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Abstract: This paper presents results of laboratory tests on hot and warm bituminous mixtures
produced with Reclaimed Asphalt Pavement (RAP). Additives were used to produce warm bituminous
mixtures. Fatigue behaviour and thermomechanical behaviour at low temperature were investigated.
Fatigue was studied by analysing the tension/compression fatigue test results. Four different failure
criteria were used in order to evaluate fatigue life. The low temperature behaviour of the materials
was characterized using the Thermal Stress Restrained Specimen Test (TSRST). For each material,
three replicates were performed. The experimental device was improved so that radial strains in two
directions could be measured during the tests. Tri-dimensional behaviour could thus be investigated.
The results of both tests were analysed and the influence of the void content, RAP content, type of
additives and manufacturing process was evaluated. The results show that RAP addition and warm
bituminous mixtures could be combined to obtain mixtures with performances comparable to classical
hot mixtures.

Keywords: fatigue; TSRST; hot bituminous mixture; warm bituminous mixture; Reclaimed Asphalt
Pavement; recycling

1. Introduction

The development of several innovations for the construction and rehabilitation of infrastructures
is boosted by societal concerns about sustainable development and preservation of the environment.
Among these innovative techniques, without being exhaustive, it is worth mentioning:

• the recycling or re-use of different products such as shingles [1], rubber tyres [2,3] and obviously
Reclaimed Asphalt Pavement (RAP) [4,5];

• the warm bituminous mixtures or half-warm bituminous mixtures that are produced with different
processes at a reduced temperature compared with classical hot mixtures [6];

• new types of binders, sometimes called bio-asphalt, which are not produced from oil, but from
agricultural product or algae, for example [7,8].

Recycling of asphalt pavement and the reduction of bituminous mixtures’ production temperatures
are two solutions that can be interesting to combine, for economic and environmental reasons [9].
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Nevertheless, the mechanical properties of the materials produced with these techniques should be
carefully controlled [10–13]. Some blending problems may occur between aged RAP bitumen and a
fresh added one [14–17]. Great research effort is currently made to study some rejuvenator products
and their effects to solve such problems [18–20].

Several authors ([17,21–33] among others) have studied the use of RAP materials in road
construction. They show that this is a valuable technique, especially for viscoelastic properties and
rutting resistance. Meanwhile, further research is still needed to optimize the mix design, especially when
using a high RAP content, and to investigate fatigue resistance and low-temperature cracking.

To reduce the mixtures’ production temperature, the two main techniques that exist are based on the
use of chemical additives or bitumen foam. The objective of both techniques is to improve the aggregates’
coating by bitumen at a reduced temperature. Within the framework of a partnership between the
LTDS laboratory of the University of Lyon/ENTPE, the ARKEMA ROAD SCIENCE company, the Malet
company and ADEME (French Agency for the Environment and Energy Management), a large
experimental campaign was initiated on the characterization of bituminous materials, produced at
lowered temperatures using additives and including RAP.

An investigation into the fatigue resistance and the thermal cracking of different bituminous
materials is presented in this paper. The fatigue properties of the materials were measured by means
of fatigue tests in tension-compression at 10 ◦C and 10 Hz. Several authors ([34–41] among others)
have studied the fatigue properties of bituminous materials.

The Thermal Stress Restrained Specimen Test (TSRST) allows a characterization of thermal
cracking by coupling the thermal and mechanical effects. Different research works were conducted
using this test and have confirmed its good potential to assess the thermal cracking resistance of
bituminous mixtures ([6,8,42–44] among others)

This article is focused on the evaluation and comparison of bituminous mixtures produced at a
reduced temperature using additives and with a different RAP content (0, 30% and 50% of the total
weight). Section 2 presents testing procedures for both types of tests: fatigue and TSRST. Sections 3
and 4 present, respectively, the experimental results, evaluation and comparison of the fatigue tests
and TSRSTs for the nine different tested mixtures. Such a high RAP content combined with warm
bituminous mixtures, as well as the fatigue and low temperature behaviours that are rarely studied for
such materials, makes this study original.

