | 1.000 | 0.842 | 0.994 | 0.163 | 1.000 | 0.837 | 0.996 | 0.170 | 1.000 | 0.830 |
CL | 1.000 | 1.000 | 0.900 | 0.100 | 1.000 | 1.000 | 0.887 | 0.113 | 1.000 | 1.000 | 0.878 | 0.122 | 1.000 | 1.000 | 0.877 | 0.124 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
CN * | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
CR | 1.000 | 0.410 | 0.659 | 0.681 | 1.000 | 0.417 | 0.738 | 0.639 | 1.000 | 0.419 | 0.914 | 0.587 | 1.000 | 0.419 | 0.914 | 0.588 | 1.000 | 0.423 | 0.975 | 0.578 | 1.000 | 0.424 | 1.000 | 0.576 | 1.000 | 0.424 | 1.000 | 0.576 |
CY | 1.000 | 0.792 | 0.749 | 0.326 | 1.000 | 0.733 | 0.793 | 0.338 | 1.000 | 0.556 | 0.873 | 0.462 | 1.000 | 0.543 | 0.875 | 0.473 | 1.000 | 0.529 | 0.867 | 0.490 | 1.000 | 0.521 | 0.915 | 0.486 | 1.000 | 0.790 | 0.949 | 0.216 |
CZ | 1.000 | 0.686 | 1.000 | 0.314 | 1.000 | 0.668 | 1.000 | 0.332 | 1.000 | 0.671 | 1.000 | 0.329 | 1.000 | 0.695 | 1.000 | 0.305 | 1.000 | 0.704 | 1.000 | 0.296 | 1.000 | 0.697 | 1.000 | 0.303 | 1.000 | 0.706 | 1.000 | 0.294 |
DZ | 0.992 | 0.391 | 1.000 | 0.610 | 0.990 | 0.414 | 1.000 | 0.587 | 0.996 | 0.411 | 1.000 | 0.589 | 1.000 | 0.437 | 1.000 | 0.563 | 0.999 | 0.448 | 1.000 | 0.552 | 1.000 | 0.454 | 1.000 | 0.546 | 1.000 | 0.468 | 1.000 | 0.532 |
EC | 0.975 | 0.337 | 0.762 | 0.705 | 0.975 | 0.341 | 0.774 | 0.698 | 0.980 | 0.337 | 0.769 | 0.702 | 0.990 | 0.339 | 0.760 | 0.703 | 0.988 | 0.339 | 0.763 | 0.702 | 0.987 | 0.336 | 0.776 | 0.701 | 1.000 | 0.325 | 0.797 | 0.705 |
EE | 1.000 | 0.851 | 1.000 | 0.149 | 1.000 | 0.871 | 1.000 | 0.129 | 1.000 | 0.944 | 1.000 | 0.056 | 1.000 | 0.958 | 1.000 | 0.042 | 1.000 | 0.925 | 1.000 | 0.075 | 1.000 | 0.952 | 1.000 | 0.048 | 1.000 | 0.986 | 1.000 | 0.014 |
EG | 1.000 | 0.489 | 1.000 | 0.511 | 1.000 | 0.496 | 1.000 | 0.504 | 1.000 | 0.484 | 1.000 | 0.516 | 1.000 | 0.475 | 1.000 | 0.525 | 1.000 | 0.497 | 0.997 | 0.503 | 1.000 | 0.501 | 1.000 | 0.499 | 1.000 | 0.507 | 1.000 | 0.493 |
GE | 0.996 | 0.358 | 0.889 | 0.651 | 1.000 | 0.437 | 0.937 | 0.567 | 0.999 | 0.511 | 0.962 | 0.490 | 1.000 | 0.505 | 0.980 | 0.496 | 1.000 | 0.504 | 1.000 | 0.496 | 1.000 | 0.552 | 1.000 | 0.448 | 1.000 | 0.566 | 1.000 | 0.434 |
GH | 0.926 | 0.223 | 0.814 | 0.802 | 0.899 | 0.226 | 0.851 | 0.795 | 0.926 | 0.224 | 0.860 | 0.792 | 1.000 | 0.236 | 0.876 | 0.774 | 0.955 | 0.256 | 0.973 | 0.745 | 0.985 | 0.263 | 1.000 | 0.737 | 0.937 | 0.298 | 0.983 | 0.705 |
GQ | 0.661 | 0.920 | 0.810 | 0.397 | 0.658 | 0.860 | 0.727 | 0.460 | 0.660 | 0.766 | 0.775 | 0.470 | 0.663 | 0.761 | 0.762 | 0.477 | 0.666 | 0.764 | 0.767 | 0.470 | 0.669 | 0.758 | 0.862 | 0.433 | 0.672 | 0.739 | 0.962 | 0.421 |
GR | 1.000 | 0.835 | 0.878 | 0.205 | 1.000 | 0.906 | 0.959 | 0.102 | 1.000 | 0.842 | 1.000 | 0.158 | 1.000 | 0.791 | 1.000 | 0.209 | 1.000 | 0.751 | 0.935 | 0.257 | 1.000 | 0.713 | 0.941 | 0.293 | 1.000 | 0.692 | 0.933 | 0.315 |
HR | 1.000 | 0.608 | 0.981 | 0.392 | 1.000 | 0.620 | 1.000 | 0.380 | 1.000 | 0.631 | 1.000 | 0.369 | 1.000 | 0.620 | 1.000 | 0.380 | 1.000 | 0.617 | 0.960 | 0.385 | 1.000 | 0.611 | 0.964 | 0.391 | 1.000 | 0.620 | 0.873 | 0.401 |
ID | 1.000 | 0.555 | 1.000 | 0.445 | 1.000 | 0.623 | 1.000 | 0.377 | 1.000 | 0.657 | 1.000 | 0.343 | 1.000 | 0.697 | 1.000 | 0.303 | 1.000 | 0.770 | 1.000 | 0.230 | 1.000 | 0.817 | 1.000 | 0.183 | 1.000 | 0.824 | 1.000 | 0.176 |
IL | 1.000 | 0.926 | 0.986 | 0.076 | 1.000 | 0.946 | 0.979 | 0.058 | 1.000 | 0.964 | 0.945 | 0.066 | 1.000 | 0.979 | 0.970 | 0.036 | 1.000 | 0.985 | 0.947 | 0.055 | 1.000 | 0.990 | 0.955 | 0.046 | 1.000 | 0.990 | 0.951 | 0.050 |
IQ | 0.986 | 0.379 | 0.870 | 0.634 | 0.995 | 0.407 | 0.866 | 0.608 | 0.994 | 0.399 | 0.911 | 0.608 | 1.000 | 0.385 | 0.873 | 0.628 | 1.000 | 0.400 | 1.000 | 0.600 | 1.000 | 0.424 | 0.829 | 0.601 | 1.000 | 0.406 | 0.906 | 0.602 |
IR | 0.992 | 1.000 | 1.000 | 0.008 | 0.995 | 1.000 | 1.000 | 0.005 | 0.997 | 1.000 | 1.000 | 0.003 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
IT * | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
JO | 1.000 | 0.574 | 1.000 | 0.426 | 1.000 | 0.543 | 1.000 | 0.457 | 1.000 | 0.523 | 1.000 | 0.477 | 1.000 | 0.492 | 1.000 | 0.508 | 1.000 | 0.486 | 1.000 | 0.514 | 1.000 | 0.480 | 1.000 | 0.520 | 1.000 | 0.475 | 1.000 | 0.525 |
KE | 0.929 | 0.173 | 0.752 | 0.866 | 0.974 | 0.177 | 0.775 | 0.853 | 0.978 | 0.174 | 0.783 | 0.855 | 0.952 | 0.178 | 0.736 | 0.865 | 0.915 | 0.185 | 0.815 | 0.840 | 0.994 | 0.186 | 0.816 | 0.834 | 0.996 | 0.189 | 0.826 | 0.830 |
KG | 1.000 | 0.232 | 1.000 | 0.768 | 1.000 | 0.241 | 1.000 | 0.759 | 0.999 | 0.249 | 1.000 | 0.751 | 1.000 | 0.246 | 1.000 | 0.754 | 1.000 | 0.244 | 1.000 | 0.756 | 1.000 | 0.244 | 1.000 | 0.756 | 1.000 | 0.244 | 1.000 | 0.756 |
KH | 0.857 | 0.180 | 1.000 | 0.833 | 0.859 | 0.186 | 1.000 | 0.826 | 0.866 | 0.183 | 1.000 | 0.828 | 0.860 | 0.198 | 1.000 | 0.814 | 0.846 | 0.211 | 1.000 | 0.804 | 0.879 | 0.233 | 1.000 | 0.776 | 0.946 | 0.250 | 1.000 | 0.752 |
KR | 1.000 | 0.985 | 1.000 | 0.015 | 1.000 | 0.942 | 1.000 | 0.058 | 1.000 | 0.994 | 1.000 | 0.006 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
KZ | 0.998 | 0.760 | 1.000 | 0.240 | 0.999 | 0.720 | 1.000 | 0.280 | 0.999 | 0.756 | 1.000 | 0.244 | 1.000 | 0.763 | 1.000 | 0.237 | 1.000 | 0.765 | 0.976 | 0.237 | 1.000 | 0.780 | 0.967 | 0.223 | 1.000 | 0.805 | 0.977 | 0.197 |
LA | 0.942 | 0.519 | 0.794 | 0.527 | 0.954 | 0.523 | 0.689 | 0.571 | 0.936 | 0.519 | 0.708 | 0.566 | 0.933 | 0.508 | 0.671 | 0.596 | 0.980 | 0.500 | 0.551 | 0.673 | 0.971 | 0.479 | 0.508 | 0.717 | 0.962 | 0.500 | 0.466 | 0.732 |
LK | 1.000 | 0.325 | 0.933 | 0.678 | 1.000 | 0.344 | 0.928 | 0.660 | 1.000 | 0.363 | 0.927 | 0.642 | 1.000 | 0.376 | 0.915 | 0.629 | 1.000 | 0.384 | 0.944 | 0.618 | 1.000 | 0.402 | 0.984 | 0.598 | 1.000 | 0.420 | 1.000 | 0.580 |
LT | 1.000 | 0.448 | 1.000 | 0.552 | 1.000 | 0.456 | 1.000 | 0.544 | 1.000 | 0.455 | 1.000 | 0.545 | 1.000 | 0.458 | 0.997 | 0.542 | 1.000 | 0.450 | 0.982 | 0.550 | 1.000 | 0.448 | 0.979 | 0.552 | 1.000 | 0.465 | 1.000 | 0.535 |
LU * | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
LV | 1.000 | 0.550 | 1.000 | 0.450 | 1.000 | 0.488 | 1.000 | 0.512 | 1.000 | 0.451 | 1.000 | 0.549 | 1.000 | 0.454 | 0.995 | 0.546 | 1.000 | 0.447 | 0.990 | 0.553 | 1.000 | 0.451 | 0.995 | 0.549 | 1.000 | 0.461 | 0.981 | 0.539 |
MA | 1.000 | 0.465 | 1.000 | 0.535 | 1.000 | 0.506 | 1.000 | 0.494 | 1.000 | 0.547 | 1.000 | 0.453 | 1.000 | 0.574 | 1.000 | 0.426 | 1.000 | 0.603 | 1.000 | 0.397 | 1.000 | 0.639 | 1.000 | 0.361 | 1.000 | 0.689 | 1.000 | 0.311 |
MD | 1.000 | 0.790 | 1.000 | 0.210 | 1.000 | 0.864 | 1.000 | 0.136 | 1.000 | 0.888 | 1.000 | 0.112 | 1.000 | 0.929 | 1.000 | 0.071 | 1.000 | 0.551 | 1.000 | 0.449 | 1.000 | 0.573 | 1.000 | 0.427 | 1.000 | 0.583 | 1.000 | 0.417 |
MM | 1.000 | 0.166 | 1.000 | 0.834 | 1.000 | 0.154 | 1.000 | 0.846 | 0.987 | 0.161 | 1.000 | 0.839 | 0.946 | 0.173 | 1.000 | 0.829 | 0.944 | 0.174 | 1.000 | 0.828 | 0.938 | 0.172 | 1.000 | 0.831 | 0.860 | 0.190 | 1.000 | 0.822 |
MN | 0.721 | 1.000 | 0.867 | 0.309 | 0.795 | 1.000 | 0.920 | 0.220 | 0.812 | 1.000 | 0.757 | 0.308 | 0.812 | 1.000 | 0.745 | 0.317 | 0.827 | 1.000 | 0.745 | 0.308 | 0.843 | 1.000 | 0.780 | 0.270 | 0.859 | 1.000 | 0.857 | 0.201 |
