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Abstract: In this paper, we address the management of Data Centers (DCs) by considering their
optimal integration with the electrical, thermal, and IT (Information Technology) networks helping
them to meet sustainability objectives and gain primary energy savings. Innovative scenarios are
defined for exploiting the DCs electrical, thermal, and workload flexibility as a commodity and
Information and Communication Technologies (ICT) are proposed and used as enablers for the
scenarios’ implementation. The technology and scenarios were evaluated in the context of two
operational DCs: a micro DC in Poznan which has on-site renewable sources and a DC in Point Saint
Martin. The test cases’ results validate the possibility of using renewable energy sources (RES) for
exploiting DCs’ energy flexibility and the potential of combining IT load migration with the availability
of RES to increase the amount of energy flexibility by finding a trade-off between the flexibility level,
IT load Quality of Service (QoS), and the RES production level. Moreover, the experiments conducted
show that the DCs can successfully adapt their thermal energy profile for heat re-use as well as the
combined electrical and thermal energy profiles to match specific flexibility requests.

Keywords: Data Centers; energy efficiency; heat re-use; energy flexibility; workload migration;
evaluation in relevant environment

1. Introduction

As the ICT services industry is blooming, such services being requested in almost every domain
or activity, Data Centers (DCs) are constructed and operated to supply the continuous demand of
computing resources with high availability. However, this is the nice side of the story, because as this
also has an environmental impact, the DCs sector is estimated to consume 1.4% of global electricity [1].
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Thus, it is no longer sufficient to address the DCs’ energy efficiency problems from the perspective
of decreasing their energy consumption, but new research efforts are aiming to increase the share of
renewable energy used for their operation and to manage them for optimal integration with local
multi-energy grids [2,3].

Firstly, the DCs are large generators of residual heat which can be recovered and reused in nearby
heat grids and offer them a new revenue stream [4]. This is rather challenging due to the continuous
hardware upgrades that increase the power density of the chips, leading to an even higher energy
demand for the cooling system to eliminate the heat produced by the Information Technology (IT)
servers to execute the workload [5]. In addition to the potential hot sports that may endanger the safe
equipment operation, other challenges are created by the relatively low temperatures of recovered
heat compared with the ones needed to heat up a building and the difficulty of transporting heat
over long distances [6,7]. Current studies show that the DCs’ can offer a secured supply of heat
accounting more than 60 TW h in Europe [8]. If the heat is not constantly dissipated, the temperature
in the DC can exceed the normal operating setpoints and the IT equipment can be damaged. Thus,
the cooling system is a significant contributor to the DCs’ high energy consumption and even in well
designed DCs, it takes almost 37% of the total energy consumption [9]. Several aspects are of most
interest for DCs when providing waste heat to district grids [10]: improving the DCs’ energy efficiency,
better integration of renewable energy and downstream waste heat monetization. The adoption of new
emerging technologies, such as machine learning or blockchain, force DCs to investigate even other
possibilities for more efficient cooling and heat reuse, such as adopting liquid cooling [11]. This trend
was accelerated with the introduction of AI-friendly processors, which consume lots of energy and
their heat dissipation could not be managed any more using air cooling. Moreover, hybrid solutions
featuring liquid cooling are adopted while at the same time re-using the heat in the smart energy
grid [12]. These solutions require complex ICT-based modelling and optimization techniques to assess
the DC potential thermal flexibility and associated operation optimization [13].

Secondly, the DCs are characterized by flexible energy loads that may be used for assuring a better
integration with local smart energy grids by participating in DR programs and delivering ancillary
services [14,15]. In this way, the DCs will contribute to the continuity and security of energy supply at
affordable costs and grid resilience [16]. Moreover, if the renewable energy is not self-consumed locally,
problems such as overvoltage or electric equipment damage may appear at a local micro-grid level
and could be escaladed to higher management levels [17]. To be truly integrated in the grid supply,
renewable energy sources (RES), since they are volatile, need of flexibility options and DR programs to
be put in place [18]. Few approaches are addressing the exploitation of DCs’ electrical energy flexibility
to achieve better integration into the local energy grids [19]. Modern ICT infrastructures allow the
development of demand and energy management solutions that will allow DCs to be involved scenarios
such as reduction of peak power demand during DR periods [20]. DCs’ strategies for providing
demand response are usually referring to shutting down IT equipment, using Dynamic Voltage
Frequency Scaling (DVFS), load shifting or queuing IT workload, temperature set point adjustment,
load migration and IT equipment load reduction [21–23]. To increase their flexibility potential, the DCs
may rely on non-electrical cooling devices such thermal storages for pre-cooling or post-cooling [6]
and the DC IT workload migration in federated DCs [7]. Shifting flexibility to meet the demand by
leveraging on workload scheduling usually involves the live migration of virtual machines, even in
other DCs [24], or postponing delay-tolerant workloads to future execution points [25]. The migration
of load to distributed partners’ DCs as part of an optimization process is currently addressed through
more promising techniques such as blockchain-based workload scheduling by trying to solve the data
transfer security issues [26]. This typically involves different Artificial Intelligence (AI) algorithms and
techniques with a prevalence of prediction heuristics [27].

Table 1 classifies the above-presented approaches in terms of proposed solutions for DC integration
in smart grids and innovative techniques and technologies developed.
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Table 1. Literature approaches comparison.