2. Experimental Procedures and Materials

2.1. Test Equipment

Both the TSRST and fatigue tests used the same equipment. Tests were performed on cylindrical
specimens using a hydraulic press equipped with a thermal chamber to control the temperature. A thermal
gauge (PT100 temperature probe) fixed on the surface of the specimen measured its temperature.
Axial strain, used for the test control, was obtained from the average of three axial extensometer
measurements. Their setup (120◦ around the specimen) is indicated in Figure 1. In addition, two pairs
of non-contact displacement transducers (range 500 µm) were used. They measured the diameter
changes, at mid-height of the specimen, in order to obtain two radial strains in two perpendicular radial
material directions.

A general view of the specimen setup and the strain measurement devices developed at the
University of Lyon/ENTPE are shown in Figure 1.
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Figure 1. (a) General view of the cylindrical specimen inside the thermal chamber, equipped with axial
strain (extensometers) and radial strain (non-contact sensors) measurement devices. (b) Cross section
indicating the position of the 3 extensometers and 4 non-contact sensors around the specimen.

2.2. Test Procedures

2.2.1. Fatigue Test

Fatigue tests were carried out in tension-compression on the cylindrical specimens. A sinusoidal
axial strain (εax) (average of the three axial extensometers), with a constant amplitude during the
test, was applied on the specimen. The sinusoidal axial stress (σax) was obtained using load cell
measurements. The sinusoidal radial strain εrad II in direction II and εrad III in direction III were
obtained from the two pairs of non-contact sensors (Figure 1). The following equations were used to fit
the obtained signals:

εax(t) = εAaxsin(ωt) (1)

σax(t) = σAaxsin(ωt +ϕE) (2)

εrad II(t) = −εArad IIsin(ωt +ϕν II) (3)

εrad III(t) = −εArad IIIsin(ωt +ϕν III) (4)

where the amplitude of the axial strain, radial strains in directions II and III, and axial stress are,
respectively, noted εAax, εArad II, εArad III and σAax; ϕE is the phase angle between the axial strain and
axial stress; and ϕνII and ϕνIII are the phase angles between the axial strain and the radial strains in
directions II and III.

The axial strain amplitude is kept constant during each fatigue test (strain control mode).
The temperature was set at 10 ◦C and the frequency at 10 Hz. At least four different levels of axial strain
amplitude were applied for each tested material. The axial load, axial strain, and radial strain data
were recorded at a frequency of 2500 Hz, resulting in 250 data points per cycle. Because of the great
number of performed cycles, and the “slow” evolution of the parameters, only the cycles indicated in
Table 1 were recorded.

During the fatigue test, the complex modulus and the complex Poisson’s ratios were calculated
(Equations (5)–(7)) for all recorded cycles.
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Table 1. Recorded cycles during the fatigue test.

Number of Cycles (N) Recording Period Number of Recorded Cycles

Cycle 1 to 1000 All cycles 1000

Cycle 1000 to 10,000 2 cycles every 20 cycles 900

Cycle 10,000 to 100,000 2 cycles every 200 cycles 900

Cycle 100,000 to 1,000,000 2 cycles every 2000 cycles 900

After one million 2 cycles every 5000 cycles —

From the parameters defined in Equations (1)–(4), the complex modulus (E*) and the complex
Poisson’s ratios in directions II and III (ν*II-I and ν*III-I) were calculated as follows:

E∗ =
σAax

εAax
ejϕE = |E∗|ejϕE (5)

ν∗II−I = −
εArad II

εAax
ejϕνII = |ν∗II−I|e

jϕνII (6)

ν∗III−I = −
εArad III

εAax
ejϕνIII = |ν∗III−I|e

jϕνIII (7)

The dissipated energy per cycle (WN) was also calculated. It is the area within the axial stress–axial
strain hysteresis loop, given by Equation (8).

WN = πεAaxσAaxsinϕE (8)

2.2.2. TSRST

The principle of the TSRST is to keep the length of the tested specimen constant (the axial strain is
maintained null) while decreasing the temperature inside the thermal chamber at a constant cooling
rate of −10 ◦C/h, starting at 5 ◦C. Cooling incites the specimen to contract, but the servo-hydraulic
press, which imposes a nil axial strain, prevents it. The thermal stress induced inside the specimen
increases until the specimen breaks. The TSRST intends to reproduce the thermo-mechanical coupling
occurring in a pavement during a cooling period.