MT * | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
MY | 0.996 | 0.653 | 1.000 | 0.347 | 0.998 | 0.586 | 1.000 | 0.414 | 0.999 | 0.597 | 1.000 | 0.403 | 1.000 | 0.599 | 1.000 | 0.401 | 1.000 | 0.602 | 1.000 | 0.398 | 1.000 | 0.608 | 1.000 | 0.392 | 1.000 | 0.620 | 1.000 | 0.380 |
MZ | 0.819 | 0.133 | 0.777 | 0.913 | 0.882 | 0.123 | 0.745 | 0.921 | 0.905 | 0.125 | 0.887 | 0.887 | 0.857 | 0.134 | 1.000 | 0.877 | 0.832 | 0.138 | 1.000 | 0.878 | 0.694 | 0.143 | 0.959 | 0.911 | 0.641 | 0.147 | 0.650 | 0.989 |
NA | 0.475 | 0.489 | 0.939 | 0.736 | 0.489 | 0.532 | 0.839 | 0.711 | 0.490 | 0.483 | 0.900 | 0.733 | 0.495 | 0.460 | 0.824 | 0.760 | 0.503 | 0.483 | 0.747 | 0.761 | 0.514 | 0.483 | 0.835 | 0.728 | 0.528 | 0.479 | 0.856 | 0.717 |
NG | 1.000 | 0.265 | 0.728 | 0.784 | 1.000 | 0.297 | 0.790 | 0.734 | 1.000 | 0.292 | 0.842 | 0.725 | 1.000 | 0.305 | 0.877 | 0.706 | 1.000 | 0.294 | 1.000 | 0.706 | 1.000 | 0.283 | 0.886 | 0.726 | 1.000 | 0.274 | 1.000 | 0.726 |
NP | 1.000 | 0.185 | 0.936 | 0.817 | 1.000 | 0.207 | 0.983 | 0.793 | 1.000 | 0.214 | 1.000 | 0.786 | 1.000 | 0.226 | 1.000 | 0.774 | 1.000 | 0.239 | 1.000 | 0.761 | 1.000 | 0.261 | 1.000 | 0.739 | 1.000 | 0.306 | 1.000 | 0.694 |
NZ | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.980 | 0.020 | 1.000 | 1.000 | 0.972 | 0.028 |
PA | 0.920 | 0.391 | 1.000 | 0.615 | 0.922 | 0.412 | 1.000 | 0.593 | 0.928 | 0.439 | 1.000 | 0.566 | 0.941 | 0.445 | 1.000 | 0.558 | 0.952 | 0.453 | 1.000 | 0.550 | 0.970 | 0.458 | 1.000 | 0.543 | 1.000 | 0.464 | 0.866 | 0.552 |
PE | 0.973 | 0.521 | 0.795 | 0.522 | 0.982 | 0.519 | 0.735 | 0.549 | 0.967 | 0.518 | 0.748 | 0.545 | 0.991 | 0.510 | 0.732 | 0.558 | 0.963 | 0.509 | 0.756 | 0.549 | 0.958 | 0.503 | 0.770 | 0.549 | 0.977 | 0.500 | 0.788 | 0.543 |
PH | 1.000 | 0.273 | 0.991 | 0.727 | 1.000 | 0.266 | 1.000 | 0.734 | 1.000 | 0.257 | 1.000 | 0.743 | 1.000 | 0.266 | 1.000 | 0.734 | 1.000 | 0.276 | 1.000 | 0.724 | 1.000 | 0.286 | 1.000 | 0.714 | 1.000 | 0.294 | 1.000 | 0.706 |
PK | 1.000 | 0.362 | 0.991 | 0.638 | 1.000 | 0.359 | 1.000 | 0.641 | 1.000 | 0.356 | 1.000 | 0.644 | 1.000 | 0.366 | 1.000 | 0.634 | 1.000 | 0.375 | 1.000 | 0.625 | 1.000 | 0.392 | 1.000 | 0.608 | 1.000 | 0.401 | 1.000 | 0.599 |
PL | 1.000 | 0.899 | 1.000 | 0.101 | 1.000 | 0.892 | 1.000 | 0.108 | 1.000 | 0.868 | 1.000 | 0.132 | 1.000 | 0.896 | 1.000 | 0.104 | 1.000 | 0.896 | 1.000 | 0.104 | 1.000 | 0.926 | 1.000 | 0.074 | 1.000 | 0.933 | 1.000 | 0.067 |
PT | 1.000 | 1.000 | 0.855 | 0.145 | 1.000 | 1.000 | 0.881 | 0.119 | 1.000 | 1.000 | 0.892 | 0.108 | 1.000 | 0.959 | 0.890 | 0.117 | 1.000 | 0.701 | 0.885 | 0.320 | 1.000 | 0.851 | 0.877 | 0.194 | 1.000 | 0.819 | 0.885 | 0.215 |
RO | 1.000 | 0.656 | 0.984 | 0.344 | 1.000 | 0.603 | 0.912 | 0.407 | 1.000 | 0.667 | 0.920 | 0.342 | 1.000 | 0.671 | 0.923 | 0.338 | 1.000 | 0.651 | 0.923 | 0.358 | 1.000 | 0.679 | 0.948 | 0.325 | 1.000 | 0.681 | 0.929 | 0.327 |
RS | 1.000 | 0.823 | 1.000 | 0.177 | 1.000 | 0.762 | 1.000 | 0.238 | 1.000 | 0.729 | 0.997 | 0.271 | 0.997 | 0.634 | 1.000 | 0.366 | 1.000 | 0.648 | 1.000 | 0.352 | 1.000 | 0.626 | 1.000 | 0.374 | 1.000 | 0.612 | 0.984 | 0.389 |
RU * | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
SA * | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 0.000 |
SD | 0.983 | 0.191 | 0.864 | 0.820 | 1.000 | 0.230 | 0.874 | 0.781 | 1.000 | 0.253 | 0.789 | 0.776 | 1.000 | 0.265 | 0.735 | 0.781 | 1.000 | 0.281 | 0.722 | 0.771 | 1.000 | 0.296 | 0.718 | 0.758 | 1.000 | 0.313 | 0.704 | 0.748 |
SI | 1.000 | 0.666 | 0.939 | 0.340 | 1.000 | 0.651 | 0.944 | 0.354 | 1.000 | 0.604 | 1.000 | 0.396 | 1.000 | 0.588 | 0.985 | 0.412 | 1.000 | 0.584 | 1.000 | 0.416 | 1.000 | 0.580 | 1.000 | 0.420 | 1.000 | 0.582 | 1.000 | 0.418 |
SN | 1.000 | 0.170 | 1.000 | 0.830 | 1.000 | 0.181 | 1.000 | 0.819 | 1.000 | 0.174 | 1.000 | 0.826 | 1.000 | 0.176 | 1.000 | 0.824 | 1.000 | 0.182 | 1.000 | 0.818 | 1.000 | 0.185 | 1.000 | 0.815 | 1.000 | 0.196 | 1.000 | 0.804 |
SR | 0.922 | 0.910 | 1.000 | 0.119 | 0.931 | 0.926 | 1.000 | 0.102 | 0.937 | 0.912 | 1.000 | 0.108 | 0.943 | 0.938 | 1.000 | 0.084 | 0.951 | 1.000 | 1.000 | 0.049 | 0.960 | 1.000 | 1.000 | 0.040 | 0.968 | 1.000 | 1.000 | 0.032 |
SV | 1.000 | 0.220 | 1.000 | 0.780 | 1.000 | 0.224 | 1.000 | 0.776 | 1.000 | 0.239 | 1.000 | 0.761 | 1.000 | 0.231 | 1.000 | 0.769 | 1.000 | 0.231 | 1.000 | 0.769 | 1.000 | 0.251 | 1.000 | 0.749 | 1.000 | 0.279 | 0.990 | 0.721 |
TG | 0.925 | 0.230 | 1.000 | 0.774 | 1.000 | 0.227 | 1.000 | 0.773 | 0.992 | 0.233 | 1.000 | 0.767 | 1.000 | 0.226 | 1.000 | 0.774 | 0.986 | 0.227 | 1.000 | 0.773 | 0.991 | 0.216 | 1.000 | 0.784 | 0.959 | 0.215 | 1.000 | 0.786 |
TH | 1.000 | 0.530 | 1.000 | 0.470 | 1.000 | 0.545 | 1.000 | 0.455 | 1.000 | 0.541 | 1.000 | 0.459 | 1.000 | 0.540 | 1.000 | 0.460 | 1.000 | 0.550 | 1.000 | 0.450 | 1.000 | 0.558 | 1.000 | 0.442 | 1.000 | 0.560 | 1.000 | 0.440 |
TN | 1.000 | 0.487 | 1.000 | 0.513 | 1.000 | 0.495 | 1.000 | 0.505 | 1.000 | 0.497 | 1.000 | 0.503 | 1.000 | 0.507 | 1.000 | 0.493 | 1.000 | 0.526 | 1.000 | 0.474 | 1.000 | 0.537 | 1.000 | 0.463 | 1.000 | 0.575 | 1.000 | 0.425 |
TT | 1.000 | 0.582 | 0.988 | 0.418 | 1.000 | 0.571 | 0.988 | 0.430 | 1.000 | 0.793 | 0.981 | 0.208 | 1.000 | 0.813 | 0.957 | 0.192 | 1.000 | 0.792 | 1.000 | 0.208 | 1.000 | 0.611 | 1.000 | 0.389 | 1.000 | 0.623 | 1.000 | 0.377 |
TZ | 1.000 | 0.154 | 0.781 | 0.874 | 0.995 | 0.152 | 0.722 | 0.893 | 1.000 | 0.154 | 0.737 | 0.886 | 1.000 | 0.160 | 0.793 | 0.865 | 1.000 | 0.160 | 0.948 | 0.841 | 1.000 | 0.159 | 0.854 | 0.853 | 1.000 | 0.159 | 0.832 | 0.857 |
UA | 1.000 | 0.486 | 1.000 | 0.514 | 0.999 | 0.428 | 1.000 | 0.572 | 1.000 | 0.454 | 1.000 | 0.546 | 1.000 | 0.455 | 1.000 | 0.545 | 1.000 | 0.450 | 1.000 | 0.550 | 1.000 | 0.453 | 1.000 | 0.547 | 1.000 | 0.458 | 1.000 | 0.542 |
UG | 1.000 | 0.163 | 1.000 | 0.837 | 1.000 | 0.157 | 1.000 | 0.843 | 1.000 | 0.162 | 1.000 | 0.838 | 1.000 | 0.161 | 1.000 | 0.839 | 1.000 | 0.160 | 1.000 | 0.840 | 0.992 | 0.158 | 1.000 | 0.842 | 0.984 | 0.154 | 1.000 | 0.846 |
VE | 0.989 | 0.475 | 0.795 | 0.564 | 0.992 | 0.523 | 0.778 | 0.526 | 0.994 | 0.521 | 0.807 | 0.517 | 0.996 | 0.500 | 0.816 | 0.533 | 0.998 | 0.471 | 0.889 | 0.540 | 1.000 | 0.429 | 0.806 | 0.603 | 1.000 | 0.435 | 0.938 | 0.568 |
VN | 1.000 | 0.542 | 1.000 | 0.458 | 1.000 | 0.383 | 1.000 | 0.617 | 1.000 | 0.370 | 1.000 | 0.630 | 1.000 | 0.387 | 1.000 | 0.613 | 1.000 | 0.400 | 1.000 | 0.600 | 1.000 | 0.408 | 1.000 | 0.592 | 1.000 | 0.414 | 1.000 | 0.586 |
ZA | 0.863 | 0.705 | 1.000 | 0.325 | 0.863 | 0.697 | 1.000 | 0.333 | 0.863 | 0.680 | 1.000 | 0.348 | 0.887 | 0.696 | 1.000 | 0.324 | 0.897 | 0.661 | 1.000 | 0.355 | 0.917 | 0.655 | 1.000 | 0.355 | 0.905 | 0.648 | 1.000 | 0.364 |
ZM | 0.980 | 0.329 | 0.961 | 0.672 | 0.957 | 0.308 | 0.805 | 0.720 | 0.969 | 0.306 | 0.764 | 0.733 | 0.992 | 0.296 | 0.704 | 0.764 | 0.968 | 0.299 | 0.726 | 0.753 | 0.971 | 0.302 | 0.729 | 0.750 | 0.938 | 0.305 | 0.671 | 0.771 |