DC Multi Energy Grid
Integration State of the Art Techniques

Heat re-use

• Heat reuse models based on Computational Fluid Dynamics (CFD)
[2,6,7]

• Neural networks-based prediction techniques [6–8]
• Optimization heuristics [2,12]

Electrical energy shifting

• Systems of Systems (SoS) modelling and simulation of DCs and
their building components [3,13]

• Optimization heuristics [3,13,14]
• Electronic marketplace for trading flexible energy [2,14]
• Energy consumption/production prediction techniques [15,20]

DC Federation

• IT workload execution time shifting [2,21,25]
• Workload spatial relocation in federated DCs [2,24]
• Optimization heuristics [21,24,25]
• Blockchain-based DC workload distribution and management [26]

In this context, the innovative vision defined by H2020 project CATALYST [28] is that the DCs’
energy efficiency, should be addressed by managing their operation considering the optimal integration
with electrical, thermal and data networks. On the one hand, the DCs have good, yet mostly unexploited,
potential regarding their energy demand flexibility, which makes them great potential contributors to
the ongoing efforts for more efficient and integrated management of the smart grid. On the other hand,
they are large producers of residual heat which can be recovered and re-used near district heating
infrastructures. At the same time, they have great IT data network connections which may provide
a new source of flexibility and optimization: the workload relocation to/from other DCs to meet
some green objectives such as following the renewable energy. As shown above, the state-of-the-art
approaches to DC energy efficiency address only partially the above-presented aspects lacking a
holistic approach. The work presented in this paper contributes to the process of creating the necessary
technological infrastructure for establishing active integrative links among DCs and electrical, heat,
and IT networks which are currently missing.

In summary, the paper brings the following contributions:

• Defines innovative scenarios for DCs, allowing them to exploit their electrical, thermal and
networks connections for trading flexibility as a commodity, aiming to gain primary energy
savings and contribute to the local grid sustainability.

• Describes an architecture and innovative ICT technologies that act as a facilitator for the
implementation of the defined scenarios.

• Presents electrical energy, thermal energy and IT load migration flexibility results in two pilot data
centers, showing the feasibility and improvements brought by the proposed ICT technologies in
some of the new scenarios.

The rest of the paper is structured as follows: Section 2 presents the new scenarios and ICT
technology, Section 3 describes the results obtained in two pilot DCs, and Section 4 concludes the paper.

2. Scenarios and Technology

Table 2 shows the defined scenarios for efficient management and operation of the DCs at the
crossroads of data, electrical energy and thermal energy networks trading electricity, energy flexibility,
heat and IT load as commodities. The definition of scenarios is done incrementally: Scenarios 1, 2 and
3 considering the network connections in isolations, Scenarios 4, 5 and 6 consider combinations of the
two network connections together, while Scenario 7 is the most complex one in which all three network
connections are considered at once. The scenarios highlight the importance of various commodities
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in obtaining primary energy savings and decreasing carbon footprint and the network connections
providing the necessary infrastructure in achieving this.

Table 2. New scenarios defined.

Scenario Optimization Objectives Utility Network

Scenario 1: Single
DC Providing

Electrical Energy
Flexibility

Optimize the DC operation to deliver energy flexibility
services to the surrounding electrical energy grids ecosystems
aiming to create new income source and reduce DC energy
costs. Assess resiliency of energy supply and flexibility,
against adverse climatic events or abnormal demand, trading
off DC assets energy generation or consumption against
on-site or distributed RES, energy storage and efficiency.

Electrical Energy
Network

Scenario 2: Single
DC Providing

Heat

Optimize DC operations to deliver heat to the local heat grid.
Recover, redistribute and reuse DC residual heat for building
space heating (residential and non-residential such hospitals,
hotels, greenhouses and pools), service hot water and
industrial processes. The DC achieves significant energy &
cost savings, reduces its CO2 emissions, contributes to
reducing the system-level environmental footprint and
supports smart city urbanization.

Thermal Energy
Network

Scenario 3:
Workload

Federated DCs

Exploit migration of traceable ICT-load between federated
DCs, to match the IT load demands with time-varying on-site
RES availability (including Utility/non-Utility owned legacy
assets) thus reducing the operational costs and increasing the
share of renewable energy used.

IT Data Network

Scenario 4: Single
DC Providing
both Electrical

Energy Flexibility
and Heat

Optimize the DC operation to deliver both electrical energy
flexibility services and heat to the surrounding energy (power
and heat) grids ecosystems. The DC will act as convertor
between electrical and thermal energy and vice versa to gain
extra revenue on top of normal operation.

Electrical Energy &
Thermal Energy
Networks

Scenario 5:
Workload

Federated DCs
Providing

Electrical Energy
Flexibility

Exploit migration of traceable ICT-load between federated
DCs to deliver energy flexibility services to the surrounding
power grids ecosystems aiming to increase DC income for
trading flexibility.

Electrical Energy &
IT Data Networks

Scenario 6:
Workload

Federated DCs
Providing Heat

Exploit migration of traceable ICT-load between federated
DCs to deliver heat to their local heat grids aiming to increase
the revenue for the reuse of their residual heat.

Thermal Energy &
IT Data Networks

Scenario 7:
Workload

Federated DCs
Providing Both

Thermal and
Electrical Energy

Flexibility

Exploit migration of traceable ICT-load between federated
DCs to deliver: (i) heat to the surrounding thermal grids and
(ii) energy flexibility to the surrounding power grids.

Electrical Energy &
Thermal Energy &
IT Data Networks

To address this innovative vision, several ICT technologies have been developed and coherently
integrated in a framework architecture consisting of three interacting systems (see Figure 1): the DC
Flexibility Manager, DCs Federation Manager, Data center infrastructure management (DCIM) and
Utility Networks Integration.
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Figure 1. Data Centers’ (DCs) optimization framework architecture.