To take into account the thermal contraction/dilation of the measurement system due to the
temperature change, the device was previously carefully calibrated using a sample of Zerodur®,
whose thermal coefficient is nearly zero (about 0.05 × 10−6 K−1). This calibration process allowed being
quite confident in respecting the condition of no change in the height of the sample.

2.3. Tested Materials

Nine bituminous mixtures were tested. They differ in production temperature, Reclaimed Asphalt
Pavement (RAP) content and the presence or not of an additive (Table 2). Two types of production
processes were considered: a hot bituminous mixture (HM), which serves as a reference material
(mixing at 160 ◦C), and a warm bituminous mixture (WM), mixing at 120 ◦C. Three RAP contents
were used: 0%, 30% and 50%. The RAP content is calculated as the ratio between the weight of the
RAP and the total weight of the mixture. Two types of surfactant-based additives, provided by the
ARKEMA ROAD SCIENCE company—additive E (E) and additive B (B)—were used to produce the
warm bituminous mixtures. No further details could be given on these additives because of industrial
patents and no names are given in order to avoid commercialism. The percentage of additive (the ratio
between the weight of the additive and the total weight of bitumen, including RAP bitumen) was fixed
at 0.4%. The RAP and fresh bitumens have the same crude origin. Penetration of the fresh bitumen
used for the bituminous mixtures without RAP was 38 (0.1 mm units). The bitumen recovered from
the RAP was found to have a penetration of 11 (0.1 mm units). For bituminous mixtures with RAP,
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the penetrability of the added fresh bitumen was determined to obtain a final binder penetration of 38
(0.1 mm units), whatever the RAP content, when using the log–log mixing rule between the RAP and
fresh bitumen [44]. For a 30% RAP content, the fresh bitumen was obtained by blending 50/70 and
70/100 bitumens, and for a 50% RAP content, by blending 50/70 and 160/220 bitumens. The obtained
fresh bitumens exhibited, respectively, a penetration of 66 and 148 (0.1 mm units).

Table 2. The tested materials.

Material number M1/M1-2 M2/M2-2 M3 M4 M5 M6 M7

Material name HM HM30 WME0.4 WM30E0.4 WM30B0.4 WM50E0.4 WM50B0.4

Production process Hot Hot Warm Warm Warm Warm Warm

%RAP - 30 - 30 30 50 50

Type of additive - - add. E add. E add. B add. E add. B

%Additive - - 0.4 0.4 0.4 0.4 0.4

The materials’ name and their fabrication characteristics are listed in Table 2. For example,
WM50B0.4 indicates the warm bituminous mixture (WM) made with 50% RAP and 0.4% of B additive.

Malet company was in charge of producing slabs (600 × 400 × 120 mm) with a French type
Rolling Wheel Compactor (Figure 2a) [45]. Axes I, II and III used during the tests in order to identify
the specimens’ directions were related to the material directions. They were determined during the
compaction process and correspond to the rolling wheel direction (I), the vertical direction during
compaction (II) and the horizontal direction, transverse to the rolling wheel direction (III). The cylindrical
specimens used for the fatigue tests and TSRSTs were cored and sawn from each slab (Figure 2b);
their diameters and heights were 75 mm × 140 mm for the fatigue tests and 60 mm × 225 mm for the
TSRSTs. After coring the slab horizontally, the vertical axis of the cylindrical specimen corresponded to
material direction I (Figure 2b) [46].
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Figure 2. (a) The French rolling wheel compactor and (b) the slab from the French rolling wheel
compactor and specimen material directions.

Apart from the three variable parameters, all bituminous mixtures have the same formulation.
All mixtures are within the French classification GB3 0/14 (“Grave Bitume” of Type 3, with a maximal
aggregate size of 14 mm) [47], which corresponds to the classical mixture used in base layers in France.
The aggregate grading curves for the nine materials are presented in Figure 3. They superimpose
nearly perfectly.

The air void content of each specimen was determined by geometry and weight measurements,
and pycnometer measurements. The characteristics of the tested specimens are listed in Table A1
(Appendix A). For replicated tests, specimens having a close void ratio were chosen.