ZW | 1.000 | 0.181 | 0.798 | 0.844 | 1.000 | 0.267 | 0.815 | 0.757 | 1.000 | 0.274 | 0.824 | 0.747 | 1.000 | 0.296 | 0.716 | 0.759 | 1.000 | 0.179 | 0.771 | 0.853 | 1.000 | 0.178 | 0.748 | 0.859 | 1.000 | 0.178 | 0.771 | 0.853 |
16th Week | 17th Week | 18th Week | 19th Week | 20th Week | 21st Week | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDG3 | SDG11 | Distance | SDG3 | SDG11 | Distance | SDG3 | SDG11 | Distance | SDG3 | SDG11 | Distance | SDG3 | SDG11 | Distance | SDG3 | SDG11 | Distance | |
AR | 0.181 | 0.855 | 0.832 | 0.462 | 0.921 | 0.544 | 0.533 | 0.935 | 0.471 | 0.317 | 0.887 | 0.693 | 0.136 | 0.857 | 0.875 | 0.423 | 0.897 | 0.587 |
AT | 0.495 | 0.761 | 0.559 | 0.533 | 0.661 | 0.578 | 0.582 | 0.658 | 0.540 | 0.463 | 0.617 | 0.660 | 0.231 | 0.601 | 0.866 | 0.592 | 0.736 | 0.486 |
AU | 0.693 | 0.701 | 0.428 | 0.670 | 0.676 | 0.463 | 0.309 | 0.654 | 0.773 | 0.502 | 0.618 | 0.627 | 1.000 | 0.528 | 0.472 | 1.000 | 0.627 | 0.373 |
BD | 0.561 | 0.796 | 0.485 | 0.322 | 0.808 | 0.704 | 0.370 | 0.816 | 0.656 | 0.242 | 0.790 | 0.786 | 0.128 | 0.680 | 0.929 | 0.257 | 0.751 | 0.783 |
BE | 0.105 | 0.871 | 0.904 | 0.137 | 0.791 | 0.888 | 0.117 | 0.799 | 0.906 | 0.052 | 0.780 | 0.973 | 0.063 | 0.732 | 0.975 | 0.088 | 0.812 | 0.931 |
BG | 0.183 | 0.849 | 0.830 | 0.227 | 0.777 | 0.805 | 0.306 | 0.582 | 0.810 | 0.278 | 0.703 | 0.780 | 0.369 | 0.560 | 0.769 | 0.649 | 1.000 | 0.351 |
BH | 1.000 | 0.447 | 0.553 | 0.587 | 0.529 | 0.626 | 0.885 | 0.581 | 0.434 | 0.417 | 0.560 | 0.731 | 0.495 | 0.538 | 0.685 | 0.995 | 0.572 | 0.428 |
BO | 0.159 | 1.000 | 0.841 | 0.232 | 1.000 | 0.768 | 0.105 | 1.000 | 0.895 | 0.116 | 1.000 | 0.884 | 0.164 | 1.000 | 0.836 | 0.168 | 1.000 | 0.832 |
BY * | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 |
CA | 0.496 | 0.748 | 0.564 | 0.521 | 0.728 | 0.551 | 0.433 | 0.668 | 0.657 | 0.327 | 0.746 | 0.719 | 0.250 | 0.753 | 0.790 | 0.442 | 0.794 | 0.595 |
CH | 0.656 | 0.685 | 0.466 | 0.382 | 0.588 | 0.743 | 0.456 | 0.668 | 0.637 | 0.317 | 0.609 | 0.787 | 0.378 | 0.496 | 0.801 | 0.371 | 0.751 | 0.677 |
CL | 0.557 | 0.919 | 0.450 | 0.720 | 1.000 | 0.280 | 0.841 | 1.000 | 0.159 | 0.762 | 1.000 | 0.238 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 |
CO | 0.266 | 0.896 | 0.742 | 0.303 | 0.914 | 0.702 | 0.267 | 0.894 | 0.741 | 0.284 | 0.863 | 0.729 | 0.417 | 0.853 | 0.601 | 0.502 | 0.873 | 0.514 |
CR | 1.000 | 1.000 | 0.000 | 0.481 | 1.000 | 0.519 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.333 | 1.000 | 0.667 |
CZ | 0.448 | 0.584 | 0.691 | 0.689 | 0.504 | 0.586 | 0.505 | 0.552 | 0.668 | 0.271 | 0.611 | 0.827 | 0.159 | 0.379 | 1.045 | 0.434 | 0.455 | 0.786 |
DE | 0.850 | 0.654 | 0.377 | 0.812 | 0.507 | 0.527 | 0.782 | 0.532 | 0.516 | 0.459 | 0.466 | 0.761 | 0.324 | 0.421 | 0.891 | 0.511 | 0.736 | 0.556 |
DK | 0.439 | 0.766 | 0.608 | 0.578 | 0.532 | 0.631 | 0.473 | 0.497 | 0.729 | 0.336 | 0.592 | 0.779 | 0.252 | 0.463 | 0.921 | 0.554 | 0.571 | 0.619 |
EE | 1.000 | 0.806 | 0.194 | 0.617 | 0.839 | 0.416 | 1.000 | 0.943 | 0.057 | 0.307 | 0.908 | 0.699 | 0.336 | 1.000 | 0.664 | 1.000 | 1.000 | 0.000 |
GH | 0.214 | 0.696 | 0.843 | 1.000 | 0.687 | 0.313 | 0.338 | 0.684 | 0.734 | 0.223 | 0.667 | 0.845 | 0.249 | 1.000 | 0.751 | 0.223 | 1.000 | 0.777 |
HR | 0.440 | 0.774 | 0.604 | 0.638 | 0.671 | 0.489 | 0.395 | 0.714 | 0.669 | 0.207 | 0.566 | 0.904 | 0.509 | 0.473 | 0.720 | 1.000 | 0.848 | 0.152 |
HU | 0.188 | 0.634 | 0.891 | 0.451 | 0.527 | 0.724 | 0.314 | 0.574 | 0.807 | 0.433 | 0.539 | 0.730 | 0.097 | 0.544 | 1.011 | 0.494 | 0.523 | 0.695 |
ID | 0.224 | 0.678 | 0.840 | 0.308 | 0.787 | 0.724 | 0.315 | 0.833 | 0.705 | 0.230 | 0.921 | 0.774 | 0.208 | 0.867 | 0.803 | 0.520 | 0.827 | 0.510 |
IL | 0.404 | 0.887 | 0.606 | 0.497 | 0.730 | 0.571 | 1.000 | 0.752 | 0.248 | 0.569 | 0.558 | 0.618 | 0.297 | 0.521 | 0.850 | 0.451 | 0.442 | 0.783 |
IN | 0.700 | 0.755 | 0.387 | 1.000 | 0.791 | 0.209 | 1.000 | 0.781 | 0.219 | 1.000 | 0.722 | 0.278 | 0.496 | 0.655 | 0.611 | 1.000 | 0.704 | 0.296 |
IT | 0.948 | 0.948 | 0.074 | 1.000 | 0.939 | 0.061 | 1.000 | 0.903 | 0.097 | 1.000 | 0.836 | 0.164 | 0.704 | 0.864 | 0.326 | 1.000 | 0.732 | 0.268 |
JP | 0.710 | 0.499 | 0.579 | 1.000 | 0.654 | 0.346 | 1.000 | 0.675 | 0.325 | 0.331 | 1.000 | 0.669 | 0.497 | 0.711 | 0.580 | 1.000 | 0.748 | 0.252 |
KE | 0.328 | 0.631 | 0.767 | 0.591 | 0.630 | 0.551 | 1.000 | 0.689 | 0.311 | 0.225 | 0.624 | 0.861 | 0.239 | 0.669 | 0.830 | 0.578 | 0.662 | 0.540 |
KR | 1.000 | 0.290 | 0.710 | 0.965 | 0.368 | 0.633 | 0.684 | 0.395 | 0.683 | 0.298 | 0.384 | 0.933 | 0.265 | 0.171 | 1.108 | 0.364 | 0.258 | 0.977 |
KZ | 0.451 | 0.771 | 0.595 | 0.635 | 0.790 | 0.421 | 0.752 | 0.752 | 0.350 | 0.428 | 0.776 | 0.614 | 0.323 | 0.603 | 0.785 | 0.478 | 0.510 | 0.716 |
LT | 0.348 | 0.747 | 0.699 | 0.493 | 0.591 | 0.651 | 0.439 | 0.661 | 0.655 | 0.301 | 0.486 | 0.868 | 0.501 | 0.477 | 0.722 | 0.748 | 0.426 | 0.627 |
LU | 0.439 | 0.966 | 0.562 | 0.604 | 0.856 | 0.421 | 0.300 | 0.956 | 0.702 | 0.502 | 0.920 | 0.505 | 1.000 | 0.876 | 0.124 | 1.000 | 0.983 | 0.017 |
LV | 0.434 | 1.000 | 0.566 | 0.986 | 1.000 | 0.014 | 0.273 | 1.000 | 0.727 | 0.333 | 1.000 | 0.667 | 0.500 | 1.000 | 0.500 | 1.000 | 1.000 | 0.000 |
MA | 0.458 | 1.000 | 0.542 | 0.565 | 1.000 | 0.435 | 0.583 | 1.000 | 0.417 | 0.314 | 1.000 | 0.686 | 0.621 | 1.000 | 0.379 | 0.457 | 1.000 | 0.543 |
MX | 1.000 | 0.724 | 0.276 | 1.000 | 0.862 | 0.138 | 1.000 | 0.878 | 0.122 | 1.000 | 0.883 | 0.117 | 0.695 | 0.890 | 0.325 | 1.000 | 0.908 | 0.092 |
MY | 0.450 | 0.947 | 0.552 | 0.587 | 0.949 | 0.416 | 0.481 | 0.958 | 0.520 | 1.000 | 0.915 | 0.085 | 0.343 | 0.798 | 0.687 | 0.756 | 0.737 | 0.359 |
NG | 0.550 | 0.837 | 0.479 | 0.476 | 0.756 | 0.578 | 0.312 | 0.759 | 0.729 | 0.212 | 0.730 | 0.833 | 0.156 | 0.721 | 0.889 | 0.345 | 0.776 | 0.692 |
NP | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.248 | 0.835 | 0.770 | 0.686 | 0.945 | 0.319 |
PA | 1.000 | 1.000 | 0.000 | 0.516 | 1.000 | 0.484 | 0.087 | 1.000 | 0.913 | 1.000 | 1.000 | 0.000 | 0.172 | 1.000 | 0.828 | 1.000 | 1.000 | 0.000 |
PE | 0.757 | 0.927 | 0.254 | 0.575 | 0.950 | 0.428 | 1.000 | 0.947 | 0.053 | 0.634 | 0.935 | 0.371 | 0.255 | 0.980 | 0.745 | 0.746 | 0.992 | 0.254 |
PH | 0.204 | 0.842 | 0.812 | 0.212 | 0.865 | 0.800 | 0.206 | 0.883 | 0.803 | 0.117 | 0.847 | 0.897 | 0.099 | 0.834 | 0.916 | 0.217 | 0.822 | 0.803 |
PK | 0.372 | 0.567 | 0.763 | 0.366 | 0.573 | 0.764 | 0.491 | 0.643 | 0.622 | 0.457 | 0.594 | 0.678 | 0.208 | 0.461 | 0.958 | 0.786 | 0.474 | 0.568 |
PL | 0.360 | 0.852 | 0.657 | 0.382 | 0.624 | 0.723 | 0.473 | 0.565 | 0.683 | 0.304 | 0.526 | 0.842 | 0.184 | 0.475 | 0.970 | 0.288 | 0.424 | 0.916 |
PT | 0.129 | 0.892 | 0.878 | 0.271 | 0.861 | 0.742 | 0.825 | 0.834 | 0.241 | 1.000 | 0.770 | 0.230 | 0.252 | 0.769 | 0.783 | 0.364 | 0.747 | 0.685 |
PY | 1.000 | 1.000 | 0.000 | 0.502 | 0.747 | 0.558 | 1.000 | 0.813 | 0.187 | 1.000 | 0.888 | 0.112 | 1.000 | 0.973 | 0.027 | 1.000 | 1.000 | 0.000 |
QA | 0.521 | 0.640 | 0.599 | 0.376 | 0.711 | 0.688 | 0.595 | 0.768 | 0.466 | 1.000 | 0.780 | 0.220 | 0.535 | 0.753 | 0.526 | 0.671 | 0.700 | 0.445 |