2.1. DC Flexibility Manager System

The DC Flexibility Manager sub-system is responsible for improving DC energy awareness and
energy efficiency, by exploiting the internal flexibility for providing energy services to power and heat
energy grids. The main components of this sub-system are detailed in Table 3.

Table 3. DC Flexibility Manager components.

Component Objective Relevant
Techniques/Technologies

Intra DC
Energy

Optimizer

Decides on the optimization action plans that will allow the DC to
exploit its latent energy flexibility to provide electricity flexibility
services in its micro-grid, to re-use heat in nearby neighborhoods,
and finally to leverage on workload reallocation in other DCs as
potential source of additional energy flexibility

Optimization heuristics,
DC model simulation

Electricity DR
Prediction

Predicts the DC energy consumption, generation and flexibility
using the following time windows: day ahead (24 h ahead),
intraday (4 h ahead) and near real time (1 h ahead).

Machine learning based
models

Heat DR
Prediction

Predicts heat available to be re-used in nearby neighborhoods.
Estimates the temperature of the hot air recovered by the heat
pumps from the server room in various configurations and use the
data to train Multi-Layer Perceptron prediction model.

Computational Fluid
Dynamics, Neural
Networks

Efficiency
Metrics

Calculator

Calculates different metrics in close relation with decided
optimization plans aiming to assess their impact onto the DC
operation. Example of metrics used: Adaptability Power Curve at
RES, Data Centre Adapt, Grid Utilization Factor, Energy Reuse
Factor, etc.

Data Storage Stores the DC main sub-system characteristics, thermal and energy
monitored data, prediction outcomes and optimization action plans. NoSQL database

DC Operator
Console

Displays information on the monitoring, forecasting as well as on
flexibility optimization decision making. It allows the DC operator
to select and validate an optimization plan and to configure the DC
optimization strategies.

React JavaScript library
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The interaction between the DC Flexibility Manager system components is presented in Figure 2.
The Intra DC Energy Optimizer component takes as input the thermal and electrical energy predictions
determined by the Electricity and Heat DR Prediction components as well as the DC model describing
the characteristics and operation. Its main output is the optimal flexibility shifting action plan,
whereby the DC energy profile is adapted to provide various services in the Electrical and Heat
Marketplaces. The Energy Efficiency Metrics Calculator estimates the values of the metrics and the
optimization action plans are displayed on the DC Operator Console for validation. If the plan is
validated by the operator, its actions will be executed.
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2.2. DCs Federation Manager

DCs Federation Manager is responsible for orchestrating the workload relocation among federated
DCs. Table 4 describes the main components of this system.

Table 4. DCs Federation Manager components.

Component Objective Relevant Techniques

Energy Aware
IT Load
Balancer

Decides on the optimal IT loads placement across the federation in
DCs offering capacity in the most efficient or green way. It defines
the actual IT loads relocation plan based on the capacity offers and
bids of other DCs to ensure the implementation of follow the
renewable energy or minimum energy price strategies.

Knapsack algorithm,
Branch and Bound
techniques

Federated DC
IT Load

Migration
Controller

Performs the actual live IT load migration between federated DCs,
which belong to different administrative domains ensuring almost
zero downtime.

Live migration of VMs

Virtual
Container
Generator

A distributed (reversed client-server model) component responsible
for tracking information related to the lifetime of IT virtual loads,
that is virtual machines or containers, on the blockchain, effectively
transforming them into virtual containers (VCs).

Blockchain for IT load
traceability

SLA
(re)negotiation

Responsible for monitoring the SLA compliance of the CATALYST
VCs, based on the events registered in the VCG. SLARC operation is
based on the notion of Service Level Objectives (SLOs) referring to
levelled acceptable behavior against a target objective for given
periods. SLARC would notify registered parties prior to SLA
breakage.

Blockchain,
Publish/Subscribe
mechanisms

The Federated DC MIgration Controller (DCMC) [29], including Master and Lite Client and Server,
enables the live migration of IT load among different administrative domains, without affecting the
end users’ accounting and without service interruption (see Figure 3). The secure communication
channels between DCs are deployed by the DCMC through OpenVPN and secured by Oauth2.0 to
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ensure secure and authorized transfers. A new VM in the form of a virtual compute node gets created
in an OpenStack environment of the destination DC to host the migrated load at the destination,
while tokens for authenticating the DCMC components are retrieved via an integrated KeyCloak server
(part of DCMC software). The DCMC software can attach the new virtual compute to the source DC’s
OpenStack installation, which means that the source DC is the sole owner/manager of the load even
albeit in a different administrative domain.
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In detail, the DC IT Load Migration Controller clients will receive migration offers or bids requests
by the Energy-aware IT Load Balancer, originally spurred by the Intra DC Energy Optimizer. The DC
IT Load Migration Controller client will also inform the Energy Aware Load Balancer of potential
rejection or acceptance. Upon acceptance of the migration bid/offer, DC IT Load Migration Controller
clients will inform the DC IT Load Migration Controller server that they are ready for migration; in case
of a migration bid, the DC IT Load Migration Controller client will first set up the virtual compute
node to host the migrated load. Then, DC IT Load Migration Controller server is responsible for setting
up a secure communication channel between the two DCs: the source and the destination of the IT
load. After communication is set up and the source DC is connected to the virtual compute node at the
destination DC, the migration starts. Then, the DC IT Load Migration Controller clients inform both
the Energy Aware IT Load Balancer about the success or failure of the migration.