The linear properties of these materials are described in detail in Pham et al. [47,48].
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3. Fatigue Test Results and Analysis

3.1. Example of Fatigue Test Results

The results of the C7P2M5 fatigue test (material M5, specimen C7P2M5, see Table A1 in Appendix A)
are presented in Figure 4. The norm |E*| and phase angle ϕE of the complex modulus, measured for the
applied strain amplitude (84 µm/m), are plotted as a function of the number of cycles (N) in Figure 4.
As previously highlighted by some authors [33,36,39], three phases (the adaptation phase (Phase I),
quasi-stationary phase (Phase II) and failure phase (Phase III)) can be observed during the fatigue
tests. The end of Phase II or beginning of Phase III, corresponding to the beginning of the macro-crack
propagation, is then the failure of the materials. Different criteria are introduced in the literature to
obtain this fatigue life boundary.

Plots similar to Figure 4 are proposed in Figure 5 for the two complex Poisson’s ratios ν* in radial
directions II and III. This type of curve, which gives multidirectional information for the fatigue tests,
is not proposed in the literature and was introduced by University of Lyon/ENTPE team [1,39,49].
It reveals that (i) the Poisson’s ratios in directions II and III (norm and phase angle values) are “close”,
and then that the anisotropy is not visible on this parameter; and (ii) the norm of the Poisson’s
ratio slightly decreases during the fatigue test, while the phase angle, which remains close to zero,
slightly increases. It seems also possible to determine the failure from these curves.Sustainability 2020, 12, x FOR PEER REVIEW 7 of 22 
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3.2. Fatigue Criteria

Four fatigue criteria were considered to determine the fatigue life Nfailure of the tested mixtures:

• Criterion based on modulus decrease: The classical fatigue criterion, used in the French pavement
design method, is based on an arbitrary relative decrease in the complex modulus of 50%.
The fatigue life (Nf50%) is then defined as the number of cycles when the modulus reaches 50% of
its initial value (Figure 6).
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Figure 6. Norm of the complex modulus versus the number of cycles and criterion Nf50% for Nfailure.

• Criterion based on the phase angle of the complex modulus evolution: the fatigue life (Nfmaxϕ) is
defined as the number of cycles corresponding to the highest value of the phase angle (Figure 7).
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Figure 7. Norm of complex modulus versus the number of cycles and criterion Nfϕmax for Nfailure.

• Criterion obtained from the analysis of the specimen homogeneity from the phase angles values
provided by each of the three axial extensometersϕεiax: Nf∆ϕ is defined as the number of cycles at
which the value ∆ϕi =ϕεiax −ϕE reaches 5◦ for one of the extensometers (whereϕεiax is the phase
angle between the signal from extensometer i and the axial stress, with i = 1, 2 or 3) (Figure 8).
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• Viscous dissipated energy criterion: the fatigue life (NfWN) is obtained from the analyses of the
evolution of the dissipated energy ratio, DER, given by Equation (9).

DER =
N∑

i=1

Wi /WN (9)

where
N∑

i=1
Wi is the cumulated dissipated energy up to cycle N and WN is the dissipated energy at

cycle N. There are two periods in the evolution of DER (Equation (9)). The evolution appears to be
linear in both of the periods, but the slope is higher in the second period. Two straight lines could
then be drawn to linearize the evolution of each period. The number of cycles NfWN is obtained at the
intersection of the two straight lines (Figure 9).
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Figure 9. Dissipated energy ratio evolution versus the number of cycles and criterion NfWN for Nfailure.

For the C7P2M5 test, the four criteria give very close results for the fatigue life.

3.3. Wöhler Curves for Tested Materials

The classical Wöhler representation was used: the number of cycles at failure (Nfailure) versus the
strain amplitude in logarithmic axes. The Wöhler curves for the bituminous mixtures are classically
straight lines. They are defined by Equation (10).

Nf

106 =

(
ε

ε6

) − 1
b

(10)

where Nf is the number of cycles at failure; ε is the applied strain amplitude; 1/b is a constant that
represents the slope of straight line; and ε6 represents the axial strain amplitude level for which the
failure is obtained after one million cycles.