RO | 0.511 | 0.714 | 0.567 | 0.640 | 0.768 | 0.429 | 0.433 | 0.675 | 0.653 | 0.373 | 0.662 | 0.712 | 0.268 | 0.516 | 0.878 | 0.490 | 0.495 | 0.718 |
RS | 0.314 | 0.980 | 0.686 | 0.507 | 0.988 | 0.493 | 0.608 | 0.893 | 0.407 | 0.275 | 0.666 | 0.799 | 1.000 | 0.522 | 0.478 | 0.479 | 0.999 | 0.521 |
RU | 0.889 | 0.572 | 0.443 | 1.000 | 0.581 | 0.419 | 1.000 | 0.570 | 0.430 | 1.000 | 0.672 | 0.328 | 0.799 | 0.590 | 0.457 | 1.000 | 0.505 | 0.495 |
RW | 1.000 | 0.930 | 0.070 | 1.000 | 0.905 | 0.095 | 1.000 | 1.000 | 0.000 | 0.501 | 1.000 | 0.499 | 0.500 | 1.000 | 0.500 | 1.000 | 1.000 | 0.000 |
SG | 0.299 | 0.968 | 0.701 | 0.935 | 1.000 | 0.065 | 0.895 | 1.000 | 0.105 | 1.000 | 1.000 | 0.000 | 0.393 | 1.000 | 0.607 | 0.748 | 1.000 | 0.252 |
SK | 0.407 | 0.664 | 0.682 | 1.000 | 0.647 | 0.353 | 1.000 | 0.723 | 0.277 | 1.000 | 0.624 | 0.376 | 1.000 | 0.555 | 0.445 | 1.000 | 0.475 | 0.525 |
SN | 1.000 | 0.642 | 0.358 | 0.555 | 0.612 | 0.590 | 0.654 | 0.659 | 0.486 | 0.277 | 0.657 | 0.800 | 0.386 | 0.640 | 0.712 | 0.765 | 0.708 | 0.375 |
SV | 1.000 | 1.000 | 0.000 | 0.704 | 1.000 | 0.296 | 0.343 | 1.000 | 0.657 | 0.678 | 1.000 | 0.322 | 0.157 | 1.000 | 0.843 | 0.506 | 1.000 | 0.494 |
TH | 0.389 | 0.693 | 0.684 | 1.000 | 0.751 | 0.249 | 1.000 | 0.846 | 0.154 | 0.590 | 0.648 | 0.541 | 0.500 | 0.559 | 0.667 | 1.000 | 1.000 | 0.000 |
TR | 1.000 | 0.728 | 0.272 | 1.000 | 0.800 | 0.200 | 0.640 | 0.778 | 0.423 | 0.490 | 0.751 | 0.568 | 0.384 | 0.645 | 0.712 | 1.000 | 0.836 | 0.164 |
TW * | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 |
UA | 0.248 | 0.629 | 0.839 | 0.371 | 0.695 | 0.699 | 0.412 | 0.594 | 0.714 | 0.291 | 0.604 | 0.812 | 0.301 | 0.535 | 0.840 | 0.417 | 0.406 | 0.833 |
UG * | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 |
US | 1.000 | 0.547 | 0.453 | 1.000 | 0.548 | 0.452 | 1.000 | 0.490 | 0.510 | 1.000 | 0.562 | 0.438 | 1.000 | 0.560 | 0.440 | 1.000 | 0.545 | 0.455 |
UY | 0.561 | 1.000 | 0.439 | 0.674 | 1.000 | 0.326 | 0.600 | 1.000 | 0.400 | 1.000 | 1.000 | 0.000 | 0.501 | 1.000 | 0.499 | 1.000 | 1.000 | 0.000 |
References
- United Nations. The Sustainable Development Goals Report 2019; The Sustainable Development Goals Report; United Nations: San Francisco, CA, USA, 2019. [Google Scholar]
- van Zanten, J.A.; van Tulder, R. Beyond COVID-19: Applying “SDG logics” for resilient transformations. J. Int. Bus. Policy 2020. [Google Scholar] [CrossRef]
- Kwon, H.B.; Lee, J. Two-stage production modeling of large U.S. banks: A DEA-neural network approach. Expert Syst. Appl. 2015, 42, 6758–6766. [Google Scholar] [CrossRef]
- Shokrollahpour, E.; Lotfi, F.H.; Zandieh, M. An integrated data envelopment analysis–artificial neural network approach for benchmarking of bank branches. J. Ind. Eng. Int. 2016, 12, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.B.; Marvel, J.H.; Roh, J.J. Three-stage performance modeling using DEA–BPNN for better practice benchmarking. Expert Syst. Appl. 2017, 71, 429–441. [Google Scholar] [CrossRef]
- Shabanpour, H.; Yousefi, S.; Saen, R.F. Forecasting efficiency of green suppliers by dynamic data envelopment analysis and artificial neural networks. J. Clean. Prod. 2017, 142, 1098–1107. [Google Scholar] [CrossRef]
- Hong, H.K.; Ha, S.H.; Shin, C.K.; Park, S.C.; Kim, S.H. Evaluating the efficiency of system integration projects using data envelopment analysis (DEA) and machine learning. Expert Syst. Appl. 1999, 16, 283–296. [Google Scholar] [CrossRef]
- Nandy, A.; Singh, P.K. Farm efficiency estimation using a hybrid approach of machine-learning and data envelopment analysis: Evidence from rural eastern India. J. Clean. Prod. 2020, 267, 122106. [Google Scholar] [CrossRef]
- Villanueva Zacarias, A.G.; Reimann, P.; Mitschang, B. A framework to guide the selection and configuration of machine-learning-based data analytics solutions in manufacturing. Procedia CIRP 2018, 72, 153–158. [Google Scholar] [CrossRef]
- Lee, K.M.; Yoo, J.; Kim, S.W.; Lee, J.H.; Hong, J. Autonomic machine learning platform. Int. J. Inf. Manag. 2019, 49, 491–501. [Google Scholar] [CrossRef]
- Quemy, A. Two-stage optimization for machine learning workflow. Inf. Syst. 2020, 92, 101483. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Hu, W.; Liu, Z.; Tan, J. TBM performance prediction with Bayesian optimization and automated machine learning. Tunn. Undergr. Sp. Technol. 2020, 103, 103493. [Google Scholar] [CrossRef]
- Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104, 101822. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.B.; Coco, G.; Plant, N.G. A review of machine learning applications to coastal sediment transport and morphodynamics. Earth-Sci. Rev. 2019, 194, 97–108. [Google Scholar] [CrossRef] [Green Version]
- UN General Assembly. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development (A/RES/71/313, E/CN.3/2018/2, E/CN.3/2019/2 and E/CN.3/2020/2); UN General Assembly: New York, NY, USA, 2020. [Google Scholar]
- Janoušková, S.; Hák, T.; Moldan, B. Global SDGs assessments: Helping or confusing indicators? Sustainability 2018, 10, 1540. [Google Scholar] [CrossRef] [Green Version]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Barr, R.; Durchholz, M.; Seiford, L. Peeling the DEA Onion: Layering and Rank-Ordering DMUs Using Tiered DEA; Southern Methodist University Technical Report: Dallas, TX, USA, 2000. [Google Scholar]
- Seiford, L.M.; Zhu, J. Context-dependent data envelopment analysis—Measuring attractiveness and progress. Omega 2003, 31, 397–408. [Google Scholar] [CrossRef]
- Karamoozian, A.; Wu, D.; Chen, C.L.P.; Luo, C. An Approach for Risk Prioritization in Construction Projects Using Analytic Network Process and Decision Making Trial and Evaluation Laboratory. IEEE Access 2019, 7, 159842–159854. [Google Scholar] [CrossRef]
- Bougnol, M.L.; Dulá, J.H. Validating DEA as a ranking tool: An application of DEA to assess performance in higher education. Ann. Oper. Res. 2006, 145, 339–365. [Google Scholar] [CrossRef]
- Sharma, M.J.; Yu, S.J. Performance based stratification and clustering for benchmarking of container terminals. Expert Syst. Appl. 2009, 36, 5016–5022. [Google Scholar] [CrossRef]
- Lim, S.; Bae, H.; Lee, L.H. A study on the selection of benchmarking paths in DEA. Expert Syst. Appl. 2011, 38, 7665–7673. [Google Scholar] [CrossRef]
- Lu, W.M.; Lo, S.F. Constructing stratifications for regions in China with sustainable development concerns. Qual. Quant. 2012, 46, 1807–1823. [Google Scholar] [CrossRef]
- Hong, J.D.; Jeong, K.Y. Cross efficiency based heuristics to rank decision making units in data envelopment analysis. Comput. Ind. Eng. 2017, 111, 320–330. [Google Scholar] [CrossRef]
- Lim, S. Context-dependent data envelopment analysis with cross-efficiency evaluation. J. Oper. Res. Soc. 2012, 63, 38–46. [Google Scholar] [CrossRef]
- Orlenko, A.; Moore, J.H.; Orzechowski, P.; Olson, R.S.; Cairns, J.; Caraballo, P.J.; Weinshilboum, R.M.; Wang, L.; Breitenstein, M.K. Considerations for automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure. In Proceedings of the Pacific Symposium on Biocomputing, Big Island, HI, USA, 3–7 January 2018; pp. 460–471. [Google Scholar]