Under a federated DCs perspective, the Virtual Container Generator enables IT loads trackability
and allows for indisputable SLA monitoring. In short, the Virtual Container Generator client will offer
information related to the lifetime of the VCs, which will first be translated by the SLA (re)negotiation
component into service license objective (SLO) events and second into SLA status compliance.
This information will be fed to the Energy Aware IT Load Balancer component so that effective
decisions on Virtual Container load migrations may be achieved. The SLA (re)negotiation component
features two methods of information retrieval, which are RESTful and publish-subscribe, while for
data feeding, pull requests towards the Virtual Container Generator will be performed.

2.3. DCIM and Utility Networks Integration

This system offers different components for allowing integration with existing Data center
infrastructure management software or with the utilities networks considered for flexibility exploitation:
electricity, heat and IT.

The Marketplace Connector acts as a mediator between the DC and the potential Marketplaces
that are setup and running and on which the DC may participate. Through the Marketplace Connector,
a DC can provide flexibility services, trade electrical or thermal energy and IT workload. Additionally,
it provides an interface, and the electricity or energy grids operators are responsible for listening after
Demand Response (DR) signals sent by the Distribution System Operator for reducing the DC energy
consumption at critical times or for providing heat to the District Heating network. The DR request is
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forwarded to the Intra DC Energy Optimizer, which evaluates the possibility for the DC to opt in the
request based on the optimization criteria.

Energy Control Manager interfaces the DC appliances and local RES via existing DC infrastructure
management system (DCIM), or other control systems (e.g., OPC server), implements, and executes
the optimization action plans.

The Monitoring System Interface interacts with existing monitoring systems already installed in
a DC, adapts the monitoring data received periodically, and provides this data to the Data Storage
component from which it will be analyzed in the flexibility optimization processes.

3. DC Pilots and Results

In this section, we show the validation results of the proposed technology throughout the first
four scenarios defined in Table 2 in two pilot DCs, a Micro Cloud DC connected to PV system and
located in Poznan Poland and a Colocation DC located in Pont Saint Martin, Italy. The selection of the
scenarios to be evaluated was driven by the hardware characteristics of the considered pilots DCs,
their type and sources of flexibility available. For the real experiments, relevant measurements were
taken from the pilot DCs, flexibility actions were computed by the software stack deployed in the
pilot and the actions were executed by leveraging on the integration with existing DCIM (see Table 5).
Finally, relevant KPIs were computed to determine the energy savings and thermal and electrical
energy flexibility committed. The KPIs were calculated exclusively, considering the monitored data
reported in the experiment and no financial or energetic parameters were assumed.

Table 5. Scenarios mapping on DC pilots.

Scenario Number Poznan Cloud DC Pont Saint Martin Colocation DC
1
2
3
4
5
6
7

Legend: Green: Real experiments described in next sub-sections; the flexibility actions are executed in the pilot

DCs. Blue: implicitly covered; not further detailed.

3.1. Poznan Micro DC with Photovoltaic System

The configuration of the DC pilot test bed is presented in Figure 4. It features two racks with
50 server nodes which consume approximately 8.5 kW of power in a maximum load and about 3 kW
in idle state. The servers’ utilization varies only a few regular services running on the servers; thus,
most of the workload (around 90%) constitutes tasks that can be easily shifted.
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The racks are connected to the photovoltaic system, which consists of 80 PV panels with 20 kW
peak power. Servers are directly connected to inverters so that they can be supplied: directly by power
grid, using renewable in the case of enough generation or by batteries (75 kWh) if energy production is
too low. If batteries are discharged below 60%, servers immediately switch to power grid to extend
battery life. The maximum load of the PV used by servers, due to electrical constraints, is limited to
7.3 kW. With fully charged batteries and no solar radiation, the battery could keep the completely
loaded servers for 4 h.

The cooling system consumes up to 3.2 kW with a cooling capacity of 10 kW (maximum 11 kW).
The testbed DC system characteristics are summarized in Table 6.

Table 6. DC system characteristics.

Sub-System Characteristics

IT Servers

1st rack: 26 nodes (18 Xeon E5, 4 Taishan, 4 Tesla K80), energy consumption between
~6.5 kW max and ~2.5 kW on idle

2nd rack: ~32 nodes (6x Intel i5, 22x Intel i7, 4x Tesla_K40), energy consumption
between ~2 kW max and ~0.5kW on idle

Cooling System Cooling Capacity: 10 kW (max: 11 kW), Max power consumption: 3.2 kW, EER = 3.2,
CoP = 3.5, 1st rack is half air-cooled half liquid-cooled, 2nd rack is fully air-cooled

Photovoltaic system 80 PV panels with 20 kW peak power and energy storage of 75 kWh

The challenge in this case is to minimize the pilot DC operational costs with energy, considering
variable characteristics such as the energy prices, renewable energy generation, efficient air conditioning
management and computing load. By adjusting the power usage of the micro DC in certain periods,
it is possible to emulate adaptation to variability of energy prices or renewable generation. The micro
DC servers are managed by the SLURM queuing system for batch jobs and by OpenStack while the
power management system allows for an accurate analysis of energy consumption of the racks and
cooling system. In the next sub-sections, we show how scenarios 1 and 3 are addressed in Poznan
Micro DC for providing electrical flexibility and exploiting the IT load migration cross DCs.