The values of 1/b, ε6 and the determination coefficient R2 for each criterion and for the nine
bituminous mixtures are given in Table A2 (Appendix A). A comparison of the Wölher curves for
the nine tested bituminous mixtures, determined with the criterion Nf50%, is presented in Figure 10.
The parameter ε6, determined with the four considered criteria, was used to analyse the influence of the
bituminous mixtures’ characteristics. It should be mentioned that no significant difference appeared
between the considered criteria, as shown in the following.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 22 
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Figure 10. Wöhler curves with the criterion Nf50% for the nine tested materials.
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3.4. Influence of Mix Design and Void Content on ε6

3.4.1. Influence of Voids Content

Hot bituminous mixtures HM and HM30 were produced with two different air void contents
(resulting in M1 and M1-2, and in M2 and M2-2 materials). M1 and M2 are the materials with a higher
air void content. The ε6 value is higher for material M1-2 (M2-2, respectively) than for material M1
(M2, respectively): 77 µm/m against 62 µm/m (67 µm/m against 66 µm/m, respectively) (Figure 11).
It may therefore be concluded that an increase of the void content resulted in a decrease of ε6. This result
is not new, but it is confirmed from our experimental campaign.
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Figure 11. The ε6 values obtained from the four considered criteria, for materials M1 (HM), M2 (HM30),
M1-2 (HM) and M2-2 (HM30).

3.4.2. Influence of RAP Content

Material M1-2 (HM) without RAP has a higher ε6 value than material M2-2 (HM30) with 30% RAP
(Figure 11). The fatigue performance of the hot mix therefore decreases when adding RAP. For warm
bituminous mixtures, taking into account the type of additive used, it appears that for the materials
produced with additive E (M3, M4 and M6), the ε6 value increases when adding RAP. The conclusion
is the same with materials using additive B (M5 and M7) (Figure 12).
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3.4.3. Influence of the Type of Additive

Results of the bituminous mixtures produced with the two different additives, respectively,
with 30% RAP (M4 (WM30E0.4) and M5 (WM30B0.4)) and with 50% RAP (M6 (WM50E0.4) and
M7 (WM50B0.4)), could also be compared with Figure 12. A rather noticeable difference appears
between the two additives. More specifically, for bituminous mixtures with 30% RAP, material M4
(using additive E) gives an ε6 value of about 80 µm/m, against 65 µm/m for material M5 (using additive
B). For bituminous mixtures with 50% RAP, material M6 (using additive E) gives an ε6 value of about
82 µm/m, against 75 µm/m for material M7 (using additive B). It can be concluded that the use of
additive E provides higher values of ε6 than additive B, for warm bituminous mixtures with RAP.

3.4.4. Influence of Manufacturing Process

For bituminous mixtures without RAP (M1-2 (HM) and M3 (WME0.4)), hot bituminous mixture
(M1-2) has higher ε6 value than warm bituminous mixture (M3) (Figure 13). Then, for the bituminous
mixtures without RAP, the fatigue performance of hot bituminous mixture is better than that of the
warm bituminous mixture. For bituminous mixtures with 30% RAP (M2-2 (HM30), M4 (WM30E0.4)
and M5 (WM30B0.4)), the results are presented in Figure 13. No clear trend emerges. The ε6 value of
the hot bituminous mixture M2-2 is smaller than that of the bituminous mixture M4 (warm mix using
additive E) and is equal to that of the bituminous mixture M5 (warm mix using additive B).
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4. Thermal Stress Restrained Specimen Test (TSRST)

4.1. Example of TSRST Results

As an example, the results of test B2P2M5 are presented in Figures 14 and 15. The main outputs of
the TSRST are the variation of the thermally induced stress as a function of the temperature. The values
of temperature and stress at failure (Tf and σf) are obtained from this variation (Figure 14). In our
tests, radial strains were also measured thanks to an improved strain measurement device (Figure 1).
Variation in radial strain with the temperature is plotted in Figure 15. This variation combines thermal
radial contraction (due to temperature decrease) and Poisson effect, creating radial contraction during
tension tests. Further investigation about radial strains is necessary but out of the scope of this paper.

As already stated for the fatigue tests, these types of curves bring information on multidirectional
behaviour. It is not proposed in the literature and was introduced by the ENTPE team [50]. It reveals
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that radial strains in directions II and III increase (corresponding to a contraction of the sample) and
remain close all over the test. Then the anisotropy is not visible on this parameter. Failure values of
radial strain in directions II and III could also be obtained (Figure 15). In order to keep positive values,
tension (stress) and contraction (strain) are considered as positive in the presented results.
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4.2. Results of the Tested Materials

The temperature and stress values at failure are presented in Table 3 for all the tested specimens.
The standard deviations for the failure temperature are lower than 2.1 ◦C and those for the failure
stress are lower than 10.6%. In view of these results, it may be concluded that the performed TSRS test
is well repeatable.