- Toh, T.S.; Dondelinger, F.; Wang, D. Looking beyond the hype: Applied AI and machine learning in translational medicine. EBioMedicine 2019, 47, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Villela, M.A.; Bravo, C.A.; Shah, M.; Patel, S.; Jorde, U.P.; Stehlik, J.; Castellanos, A. Prediction of Outcomes after Heart Transplantation Using Machine Learning Techniques. J. Heart Lung Transplant. 2020, 39, S295–S296. [Google Scholar] [CrossRef]
- Faes, L.; Wagner, S.K.; Fu, D.J.; Liu, X.; Korot, E.; Ledsam, J.R.; Back, T.; Chopra, R.; Pontikos, N.; Kern, C.; et al. Automated deep learning design for medical image classification by health-care professionals with no coding experience: A feasibility study. Lancet Digit. Heal. 2019, 1, e232–e242. [Google Scholar] [CrossRef] [Green Version]
- Jang, H. A decision support framework for robust R&D budget allocation using machine learning and optimization. Decis. Support Syst. 2019, 121, 1–12. [Google Scholar] [CrossRef]
- Lautenschlager, F.; Becker, M.; Kobs, K.; Steininger, M.; Davidson, P.; Krause, A.; Hotho, A. OpenLUR: Off-the-shelf air pollution modeling with open features and machine learning. Atmos. Environ. 2020, 233, 117535. [Google Scholar] [CrossRef]
- Adams, M.D.; Massey, F.; Chastko, K.; Cupini, C. Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction. Atmos. Environ. 2020, 230, 117479. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Hissel, D.; Su, H. Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method. Appl. Energy 2019, 237, 910–919. [Google Scholar] [CrossRef]
- Kosir, S.; Heyne, J.; Graham, J. A machine learning framework for drop-in volume swell characteristics of sustainable aviation fuel. Fuel 2020, 274, 117832. [Google Scholar] [CrossRef]
- Soares, E.F.; Campos, C.A.; de Lucena, S.C. Online travel mode detection method using automated machine learning and feature engineering. Futur. Gener. Comput. Syst. 2019, 101, 1201–1212. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, J. A machine learning model for detecting invasive ductal carcinoma with Google Cloud AutoML Vision. Comput. Biol. Med. 2020, 122, 103861. [Google Scholar] [CrossRef]
- Tsamardinos, I.; Fanourgakis, G.S.; Greasidou, E.; Klontzas, E.; Gkagkas, K.; Froudakis, G.E. An Automated Machine Learning architecture for the accelerated prediction of Metal-Organic Frameworks performance in energy and environmental applications. Microporous Mesoporous Mater. 2020, 300, 110160. [Google Scholar] [CrossRef]
- Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA. In Automated Machine Learning: Methods, Systems, Challenges; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 81–95. ISBN 978-3-030-05318-5. [Google Scholar]
- Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Auto-sklearn: Efficient and Robust Automated Machine Learning. In Automated Machine Learning: Methods, Systems, Challenges; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 113–134. ISBN 978-3-030-05318-5. [Google Scholar]
- Olson, R.S.; Moore, J.H. TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning. In Automated Machine Learning: Methods, Systems, Challenges; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 151–160. ISBN 978-3-030-05318-5. [Google Scholar]
- van Kuppevelt, D.; Meijer, C.; Huber, F.; van der Ploeg, A.; Georgievska, S.; van Hees, V.T. Mcfly: Automated deep learning on time series. SoftwareX 2020, 12, 100548. [Google Scholar] [CrossRef]
- Jin, H.; Song, Q.; Hu, X. Auto-Keras: An Efficient Neural Architecture Search System. In Proceedings of the Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1946–1956. [Google Scholar]
- Olson, R.S.; Urbanowicz, R.J.; Andrews, P.C.; Lavender, N.A.; Kidd, L.C.; Moore, J.H. Automating biomedical data science through tree-based pipeline optimization. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2016; Volume 9597, pp. 123–137. [Google Scholar]
- Balaji, A.; Allen, A. Benchmarking Automatic Machine Learning Frameworks. arXiv 2018, arXiv:1808.06492. [Google Scholar]
- Zhou, H.; Yang, Y.; Chen, Y.; Zhu, J. Data envelopment analysis application in sustainability: The origins, development and future directions. Eur. J. Oper. Res. 2018, 264, 1–16. [Google Scholar] [CrossRef]
- Athanassopoulos, A.D.; Curram, S.P. A comparison of data envelopment analysis and artificial neural networks as tools for assessing the efficiency of decision making units. J. Oper. Res. Soc. 1996, 47, 1000–1016. [Google Scholar] [CrossRef]
- Wu, D.; Yang, Z.; Liang, L. Using DEA-neural network approach to evaluate branch efficiency of a large Canadian bank. Expert Syst. Appl. 2006, 31, 108–115. [Google Scholar] [CrossRef]
- Agarwal, R.; Green, R.; Brown, P.J.; Tan, H.; Randhawa, K. Determinants of quality management practices: An empirical study of New Zealand manufacturing firms. Int. J. Prod. Econ. 2013, 142, 130–145. [Google Scholar] [CrossRef]
- Hanafizadeh, P.; Khedmatgozar, H.R.; Emrouznejad, A.; Derakhshan, M. Neural network DEA for measuring the efficiency of mutual funds. Int. J. Appl. Decis. Sci. 2014, 7, 255–269. [Google Scholar] [CrossRef]
- Mostafa, M.M. Modeling the efficiency of top Arab banks: A DEA-neural network approach. Expert Syst. Appl. 2009, 36, 309–320. [Google Scholar] [CrossRef]
- Kwon, H.B.; Lee, J.; Roh, J.J. Best performance modeling using complementary DEA-ANN approach: Application to Japanese electronics manufacturing firms. Benchmarking 2016, 23, 704–721. [Google Scholar] [CrossRef]
- Kwon, H.B. Exploring the predictive potential of artificial neural networks in conjunction with DEA in railroad performance modeling. Int. J. Prod. Econ. 2017, 183, 159–170. [Google Scholar] [CrossRef]
- Kwon, H.B. Performance modeling of mobile phone providers: A dea-ann combined approach. Benchmarking 2014, 21, 1120–1144. [Google Scholar] [CrossRef]
- Misiunas, N.; Oztekin, A.; Chen, Y.; Chandra, K. DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status. Omega 2016, 58, 46–54. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Amirhossein, K.; Desheng, W. A hybrid risk prioritization approach in construction projects using failure mode and effective analysis. Eng. Constr. Archit. Manag. 2020, 27, 2661–2686. [Google Scholar] [CrossRef]
- Jin, X.; Li, D.D.; Wu, S. How will China shape the world economy? China Econ. Rev. 2016, 40, 272–280. [Google Scholar] [CrossRef]
- Singpai, B.; Wu, D.D. An integrative approach for evaluating the environmental economic efficiency. Energy 2020, 118940. [Google Scholar] [CrossRef]
- Asian Development Bank. Key Indicators for Asia and the Pacific 2017; Asian Development Bank: Manila, PA, USA, 2017. [Google Scholar]
- OECD Measuring Distance to the SDG Targets 2019; OECD Publishing: Paris, France, 2019; ISBN 9789264480940.
- Morton, S.; Pencheon, D.; Squires, N. Sustainable Development Goals (SDGs), and their implementation. Br. Med. Bull. 2017, 124, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Li, K.-W. China’s Economic Reform Path. Redefining Capital. Glob. Econ. Dev. 2017, 331–358. [Google Scholar] [CrossRef]