3.1.1. Scenario 1: Single DC Providing Electrical Energy Flexibility

In this test case, we evaluate the electrical energy flexibility of a Pilot DC offered by the use of
photovoltaic renewable and associated energy storage. The flexibility services that may be provided
are: (i) congestion management by decreasing the DC energy demand from the grid and (ii) trade
energy in case of a surplus of RES. The test benefits from the power capping mechanism allowing to
dynamically adjust the power level, and thus shifting the corresponding load execution to run when
renewable energy is available.

The DC Flexibility Manager System was deployed and configured into the pilot DC and used to
manage the on-site electrical energy flexibility and PV utilization. It was integrated with the existing
monitoring system which exposes PV production and energy data and stores them within the Data
Storage. The micro DC energy consumption considers energy related to Real Workload, Delay Tolerant
Workload and the cooling equipment. These data are used to forecast the energy demand for the next
day, the potential latent energy flexibility and PV power production. The predicted data are later
used by the Intra DC Energy Optimizer component to determine flexibility optimization plans shifting
the electrical energy flexibility to maximize the locally generated renewable energy by leveraging on
mechanisms such as workload management and battery storage usage. The provided action plan can
be seen in DC Operator Console and is later translated into actions performed on the pilot DC.

The historical data for the pilot DC used by the energy prediction processes are shown in Figure 5
the DC energy consumption being split on the three main flexibility components (real-time workload,
delay tolerant workload and cooling system).
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The forecasts for the next operational day computed by the Electrical DR Prediction component
are displayed in Figure 6.
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Figure 6. Electricity prediction for the next day.

The Intra DC Energy Optimizer computes an energy flexibility management plan aiming to
increase the DC demand during the day and decrease it during the night when the PV production is
low. As shown in Figure 7a, the adapted DC energy demand (displayed as a dark green line) differs
from the DC baseline energy demand (displayed as a dark line) because it will follow the pattern of the
PV production, plotted as a light-green line. Thus, until the PV panels will start producing electricity,
the plan aims at lowering the DC energy consumption by discharging batteries. They can support
about 2 kWh of energy discharge each hour, until the capacity of 60 kWh of the battery depletes (light
green columns in Figure 7b). Furthermore, the plan suggests shifting the delay tolerant workload from
this period to the interval between hours 7 and 14 when the PV production is high. Each time the
load shift action is encountered, the power is capped by the corresponding value and released later,
according to the schedule. Moreover, the batteries will be recharged during the time period when the
PV production is high (green columns in Figure 7b).

The optimization plan computed by the Intra DC Optimizer targets to leave the batteries at the end
of the day in the same state as they were at beginning of the day. After the PV production stops, the DC
energy consumption follows the normal pattern given by the baseline, since no actions are required.

The evaluated pilot DC is configured to be powered in equal parts by RES and the electricity
grid. Moreover, the PV panels are used to charge the set of batteries. In the test, an assumption
was considered to protect the batteries—not discharging them below 40%. Deeper (or worse—full)
discharge leads to faster degradation of the battery and lower capacity. When there is a surplus of
energy, solar cells charge the batteries; in the event of a shortage of energy, the batteries maintain the
DC operation. Figure 8 depicts the charge level of the batteries during the test case execution.
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Figure 8. Charging level of the batteries during the test case execution.

Charging and discharging the batteries takes place according to the schedule returned by the Intra
DC Energy Optimizer. When it determines that the batteries are fully charged, it does not use them
until start of the next cycle. However, some batteries power external devices that could not be turned
off during the tests, hence the constant drop in the charge level after 6 p.m. in Figure 8. As mentioned,
the testbed worked on real resources that were additionally used by external users. This may affect the
appearance of additional tasks that did not alter the course of the test and confirms the possibility of its
operation on an operational DC. Table 7 below shows relevant metrics calculated for this test case.
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Table 7. Relevant metric values for this test case.

Metric Formula Description Value

Renewable energy
factor (REF)

RE owned & controlled by DC
Total Facility Energy

% of renewable energy over total
DC energy 0.428

Adaptability Power
Curve at RES (APCren) 1−

∑n
i=1 |KAPCren ·ERen i−EDCi|∑n

i=1 EDCi

Ability of a DC to adapt the energy
demand (EDCi) to the production

curve of RES (ERen i).
0.28

Data Centre
Adapt—DCA 1−

∑n
i=1 |KDCA×EDCReal i−EDCBaseline i |∑n

i=1 EDCBaseline i

Ability of a DC to change its energy
consumption behaviour (EDCReal i)

considering the baseline
consumption (EDCBaseline i)

0.85

Grid Utilization
Factor—GUF

∑n
i=1 f (n)

N ,

f (n) =
{

1, net exported < 0
0, net exported ≥ 0

% of time that locally RES generated
energy cannot cover DC needs 0.66

3.1.2. Scenario 3: Workload Federated DCs

The goal of this test case was to exploit the possibility of IT load migration between DCs offered
by the DCs Federation Manager system. We considered the pilot DC described the previous section as
the destination DC. For the load migration, we utilized 16 servers Huawei XH620 blades, which reside
within Huawei X6800 chassis. Each blade consists of 2x Xeon(R) E5-2640 v3 CPU (8 c/CPU) and 64 GB
of RAM. The servers are connected to the Internet with symmetric 1 Gb/s connection. The DC deployed
a DC Migration Controller Client around the OpenStack instance (Train distribution) hosted on a
physical XH620 server with installed Ubuntu 18.04. OpenStack installation comes with Nova Compute
and VPNaaS extension responsible for hosting the VM and providing VPN connections, respectively.
The source DC provides with 32 servers equipped with AMD Ryzen 7 1700x and 32 GB of RAM with a
similar software stack.