The results of the failure radial deformations are shown in Table A3 (Appendix A). Standard deviation
values are below 10%. The repeatability of the TSRST regarding these parameters is also well verified.
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Table 3. Failure temperature and failure stress values.

Material Specimen Voids (%)
Failure Temperature (◦C) Failure Stress (MPa)

Average Standard
Deviation Average Standard

Deviation

M1 (HM)
B1P1M1 11.7 −18.4

−16.8 2.1
2.43

2.33
0.24

(10.1%)B2P1M1 11.2 −14.4 2.06

B5P1M1 10.1 −17.6 2.50

M1−2 (HM)
B1P2M1−2 7.2 −19.6

−19.4 0.3
3.48

3.47
0.01

(0.2%)B4P2M1−2 7.0 −19.5 3.47

B5P2M1−2 7.3 −19.1 3.47

M2 (HM30)
B1P2M2 12.9 −15.7

−17.5 1.8
2.07

2.35
0.25

(10.6%)B2P2M2 13.0 −17.6 2.43

B5P2M2 13.0 −19.2 2.55

M2−2
(HM30)

B2P2M2−2 6.4 −19.6
−19.6 0.6

3.58
3.42

0.14
(4.2%)B3P2M2−2 6.9 −19.0 3.30

B4P2M2−2 7.2 −20.1 3.38

M3
(WME0.4)

B2P2M3 7.2 −18.7
−18.6 0.3

2.78
2.80

0.04
(1.4%)B3P2M3 7.1 −18.9 2.84

B4P2M3 7.6 −18.3 2.77

M4
(WM30E0.4)

B2P2M4 7.3 −21.7
−19.9 1.6

3.14
2.94

0.22
(7.4%)B3P2M4 7.5 −19.1 2.96

B4P2M4 7.6 −18.8 2.71

M5
(WM30B0.4)

B2P2M5 7.1 −19.7
−20.1 0.4

2.95
2.85

0.14
(4.9%)B3P3M5 7.5 −20.3 2.91

B4P3M5 7.7 −20.4 2.69

M6
(WM50E0.4)

B3P2M6 6.9 −21.5
−21.0 0.7

2.92
3.24

0.29
(9.0%)B4P2M6 7.0 −21.3 3.49

B5P2M6 7.2 −20.2 3.32

M7
(WM50B0.4)

B1P2M7 7.4 −20.9
−21.1 0.3

3.54
3.51

0.03
(0.9%)B3P2M7 7.0 −21.4 3.52

B4P2M7 7.3 −21.0 3.48

4.3. Analysis of Stress and Temperature Results at Failure

4.3.1. Influence of Void Content

The bituminous mixtures with a higher void content (materials M1 and M2) have a lower
failure temperature than the denser bituminous mixtures (materials M1-2 and M2-2) (Figure 16a).
The difference is higher than 2.5 ◦C. A noticeable difference is also observed for these two groups of
materials for failure stress values, as plotted in Figure 16b. Both indicators are improved for denser
materials, which have then better performance.
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4.3.2. Influence of RAP Content

RAP content seems to have little influence on the hot mixtures, as shown in Figure 16. For warm
bituminous mixtures, Figure 17 reveals clear trends. The failure temperature values decrease and
failure stress values increase when the RAP content increases. RAP addition improves the performance
of the tested warm bituminous mixtures.Sustainability 2020, 12, x FOR PEER REVIEW 15 of 22 
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does not allow concluding definitely. 

4.3.4. Influence of Manufacturing Process 

Figure 17. The failure temperature (a) and failure stress (b) values of materials M1-2 (HM), M2-2 (HM30),
M3 (WME0.4), M4 (WM30E0.4), M5 (WM30B0.4), M6 (WM50E0.4) and M7 (WM50B0.4).