- Lim, M.M.L.; Søgaard Jørgensen, P.; Wyborn, C.A. Reframing the sustainable development goals to achieve sustainable development in the anthropocene—A systems approach. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Lamy, C.; Millet, P. A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions. J. Power Sources 2020, 447, 227350. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Z.; Ma, C.; Liu, D.; Shen, W. Two-stage DEA models with undesirable input-intermediate-outputs. Omega 2015, 56, 74–87. [Google Scholar] [CrossRef]
- United Nations. Shared Responsibility, Global Solidarity: Responding to the Socio-Economic Impacts of COVID-19; United Nations: San Francisco, CA, USA, 2020. [Google Scholar]
- Shirouyehzad, H.; Jouzdani, J.; Khodadadi Karimvand, M. Fight Against COVID-19: A Global Efficiency Evaluation based on Contagion Control and Medical Treatment. J. Appl. Res. Ind. Eng. 2020, 7, 109–120. [Google Scholar] [CrossRef]
- Ghasemi, A.; Boroumand, Y.; Researcher, I.; Shirazi, M. How Do Governments Perform in Facing COVID-19? MPRA: Munich, Germany, 2020. [Google Scholar]
- Petherick, A.; Hale, T.; Phillips, T.; Webster, S. Variation in Government Responses to COVID-19|Blavatnik School of Government; Blavatnik School of Government Working Paper; Blavatnik School of Government: Oxford, UK, 27 May 2020. [Google Scholar]
- Parady, G.; Taniguchi, A.; Takami, K. Travel behavior changes during the COVID-19 pandemic in Japan: Analyzing the effects of risk perception and social influence on going-out self-restriction. Transp. Res. Interdiscip. Perspect. 2020, 7, 100181. [Google Scholar] [CrossRef]
- de Haas, M.; Faber, R.; Hamersma, M. How COVID-19 and the Dutch ‘intelligent lockdown’ change activities, work and travel behaviour: Evidence from longitudinal data in the Netherlands. Transp. Res. Interdiscip. Perspect. 2020, 6, 100150. [Google Scholar] [CrossRef]
- Hadjidemetriou, G.M.; Sasidharan, M.; Kouyialis, G.; Parlikad, A.K. The impact of government measures and human mobility trend on COVID-19 related deaths in the UK. Transp. Res. Interdiscip. Perspect. 2020, 6, 100167. [Google Scholar] [CrossRef]
- Badr, H.S.; Du, H.; Marshall, M.; Dong, E.; Squire, M.M.; Gardner, L.M. Association between mobility patterns and COVID-19 transmission in the USA: A mathematical modelling study. Lancet Infect. Dis. 2020, 3099, 1–8. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, R.; Hu, D.; Yue, Y.; Li, Q.; Xia, J. Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: A modelling study using mobile phone data. Lancet Digit. Health 2020, 2, e417–e424. [Google Scholar] [CrossRef]
- Pier, M.M.; Pasick, L.J.; Benito, D.A.; Alnouri, G.; Sataloff, R.T. Otolaryngology-related Google Search trends during the COVID-19 pandemic. Am. J. Otolaryngol. 2020, 41, 102615. [Google Scholar] [CrossRef] [PubMed]
- Kurian, S.J.; ur Rehman Bhatti, A.; Alvi, M.A.; Ting, H.H.; Storlie, C.; Wilson, P.M.; Shah, N.D.; Liu, H.; Bydon, M. Correlations Between COVID-19 Cases and Google Trends Data in the United States: A State by State Analysis. Mayo Clin. Proc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Husnayain, A.; Fuad, A.; Su, E.C.-Y. Applications of Google Search Trends for risk communication in infectious disease management: A case study of the COVID-19 outbreak in Taiwan. Int. J. Infect. Dis. 2020, 95, 221–223. [Google Scholar] [CrossRef]
- Effenberger, M.; Kronbichler, A.; Shin, J.I.; Mayer, G.; Tilg, H.; Perco, P. Association of the COVID-19 pandemic with Internet Search Volumes: A Google TrendsTM Analysis. Int. J. Infect. Dis. 2020, 95, 192–197. [Google Scholar] [CrossRef]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19); World Health Organisation: Geneva, Switzerland, 2020; Volume 2019. [Google Scholar]
- Wang, L.; Li, J.; Guo, S.; Xie, N.; Yao, L.; Cao, Y.; Day, S.W.; Howard, S.C.; Graff, J.C.; Gu, T.; et al. Real-time estimation and prediction of mortality caused by COVID-19 with patient information based algorithm. Sci. Total Environ. 2020, 727, 138394. [Google Scholar] [CrossRef]
- Emrouznejad, A.; Shale, E. A combined neural network and DEA for measuring efficiency of large scale datasets. Comput. Ind. Eng. 2009, 56, 249–254. [Google Scholar] [CrossRef]
- Shih, D.H.; Yen, D.C.; Lin, H.C.; Shih, M.H. An implementation and evaluation of recommender systems for traveling abroad. Expert Syst. Appl. 2011, 38, 15344–15355. [Google Scholar] [CrossRef]
- Ghiassi, M.; Burnley, C. Measuring effectiveness of a dynamic artificial neural network algorithm for classification problems. Expert Syst. Appl. 2010, 37, 3118–3128. [Google Scholar] [CrossRef]
- Chang, C.L.; Chen, C.H. Applying decision tree and neural network to increase quality of dermatologic diagnosis. Expert Syst. Appl. 2009, 36, 4035–4041. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chuang, C.H.; Yang, Y.J.; Wu, T.P. Exploring the risk factors of preterm birth using data mining. Expert Syst. Appl. 2011, 38, 5384–5387. [Google Scholar] [CrossRef]
Indicator | Extracted Denominator | Extracted Numerator |
---|---|---|
(7.1.1 *) Proportion of population with access to electricity | Population | Electricity access |
(7.1.2 *) Proportion of population with primary reliance on clean fuels and technology | Population | Clean fuel access |
(7.2.1 *) Renewable energy share in the total final energy consumption | Total energy consumption | Renewable energy |
(7.3.1 *) Energy intensity measured in terms of primary energy and GDP | GDP | Total energy consumption |
(7.a.1) International financial flows to developing countries in support of clean energy research and development and renewable energy production, including in hybrid systems | N/A | Clean energy finance flows |
(7.b.1) Installed renewable energy-generating capacity in developing countries (in watts per capita) | Population | Electricity generated by renewable resources |
(8.1.1 *) Annual growth rate of real GDP per capita | Population | GDP |
(8.2.1 *) Annual growth rate of real GDP per employed person | Employment | GDP |
(8.3.1) Proportion of informal employment in total employment, by sector and sex | Employment | Informal employment |
(8.4.1) Material footprint, material footprint per capita, and material footprint per GDP | GDP | Material footprint |
(8.4.2 *) Domestic material consumption, domestic material consumption per capita, and domestic material consumption per GDP | Population | Domestic material consumption |
(8.5.1) Average hourly earnings of female and male employees, by occupation, age and persons with disabilities | Total working hours | Total income |
(8.5.2 *) Unemployment rate, by sex, age and persons with disabilities | Labor force | Unemployment |
(8.6.1) Proportion of youth (aged 15–24 years) not in education, employment or training | Youth population | Uneducated or unemployed youth |
(8.7.1) Proportion and number of children aged 5–17 years engaged in child labor, by sex and age | Child population | Child employment |