By the means of IT load migration, the amount of electrical and/or thermal flexibility of the
destination DCs is increased and may provide to the local grid via DR programs or local flexibility
markets. The migration test case was conducted between two servers of the source and destination
DCs. The obtained results were used to extrapolate for the situation in which half of the workload is
migrated to the destination DC (see Table 8).

Table 8. Measurements for test case and extrapolation.

Name of the Measurement Value for a Single Server Value for All Servers (Number in
the Brackets)

Power usage of destination server in idle 92 W 1472 W (16)/736 W (8)
Power usage of destination server

running single VM running Blender 125.3 W (not used)

Power usage of destination server
running 2 VMs running Blender 162 W 2592 W (16)/1296 W (8)

Power usage of destination server under
the maximum load (or shifted PaaS load

2 servers to 1)
184 W 2944 W (16)/1472 W (8)

Power usage of destination server under
typical (PaaS services) load 119 W 1900 W (16)

Power usage of source server running
VM running Blender 74.6 W 2387 W (32)/1194 W (16)

Power usage of source server
idle/switched off

20.5 W/xx 656 W/xx (32)/328 W/xx (16)

Migration duration of VMs between
DCs (symmetric) n/a < = 22 min (16)/< = 26 min (32)
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The destination DC servers’ total idle power usage is estimated by multiplication of the value of
energy drawn by a single server by the number of servers. A destination DC server can efficiently
host two VMs running Blender. Such an assumption was driven by the fact that the destination DC
node has 2x 8 core CPU with similar characteristics as the CPU of the source DC server and twice the
amount of operational memory. The power drawn by the destination server hosting two VMs running
Blender was computed as the sum of the power drawn by the idle destination server and twice the
amount of power consumption that increased after a single VM migrated to the server. The latter
component of the sum is enlarged by 5% in order to consider the worst-case scenario. The value of the
power consumption was calculated by running a heavy load on one of the destination DC servers and
measuring its power consumption. The sum for all servers was calculated as the value multiplied
by 16, the number of servers. The assumption was made that after squeezing the PaaS services load
running on 16 servers to eight servers, the power consumption of such servers would be much higher.
In this experiment, a worst-case scenario was assumed, i.e., the maximum power drawn by such
servers. A destination DC server under typical (PaaS services) load power usage was estimated as the
average of the last 90 days.

In the first experiment, we considered that no workload was migrated between the source and
destination DC (see Figure 9). This experiment was used as a baseline to the other two, since no load
was shifted between the DCs. Not shifting the load made the power consumption in both DCs constant,
and the RES energy utilization was the lowest among the experiments, i.e., 30.4 kWh.
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In the second experiment, half of the load was migrated in case of overproduction of RES at
destination DC. The PaaS services running on destination servers were squeezed on half of the servers,
inducing higher power consumption of the servers and resulting in lower QoS and reliability of the
services. The other half of the servers were then released to receive the migrated workload. Figure 10
shows that workload from migrated resulted in power consumption decreased by half in the source
DC. The power consumption at destination DC is higher due to the higher load of the PaaS services.
This experiment allowed to draw approximately 36.5 kWh of energy from RES and is the most realistic
due to proper PaaS services handling.
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Table 9 presents the relevant KPIs calculated for this scenario. The REF and APCren metrics were
only calculated for destination DC as source does not have access to renewable energy.

Table 9. Test case metrics values.

Experiment
KPIs

REF Dest. DC APCren Dest. DC

No IT load is migrated from source DC to destination DC 0.67 0.40
Half of the IT load is migrated from source DC to destination DC 0.71 0.48

3.2. Pont Saint Martin DC

For these experiments, we leveraged on the pilot DC testbed provided by Engineering Informatica
in Pont Saint Martin. The DC testbed cooling system is mainly composed of two Trane RTHA 380
refrigerating units (GFs): single-compressor, helical-rotary type water-cooled liquid chillers, accountable
for server rooms’ refrigeration and for the summer cooling of 6000 m2 offices. Their characteristics are
provided in Table 10.

Table 10. Characteristics of the refrigerant unit.

Refrigerating unit (GF) Nominal Power: 100 kW, TinC1 = 13 ◦C, ToutC1 = 22 ◦C, TinC2 = 10 ◦C,
ToutC2 = 7 ◦C, Coefficient of performance: 6.5

Moreover, each server room is equipped with two–three conditioning units (CDZs). The computer
room air conditioner (CRAC) unit is composed of chilled water precision air conditioners systems,
used to refrigerate the server rooms. They are located outside each server room: the air inside the server
room flows through vents reaching the conditioning unit to be later reinjected into the bunker room
through a ventilation shaft at the base of the rack’s lines. Each server room includes a heterogeneous
group of servers and devices, whose configurations differ: this means that each server-room will have
a different number of hosted elements, power absorbed and therefore, set point temperature. Table 11
shows the characteristics of the sever rooms used for evaluation.
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Table 11. Features of the server rooms used in evaluation.