4.3.3. Influence of Type of Additive

For the warm bituminous mixtures with 30% RAP but with different types of additive, the failure
temperature values are close (−19.9 ◦C when using the additive E and −20.1 ◦C when using the additive
B). The results are shown in Figure 17a. For the warm bituminous mixtures with 50% RAP, the failure
temperature values are −21.0 ◦C and −21.1 ◦C, respectively, for additive E and additive B. This shows
that the effect of the two types of additives (E and B) on the failure temperature of the warm bituminous
mixtures is quasi identical.

Figure 17b shows the failure stress values. No clear conclusion appears. Additive B gives better
results for warm bituminous mixtures with 50% RAP, but a little worse for warm bituminous mixtures
with 30% RAP. The discrepancy between the tests results is higher for this parameter and does not
allow concluding definitely.

4.3.4. Influence of Manufacturing Process

Whatever the RAP content (0% or 30%), the process (hot or warm) seems to have few effects on
the failure temperature values, as can be seen in Figure 18a.

For 0% RAP, the failure stress values are identical for hot and warm processes. This result is not
valid for mixtures with 30% RAP, since the hot bituminous mixture has higher failure stress values
than the warm bituminous mixture with both additives (Figure 18b).
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5. Conclusions

This paper presents the results of a study on the fatigue behaviour and the thermo-mechanical
behaviour at low temperature of hot and warm bituminous mixtures produced with additives, with or
without RAP. These two behaviours are not so often investigated for such materials. These main
conclusions can be drawn from the obtained results:

• The performed tests were improved thanks to measurement of the radial strain in two directions.
It gives information on the multi-axial behaviour of the materials, which needs to be further
investigated to better understand the bituminous mixtures’ behaviour This is absolutely essential
to improve the modelling and design of road structures.

• Four criteria were applied to determine the fatigue life of the tested materials and gave
similar results.

• The repeatability of the TSRST was good, based on the temperature failure, stress failure and
radial strain failure values.

• A decrease in the voids content improves the fatigue and TSRS tests’ performance.
• The influence of the manufacturing process (hot or warm), RAP content and type of used additive

for the warm process have been evaluated for both types of test. Overall, warm bituminous
mixtures with RAP exhibit comparable performances with hot bituminous mixtures and even
better performances, in some cases.

This study shows that it is possible to combine the use of a high RAP content and a warm mixing
process, without deteriorating the performance in fatigue and at a low temperature, as determined in
the laboratory. These observations must be confirmed by in situ performance evaluations; nonetheless,
developing such innovative techniques should be encouraged, which are too rarely combined.
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Appendix A

Table A1. Name and air void content of each tested specimen and each performed test.

Fatigue Test TSRST

Material Specimen Strain Amplitude (Average) µm/m %Voids Specimen %Voids

M1
(HM)

C8P1M1 78 9.9 B1P1M1 11.7

C1P1M1 73 11.2 B2P1M1 11.2

C6P1M1 68 10 B5P1M1 11.3

C5P1M1 63 10.8

C7P1M1 58 9.7

M1-2
(HM)

C1P2M1-2 96 7.2 B1P2M1-2 7.2

C4P2M1-2 91 8.3 B4P2M1-2 7

C2P2M1-2 86 7.7 B5P2M1-2 7.3

C5P1M1-2 78 7.5

M2
(HM30)

C3P1M2 78 12.4 B1P2M2 12.9

C5P1M2 73 11.8 B2P2M2 13

C6P2M2 61 12.4 B5P2M2 13

C7P2M2 58 12.6

M2-2
(HM30)

C4P2M2-2 78 8.4 B2P2M2-2 6.4

C5P1M2-2 73 8.4 B3P2M2-2 6.9

C1P1M2-2 65 8.4 B4P2M2-2 7.2

C1P2M2-2 63 8.3

C8P2M2-2 58 8.3

M3
(WME0.4)

C3P2M3 78 7.8 B2P2M3 7.2

C5P2M3 68 7.9 B3P2M3 7.1

C1P2M3 63 8.3 B4P2M3 7.6

C6P2M3 60 6.7

C6P1M3 55 7.8

M4
(WM30E0.4)

C4P1M4 95 7.9 B2P2M4 7.5

C5P2M4 85 7.2 B3P2M4 7.3

C8P2M4 78 7.5 B4P2M4 7.6

C7P2M4 63 7.1

C6P2M4 60 7.1

M5
(WM30B0.4)