(8.8.1) Frequency rates of fatal and non-fatal occupational injuries, by sex and migrant status | Employment | Non-fatal occupational injuries and illnesses |
(8.8.2) Level of national compliance with labor rights (freedom of association and collective bargaining) based on International Labour Organization (ILO) textual sources and national legislation, by sex and migrant status | N/A | National compliance with labor rights |
(8.9.1) Tourism direct GDP as a proportion of total GDP and in growth rate | GDP | Tourism value added |
(8.10.1 *) (a) Number of commercial bank branches per 100,000 adults and (b) number of automated teller machines (ATMs) per 100,000 adults | Adult population | Number of commercial bank branches |
(8.10.2) Proportion of adults (15 years and older) with an account at a bank or other financial institution or with a mobile-money-service provider | Adult population | Adults with an account at a financial institution |
(8.a.1) Aid for Trade commitments and disbursements | N/A | Commitments for aid for trade |
(8.b.1) Existence of a developed and operationalized national strategy for youth employment, as a distinct strategy or as part of a national employment strategy | N/A | Number of national strategies for youth employment |
(9.1.1) Proportion of the rural population who live within 2 km of an all-season road | Total rural population | Rural population who live within 2 km of an all-season road |
(9.1.2 *) Passenger and freight volumes, by mode of transport | Population | Air, road or railways passengers or goods transferred |
(9.2.1 *) Manufacturing value added as a proportion of GDP and per capita | Population | Manufacturing value added |
(9.2.2 *) Manufacturing employment as a proportion of total employment | Employment | Manufacturing employment |
(9.3.1) Proportion of small-scale industries in total industry value added | Industry value added | Small-scale industries value added |
(9.3.2) Proportion of small-scale industries with a loan or line of credit | Number of small-scale industries | Small-scale industries with loan or line of credit |
(9.4.1 *) CO2 emission per unit of value added | Gross value added | CO2 emissions |
(9.5.1) Research and development expenditure as a proportion of GDP | GDP | Research and development expenditure |
(9.5.2) Researchers (in full-time equivalent) per million inhabitants | Population | Researchers |
(9.a.1) Total official international support (official development assistance plus other official flows) to infrastructure | N/A | Total official flows for infrastructure |
(9.b.1) Proportion of medium and high-tech industry value added in total value added | Gross value added | Medium and high-tech industry value added |
(9.c.1 *) Proportion of population covered by a mobile network, by technology | Population | Mobile phone subscriptions or Internet users |
Variables | Sources | Units | SDGs | Types | Mean | SD | Max | Min | |
---|---|---|---|---|---|---|---|---|---|
1 | Energy consumption | U.S. EIA | ktoe | 7 | Input | 56,703 | 217,288 | 1,995,057 | 399 |
2 | Population | World Bank | people | 7, 8, 9 | Input | 48,895,906 | 155,696,380 | 1,386,395,000 | 416,268 |
3 | Labor force | World Bank | people | 8 | Input | 23,336,083 | 88,036,169 | 787,399,317 | 180,756 |
4 | Adult population | World Bank | people | 8 | Input | 36,366,959 | 126,249,267 | 1,137,712,323 | 354,703 |
5 | Total employment | World Bank | people | 8, 9 | Input | 22,120,921 | 84,072,312 | 752,753,746 | 169,227 |
6 | Gross value added | UN | constant 2015 US$ | 9 | Input | 300,768,954,726 | 1,180,630,638,278 | 12,600,000,000,000 | 2,910,456,947 |
7 | Access to clean fuels | World Bank | people | 7 | Output | 27,966,632 | 90,083,247 | 816,996,879 | 278,423 |
8 | Access to electricity | World Bank | people | 7 | Output | 43,190,262 | 154,469,265 | 1,386,395,000 | 416,268 |
9 | Renewable energy Consumption | U.S. EIA | ktoe | 7 | Output | 6469 | 18,439 | 127,544 | 1 |
10 | GDP | UN | constant 2015 US$ | 7, 8 | Output | 313,461,796,866 | 1,187,748,354,777 | 12,600,000,000,000 | 3,299,234,529 |
11 | Domestic material consumption | World Bank | KG | 8 | Output | 659,176,464,099 | 3,493,224,391,622 | 34,800,000,000,000 | 6,756,860,686 |
12 | Unemployment | World Bank | people | 8 | Output (U) | 1,215,027 | 4,032,204 | 36,101,083 | 10,040 |
13 | Commercial bank branches | World Bank | branches | 8 | Output | 4426 | 11,902 | 99,937 | 20 |
14 | Air freight | World Bank | million ton-km | 9 | Output | 904 | 3000 | 23,324 | 0.0001 |
15 | Air passengers | World Bank | people | 9 | Output | 14,766,277 | 48,542,713 | 551,234,509 | 899 |
16 | Manufacturing employment | World Bank | people | 9 | Output | 5,350,647 | 24,121,994 | 219,519,439 | 28,306 |
17 | Manufacturing value added | UN | constant 2015 US$ | 9 | Output | 67,113,438,034 | 345,141,666,422 | 3,660,000,000,000 | 189,954,006 |
18 | CO2 emissions | U.S. EIA | ktCO2 | 9 | Output (U) | 215,510 | 1,015,721 | 9,259,259 | 1,354 |
19 | Internet users | World Bank | people | 9 | Output | 19,199,110 | 73,370,618 | 752,812,485 | 113,488 |
20 | Mobile phone subscriptions | World Bank | people | 9 | Output | 49,323,520 | 146,141,851 | 1,469,882,500 | 478,860 |
Variables | Sources | Units | SDGs | Types | Mean | SD | Max | Min | |
---|---|---|---|---|---|---|---|---|---|
1 | Active cases | Johns Hopkins University | cases | 3 | Input | 26,611 | 122,361 | 1,171,805 | 23 |
2 | Containment and health index | University of Oxford | score | 3 | Input | 75 | 13 | 100 | 25 |
3 | Days from the first confirmed case | Johns Hopkins University | days | 11 | Input | 73 | 22 | 131 | 28 |
4 | New COVID-19 tests | University of Oxford | cases | 11 | Input | 103,594 | 284,720 | 2,651,203 | 839 |
5 | Trending inquiries about “covid” | score | 11 | Input | 52 | 18 | 94 | 7 | |
6 | Government response index | University of Oxford | score | 11 | Input | 73 | 12 | 96 | 21 |
7 | Newly recovered cases at week t + 3 | Johns Hopkins University | cases | 3 | Output | 4907 | 11,706 | 92,863 | 2 |
8 | New deaths at week t + 3 | Johns Hopkins University | people | 3 | Output (U) | 311 | 1143 | 12,452 | 0 |
9 | Active cases at week t + 3 | Johns Hopkins University | cases | 3 | Output (U) | 34,848 | 156,540 | 1,402,525 | 5 |
10 | Daily visits to workplaces | score | 11 | Output | 41 | 16 | 80 | 1 | |
11 | Daily visits to residential | score | 11 | Output | 18 | 8 | 41 | 2 | |
12 | Daily visits to public places | score | 11 | Output | 53 | 22 | 100 | 1 | |
13 | Newly confirmed COVID-19 cases at week t + 1 | Johns Hopkins University | cases | 3 | Input | 7140 | 23,867 | 210,512 | 0 |
11 | Output (U) |
(a) | (b) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | ||||
SDG7 | Mean | 0.967 | 0.971 | 0.971 | 0.972 | 0.971 | 0.972 | 0.971 | SDG7 | ET1 | 52 | 53 | 52 | 57 | 56 | 58 | 62 |
SD | 0.088 | 0.082 | 0.080 | 0.080 | 0.080 | 0.085 | 0.086 | ET2 | 24 | 22 | 23 | 18 | 18 | 16 | 13 | ||
Max | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ET3 | 4 | 5 | 5 | 5 | 6 | 6 | 5 | ||