Server Room 1 2

Ceiling height (m) 3.45 2.85
Area (m2) 180.00 100.00

Gross volume (m3) 621.00 285.00
Server room air set point temp. (◦C) 23.50 24.50

Minimum Air Flow Temperature in Server Room 20.00 20.00
Maximum Air Flow Temperature in Server Room 26.00 26.00

Average IT power (kW) 96.00 44.60
Number of Racks 62.00 24.00

Number of servers only 330.00 154.00
Total number of device (server and storage) per Bunker 515.00 215.00

Number of cooling unit per bunker (GF id) 1 2
Total cooling power per unit (kW) 152.00 39.80

Nominal power required (kW) 20.00 n.a.
Nominal air flow pumped in the server room (m3/h) 28,600.00 12,000.00

Finally, Table 12 presents the hardware characteristics of the other devices of the DC relevant for
the experiments carried out.

Table 12. Heat pump and UPS system properties.

Device Characteristics

Heat Pump
Coefficient of Performance (Cooling: 6.05, Heating: 4.43)

Cooling mode: Power absorbed by the compressor = 131 KW
Heating mode: Power absorbed by the compressor = 177.0 KW

UPS system Power kVA: 800 kVA, Power kW: 640 kW, Battery type: EXIDE 14 OGi 800,
Capacity: 1600 Ah, Number of cells: 204

In the next sub-sections, we show how scenarios 2 and 4 were addressed in this DC for re-using
the generated heat and achieving more flexibility by efficiently combining power and heat.

3.2.1. Scenario 2: Single DC Providing Heat

The main goal of this experiment was to exploit the post cooling technique as a mechanism of
thermal flexibility aiming to re-use the residual heat in nearby heat grids or buildings. We used the
post cooling technique as a flexibility mechanism to increase the quality of the heat (i.e., temperature)
recovered from the server rooms as much as possible without endangering the safe operation of the
computing equipment.

The Flexibility Manager system was deployed in the pilot DC and used to compute the flexibility
optimization actions. DCIM and Utility Networks Integration components were configured to allow on
one side the gathering of real-time measurements from the pilot and the integration with local thermal
grid for obtaining the heat demand and associated price to be used as flexibility optimization driver.
Using the historical monitored data stored in the Data Storage, the Heat DR Prediction forecasts the
day ahead energy demand and thermal flexibility of the DC. The Intra DC Energy Optimizer considers
the heat prediction process results and heat demand to decide on an optimization action plan that
contains post-cooling actions for specific intervals (i.e., change the configuration of bunker temperature
alarm from 25 to 27 degree). The plans were calculated and used to shift thermal energy flexibility in
response to specific heat reuse requests. Upon plan validation, the actions were executed including
post-cooling of server rooms for more thermal flexibility by switching off refrigerator units GF1 and
GF2 at specific time intervals.

The historical energy consumption data for the pilot DC is shown in Figure 11 (i.e., for the last
24 h), split on the three main flexibility components (i.e., real time workload, delay tolerant workload
and cooling system). The DC energy consumption varies slightly around an average of 780 kWh.
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Figure 11. Energy consumption data of the pilot DC (a-overall, b-disaggregated).

The Heat/Cold DR Prediction Module computes the estimation of the thermal generation for the
next day using historical energy consumption data. The prediction over the next 24 h corresponds to
the energy production of the last 24 h due to the low variability of the DC energy consumption.

The Intra DC Energy Optimizer uses the Marketplace Connector to get the heat demand and
reference prices for the next day. As can be seen in Figure 12, the price for heat is high during hours 7–14;
however, this does not match the thermal energy generation profiles as estimated by the prediction
tool, which are almost constant during the day. Thus, the DC Optimizer computes an optimization
plan to increase the DC thermal generation during the time interval when the heat price is high. This is
done by leveraging on two flexibility mechanisms: shifting delay tolerant workload to increase the
heat generation of the servers and post cooling the server room to extract more heat when the prices
are high. The optimization plan is shown in Figure 13, in which the left chart shows the baseline heat
generation (in dark green) and the adapted heat generation (in light green). Due to server room post
cooling, the heat generation is increased during hours 8 and 9, enabling the DC to make extra profit
by selling heat when the prices are high. The extra heat generated by the post cooling mechanism is
shown as the dark blue columns in the right chart in Figure 13.
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Considering the execution of the day-ahead flexibility optimization plan, the metrics in Table 13
were calculated.

Table 13. Value of the metrics calculated for this experiment.

Metric Formula Description Value

In House Reuse
Factor (IRF)

Energy Recovered within DC
Total Facility Energy

% of the energy recovered within
DC from the total facility energy 0.49

Energy Reuse Factor
(ERF)

Reuse X SourceFactor
Total Facility Energy

% of energy that is exported for
reuse outside of the data centre 0.48

Sustainable Heat
Exploitation (SHE)

electricity f eeding the heat recovery system
DC overall electricity consumption

% of electricity feeding the heat
recovery system from the DC

overall electricity consumption
(before waste heat recovery)

0.14

Heat Usage
Effectiveness (HUE)

heat recovered
SHE heat recovered divide by SHE 2641.68

3.2.2. Scenario 4: Single DC Providing both Electrical Energy Flexibility and Heat

The goal of this experiment was to show how the pilot DC can operate at the crossroad of two
energy networks (power and heat) and provide a combination of electrical and thermal flexibility.
In this case, we leveraged on the possibility of controlling the cooling system and postponing the
execution of delay tolerant workload as sources of flexibility. Using the monitored data stored in the
Data Storage, the Heat DR Prediction and Electrical DR Prediction modules forecast the day ahead
energy demand, electrical energy flexibility and thermal flexibility of the DC (see Figure 14). The Intra
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DC Energy Optimizer considers the electrical and heat flexibility prediction process results and both
the electrical flexibility request and heat demand to decide on an optimization action plan. As a result,
the optimization actions plans are calculated and used to shift both electrical and thermal energy
flexibility to match specific flexibility requests.
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Figure 14. 24 hours energy (a) consumption and (b) prediction.