C6P1M5 97 7.2 B2P2M5 7.1

C7P2M5 84 7.1 B3P3M5 7.5

C8P2M5 78 7.6 B4P3M5 7.7

C1P2M5 72 8.3

C6P2M5 66 7

M6
(WM50E0.4)

C3P2M6 97 7.1 B3P2M6 6.9

C5P1M6 91 7 B4P2M6 7

C8P2M6 88 6.8 B5P2M6 7.2

C3P1M6 78 6.7

C6P2M6 72 6.7

M7
(WM50B0.4)

C8P1M7 91 7.1 B1P2M7 7.4

C3P2M7 84 7.2 B3P2M7 7

C8P2M7 78 6.8 B4P2M7 7.3

C5P2M7 71 7.1

C6P2M7 65 6.7
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Table A2. ε6, 1/b and R2 values of the fatigue Wölher curves for the nine tested materials.

Material
Nf 50% Nf ϕ max Nf ∆ϕ Nf Wn

ε6 (µm/m) 1/b R2 ε6 (µm/m) 1/b R2 ε6 (µm/m) 1/b R2 ε6 1/b R2

M1(HM) 62 10.2 0.86 62 10.2 0.86 62 10.1 0.87 62 9.9 0.85

M1-2(HM) 77 7.8 0.97 77 6.9 0.97 77 7.3 0.89 77 7.5 0.98

M2(HM30) 66 11.0 0.96 66 11.0 0.96 66 11.0 0.96 66 10.4 0.97

M2-2(HM30) 67 7.5 0.66 67 7.7 0.66 68 7.5 0.47 67 7.7 0.65

M3(WME0.4) 67 4.0 0.36 67 3.0 0.15 67 4.0 0.35 67 4.0 0.35

M4(WM30E0.4) 79 6.8 0.81 78 7.4 0.82 80 6.6 0.80 78 7.1 0.80

M5(WM30B0.4) 66 3.8 0.88 66 3.8 0.86 65 3.5 0.86 65 3.7 0.89

M6(WM50E0.4) 82 13.0 0.94 82 13.0 0.94 82 12.9 0.93 82 12.8 0.94

M7(WM50B0.4) 76 4.7 0.95 75 4.7 0.95 75 4.5 0.98 75 4.9 0.92

Table A3. Radial deformation in directions II and III at failure for the TSRST.

Material Specimen Voids (%)

Failure Radial Strain in
Direction II (µm/m)

Failure Radial Strain in
Direction III (µm/m)

Average Standard
Deviation Average Standard

Deviation

M1
(HM)

B1P1M1 11.7 600
637

35
(5.5%)

-
- -

B2P1M1 11.2 670 -

B5P1M1 10.1 640 -

M1-2
(HM)

570
597

6
(1.0%)

700
700

10
(1.4%)B1P2M1-2 7.2 600 690

B4P2M1-2 7.0 640 710

M2
(HM30)

B5P2M1-2 7.3 590
603

35
(5.8%)

-
- -

600 -

B1P2M2 12.9 600 -

M2-2
(HM30)

B2P2M2 13.0 710
703

6
(0.8%)

-
795

7
(0.9%)B5P2M2 13.0 700 790

B2P2M2-2 6.4 700 800

M3
(WME0.4)

B3P2M2-2 6.9 580
603

21
(3.5%)

660
730

66
(9.0%)B4P2M2-2 7.2 620 740

B2P2M3 7.2 610 790

M4
(WM30E0.4)

B3P2M3 7.1 730
693

35
(5.1%)

700
663

32
(4.8%)B4P2M3 7.6 660 650

B2P2M4 7.3 690 640

M5
(WM30B0.4)

B3P2M4 7.5 630
663

29
(4.4%)

700
710

17
(2.4%)B4P2M4 7.6 680 700

B2P2M5 7.1 680 730

M6
(WM50E0.4)

B3P3M5 7.5 660
657

6
(0.9%)

700
713

23
(3.2%)B4P3M5 7.7 660 740

B3P2M6 6.9 650 700

M7
(WM50B0.4)

B4P2M6 7.0 760
740

35
(4.7%)

850
760

85
(10.4%)B5P2M6 7.2 760 730

B1P2M7 7.4 700 700

All tests 655 53
(8.1%) 721 53

(7.3%)
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