Min | 0.475 | 0.489 | 0.490 | 0.495 | 0.503 | 0.514 | 0.528 | SDG8 | ET1 | 13 | 13 | 13 | 13 | 15 | 14 | 15 | |
SDG8 | Mean | 0.555 | 0.555 | 0.559 | 0.562 | 0.556 | 0.560 | 0.570 | ET2 | 15 | 12 | 16 | 16 | 16 | 13 | 15 | |
SD | 0.300 | 0.295 | 0.295 | 0.295 | 0.289 | 0.289 | 0.288 | ET3 | 14 | 18 | 13 | 18 | 16 | 21 | 17 | ||
Max | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ET4 | 19 | 17 | 18 | 14 | 13 | 12 | 13 | ||
Min | 0.128 | 0.123 | 0.124 | 0.130 | 0.131 | 0.131 | 0.132 | ET5 | 10 | 13 | 13 | 14 | 14 | 14 | 13 | ||
SDG9 | Mean | 0.936 | 0.933 | 0.939 | 0.936 | 0.946 | 0.943 | 0.941 | ET6 | 9 | 7 | 7 | 5 | 6 | 6 | 7 | |
SD | 0.106 | 0.109 | 0.106 | 0.111 | 0.114 | 0.115 | 0.119 | SDG9 | ET1 | 43 | 46 | 49 | 46 | 49 | 50 | 47 | |
Max | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ET2 | 33 | 31 | 28 | 32 | 29 | 28 | 29 | ||
Min | 0.386 | 0.381 | 0.364 | 0.375 | 0.336 | 0.332 | 0.330 | ET3 | 4 | 3 | 3 | 2 | 2 | 2 | 4 |
(a) | (b) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDG7 | SDG8 | SDG9 | SDG7 | SDG8 | SDG9 | ||||||||
BPNN | AutoML | BPNN | AutoML | BPNN | AutoML | BPNN | AutoML | BPNN | AutoML | BPNN | AutoML | ||
Mean | 0.977 | 0.973 | 0.508 | 0.543 | 0.940 | 0.935 | ET1 | 62/80 | 58/59 | 8/12 | 14/14 | 38/61 | 42/46 |
SD | 0.000 | 0.081 | 0.246 | 0.273 | 0.016 | 0.099 | ET2 | 11/16 | 5/9 | 11/13 | 9/19 | 25/33 | |
Max | 0.978 | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | ET3 | 4/5 | 13/49 | 15/21 | 1/1 | ||
Min | 0.974 | 0.514 | 0.130 | 0.142 | 0.926 | 0.381 | ET4 | 1/10 | 11/12 | ||||
RMSE | 0.086 | 0.026 | 0.163 | 0.047 | 0.116 | 0.052 | ET5 | 13/14 | |||||
PRED(0.20) | 0.950 | 0.988 | 0.500 | 0.975 | 0.925 | 0.975 | ET6 | 6/6 | |||||
PRED(0.10) | 0.925 | 0.975 | 0.300 | 0.863 | 0.863 | 0.875 | Accuracy | 0.775 | 0.913 | 0.338 | 0.875 | 0.588 | 0.850 |
PRED(0.05) | 0.900 | 0.963 | 0.213 | 0.550 | 0.325 | 0.775 | |||||||
R2 | 0.008 | 0.909 | 0.725 | 0.983 | 0.058 | 0.821 | |||||||
(c) | |||||||||||||
BPNN | AutoML | ||||||||||||
Projected Outputs | RMSE | PRED (0.20) | PRED (0.10) | PRED (0.05) | R2 | RMSE | PRED (0.20) | PRED (0.10) | PRED (0.05) | R2 | |||
SDG7 | Clean fuels | 29,508,671 | 0.088 | 0.025 | 0.000 | 0.903 | 4,571,957 | 0.900 | 0.850 | 0.613 | 1.000 | ||
Electricity | 40,248,413 | 0.175 | 0.125 | 0.050 | 0.937 | 2,589,071 | 0.988 | 0.938 | 0.813 | 1.000 | |||
GDP | 1,468,794,073,162 | 0.000 | 0.000 | 0.000 | 0.001 | 283,599,211,370 | 0.588 | 0.350 | 0.138 | 0.989 | |||
Renewables | 6792 | 0.125 | 0.100 | 0.050 | 0.872 | 1076 | 0.675 | 0.400 | 0.225 | 0.998 | |||
SDG8 | GDP | 1,535,253,602,486 | 0.000 | 0.000 | 0.000 | 0.010 | 256,121,857,571 | 0.825 | 0.563 | 0.263 | 0.997 | ||
DMC | 4,006,196,741,083 | 0.000 | 0.000 | 0.000 | 0.013 | 412,449,897,927 | 0.888 | 0.663 | 0.375 | 1.000 | |||
Unemployment | 8.96 × 10−6 | 0.300 | 0.150 | 0.075 | 0.866 | 5.50 × 10−6 | 0.763 | 0.575 | 0.413 | 0.948 | |||
Bank branches | 5516 | 0.300 | 0.188 | 0.138 | 0.854 | 1218 | 0.850 | 0.650 | 0.275 | 0.995 | |||
SDG9 | Air freight | 1609 | 0.063 | 0.025 | 0.013 | 0.878 | 925 | 0.363 | 0.138 | 0.050 | 0.979 | ||
Air passengers | 23,297,874 | 0.088 | 0.025 | 0.025 | 0.967 | 17,770,131 | 0.388 | 0.150 | 0.013 | 0.994 | |||
Manufacturing employment | 2,731,618 | 0.250 | 0.138 | 0.038 | 0.991 | 379,469 | 0.800 | 0.588 | 0.413 | 1.000 | |||
Manufacturing value added | 94,784,937,949 | 0.150 | 0.063 | 0.025 | 0.985 | 345,878,375,449 | 0.025 | 0.000 | 0.000 | 0.997 | |||
CO2 emissions | 0.0001 | 0.325 | 0.150 | 0.088 | 0.851 | 4.26 × 10−5 | 0.588 | 0.375 | 0.300 | 0.922 | |||
Internet users | 19,810,610 | 0.150 | 0.088 | 0.038 | 0.976 | 17,691,665 | 0.563 | 0.175 | 0.088 | 0.999 | |||
Mobile phone | 36,174,109 | 0.175 | 0.075 | 0.050 | 0.988 | 32,220,596 | 0.875 | 0.575 | 0.388 | 0.996 |
(a) | (b) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wk 16 | wk 17 | wk 18 | wk 19 | wk 20 | wk 21 | wk 16 | wk 17 | wk 18 | wk 19 | wk 20 | wk 21 | ||||
SDG3 | Mean | 0.588 | 0.648 | 0.645 | 0.555 | 0.459 | 0.687 | SDG3 | ET1 | 16 | 15 | 19 | 18 | 11 | 23 |
SD | 0.301 | 0.262 | 0.298 | 0.319 | 0.296 | 0.288 | ET2 | 18 | 17 | 13 | 14 | 13 | 12 | ||
Max | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ET3 | 14 | 14 | 15 | 12 | 13 | 10 | ||
Min | 0.105 | 0.137 | 0.088 | 0.052 | 0.063 | 0.088 | ET4 | 9 | 11 | 7 | 12 | 12 | 8 | ||
ET5 | 4 | 4 | 7 | 5 | 12 | 8 | |||||||||
SDG11 | Mean | 0.800 | 0.784 | 0.790 | 0.772 | 0.731 | 0.778 | SDG11 | ET1 | 12 | 13 | 14 | 15 | 15 | 18 |
SD | 0.165 | 0.169 | 0.168 | 0.176 | 0.213 | 0.209 | ET2 | 27 | 26 | 25 | 24 | 25 | 19 | ||
Max | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ET3 | 15 | 16 | 17 | 18 | 16 | 19 | ||
Min | 0.290 | 0.368 | 0.395 | 0.385 | 0.171 | 0.258 | ET4 | 7 | 6 | 5 | 4 | 5 | 5 |
(a) | (b) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SDG3 | SDG11 | SDG3 | SDG11 | ||||||||
BPNN | AutoML | BPNN | AutoML | BPNN | AutoML | BPNN | AutoML | ||||
Mean | 0.973 | 0.588 | 0.741 | 0.761 | ET1 | 18/21 | 23/23 | 13/15 | 15/17 | ||
SD | 0.033 | 0.267 | 0.165 | 0.190 | ET2 | 5/13 | 6/12 | 14/23 | 15/24 | ||
Max | 1.000 | 1.080 | 0.998 | 1.027 | ET3 | 5/15 | 6/10 | 15/20 | 13/15 | ||
Min | 0.899 | 0.109 | 0.343 | 0.363 | ET4 | 2/8 | 4/8 | 2/3 | 5/5 | ||
RMSE | 0.390 | 0.182 | 0.115 | 0.092 | ET5 | 3/4 | 3/8 | ||||
PRED(0.20) | 0.393 | 0.541 | 0.836 | 0.934 | Accuracy | 0.541 | 0.689 | 0.721 | 0.787 | ||
PRED(0.10) | 0.393 | 0.475 | 0.475 | 0.803 | |||||||
PRED(0.05) | 0.393 | 0.410 | 0.279 | 0.525 | |||||||
R2 | 0.487 | 0.724 | 0.732 | 0.811 | |||||||
(c) | |||||||||||
BPNN | AutoML | ||||||||||
Projected Outputs | RMSE | PRED (0.20) | PRED (0.10) | PRED (0.05) | R2 | RMSE | PRED (0.20) | PRED (0.10) | PRED (0.05) | R2 | |
SDG3 | Recovered at week t + 3 | 6801 | 0.115 | 0.049 | 0.033 | 0.919 | 4303 | 0.230 | 0.131 | 0.033 | 0.932 |
Deaths at week t + 3 | 0.254 | 0.295 | 0.164 | 0.016 | 0.617 | 0.128 | 0.410 | 0.361 | 0.230 | 0.917 | |
Active at week t + 3 | 0.072 | 0.016 | 0.016 | 0.016 | 0.071 | 0.048 | 0.066 | 0.049 | 0.016 | 0.879 | |
SDG11 | Workplaces | 10 | 0.426 | 0.148 | 0.098 | 0.863 | 7 | 0.787 | 0.312 | 0.033 | 0.961 |
Residential | 3 | 0.853 | 0.492 | 0.197 | 0.886 | 2 | 0.902 | 0.705 | 0.459 | 0.945 | |
Public | 15 | 0.721 | 0.098 | 0.033 | 0.933 | 12 | 0.787 | 0.475 | 0.197 | 0.828 | |
Confirmed at week t + 1 | 0.136 | 0.016 | 0.016 | 0.000 | 0.392 | 0.112 | 0.033 | 0.016 | 0.016 | 0.551 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singpai, B.; Wu, D. Using a DEA–AutoML Approach to Track SDG Achievements. Sustainability 2020, 12, 10124. https://doi.org/10.3390/su122310124
Singpai B, Wu D. Using a DEA–AutoML Approach to Track SDG Achievements. Sustainability. 2020; 12(23):10124. https://doi.org/10.3390/su122310124
Chicago/Turabian StyleSingpai, Bodin, and Desheng Wu. 2020. "Using a DEA–AutoML Approach to Track SDG Achievements" Sustainability 12, no. 23: 10124. https://doi.org/10.3390/su122310124
APA StyleSingpai, B., & Wu, D. (2020). Using a DEA–AutoML Approach to Track SDG Achievements. Sustainability, 12(23), 10124. https://doi.org/10.3390/su122310124