We leveraged on both shifting delay tolerant workload actions and post-cooling of the server room
to allow the DC to adapt both its electrical energy consumption and the thermal energy generation to
match the request. Figure 15 shows the DC optimization plan from the electrical energy flexibility
perspective. The chart in the upper-left corner shows the DC baseline (in black), the electrical energy
flexibility request having a peak between hours 15 and 20 (blue line) and the DC adapted profile that
matches closely the Flexibility request (shown in green line). The DC energy consumption is shown in
the upper right chart of its components.

Figure 16 shows the same optimization plan from the thermal energy flexibility perspective.
It shows the thermal flexibility of the DC and the generated heat that will be re-used in the local heat
grid. The chart from the upper left corner shows the baseline heat generation (dark green) and the
adapted heat generation (light green) and the effect of the post cooling action on the DC heat generation
can be seen by the dark blue columns in the right chart.
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For the day ahead flexibility optimization plans in this experiment, the metrics in Table 14
were calculated.

Table 14. Value of metrics calculated for this test case.

Metric Description and Formula Value

DCA see Table 7 0.1
ERF see Table 13 0.48

Primary Energy
Savings (PES)

% of savings in terms of primary energy actually consumed by a DC
and measured during period ∆t(PECurrent,∆t ) versus the baseline

consumption ( PEBaseline_adjusted∆t ); formula:

1−
PECurrent,∆t

PEBaseline_adjusted∆t

0.14

HUE see Table 13 2650.44

4. Conclusions

In this paper, we address DCs’ energy efficiency from the perspective of their optimal integration
with utility networks such as electrical, heat and data networks. We describe innovative scenarios and
ICT technology that allows them to shift electrical and thermal energy flexibility and exploit workload
migration inside a federation to obtain primary energy savings and contribute to the grid sustainability.

The technology and several of the proposed scenarios were validated in the context of two pilot
DCs: a micro DC in Poznan which has on site renewable and a DC in Point Saint Martin. The first
experiment conducted on Poznan micro DC proved the possibility of using RES in DCs energy flexibility.
The PV-system allows not only to reduce the grid power usage and reduce CO2 emission, but also
can be considered as a resource in energy flexibility services. By harnessing the energy storage, one
may accumulate the energy and use it once more profitable. The profitability can be either driven by
Congestion Management services or participation in DR.

The second experiment combined IT load migration with the availability of RES to increase the
amount of energy flexibility and to find a trade-off between the flexibility level, QoS and the RES
production level. As expected, migrating the load allows a reduction in CO2 emission by opening
possibilities for bolder power savings actions at DC originating the load. In this case, it is the effect of
shutting down the unused nodes at one DC site and taking advantage of RES together with temporarily
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postponing some of the running services on the other. However, the amount of workload relocated
affects efficiency indicators in the opposite way. When the number of migrated VMs exceeds the
computational capabilities of the destination DC, it may overload the system, thus, inducing less
favorable exploitation of renewable energy. The key point is to find a balance between the power profile
of DC and the acceptance level for the external load. One should easily note that the IT load migration
can serve not only as a source of energy flexibility but can also lead to an increase in the overall energy
efficiency of the federated system. In this way, it can match IT demands with time-varying onsite RES
and implement “follow the energy approach”.

In Point Saint Martin DC, the first performed experiment shows how the DC can adapt its thermal
energy profile in order to match specific heat re-use requests. The obtained results prove that the
heat recovery takes place even if the total facility energy is not being recovered for use within the DC
boundaries. For efficient heat recovery, we considered the deployment of a heat pump as flexibility
actions we have used the room post cooling by controlling the temperature set points and cooling
system. The second experiment shows that both the electrical and thermal energy profiles of the
DC can be adapted to match specific flexibility requests. The small value of primary energy savings
obtained indicates that the plan focuses on adapting the DC energy demand and not reducing it while
the reuse factor indicates that almost half of the energy consumed by the DC will be further reused in
nearby destring heating systems.

Finally, to provide a guideline on the use of proposed ICT theology and applicability of the
specific scenarios and flexibility actions, Table 15 shows that they fit to different DC types. We used a
DCs’ well known classification according to their specific operation, such as collocation, cloud and
High-Performance Computing (HPC). For each DC type, we highlighted the possibility of applying a
specific scenario considering their resources and flexibility sources.

Table 15. Suitability of specific scenarios and flexibility for data center types (+ suitable, - not suitable).

Scenarios Data Center Type

No. Flexibility Source Colocation Cloud HPC

1

Delay-tolerant workload shifting - + +
Use of cooling inertia + + +

Use of RES and energy storage + + +
Use of diesel generators + + +

2
Local heat re-use + + +

Heat re-use at external entities + + +
3 IT load migration - + -

4 Dynamic usage of the cooling system and shifting of delay
tolerant workload - + -

5 IT load migration based on optimal DC power usage levels - + -
6 IT load migration + heat re-use - + -
7 IT load migration with energy flexibility and heat re-use - + -

Generally, cloud DCs are suitable for most scenarios due their flexibility, moderate utilization, and
good control. Of course, these are general guidelines and suitability depends strongly on a specific
case, e.g., used software and technologies, data center policies, customers’ requirements, etc. However,
flexibility actions based on managing the workload are not well suited to collocation DCs that do not
have direct control on servers and running workloads.
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