Land Fragmentation, Technical Efficiency, and Adaptation to Climate Change by Farmers in the Gamo Highlands of Ethiopia
Abstract
:1. Introduction
2. Theoretical Framework
3. The Study Area and Data
3.1. Output
3.2. Inputs
3.3. Land Fragmentation Indicators
3.4. SLM Practices
3.5. Plot Characteristics
3.6. Education and Experience
4. Empirical Model
5. Results and Discussion
5.1. Hypotheses Tests
5.2. Elasticities and Returns to Scale
5.3. Technical Efficiency Components
5.4. Factors Affecting Inefficiency
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M. Economic impact of climate change on crop production in Ethiopia: Evidence from cross-section measures. J. Afr. Econ. 2009, 18, 529–554. [Google Scholar] [CrossRef]
- Parry, M.; Rosenzweig, C.; Iglesias, A.; Fischer, G.; Livermore, M. Climate change and world food security: A new assessment. Glob. Environ. Chang. 1999, 9, S51–S67. [Google Scholar] [CrossRef] [Green Version]
- Wijeratne, M.A.; Anandacoomaraswamy, A.; Amarathunga, M.K.S.L.D.; Ratnasiri, J.; Basnayake, B.R.S.B.; Kalra, N. Assessment of impact of climate change on productivity of tea (Camellia sinensis L.) plantations in Sri Lanka. Natl. Sci. Found. Sri Lanka 2007, 35, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Challinor, A.; Wheeler, T.; Garforth, C.; Craufurd, P.; Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Clim. Chang. 2007, 83, 381–399. [Google Scholar] [CrossRef]
- Kotir, H.J. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Scholes, R.J.; Biggs, R. Ecosystem Services in Southern Africa: A Regional Assessment; Council for Scientific and Industrial Research: Pretoria, South Africa, 2004. [Google Scholar]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Adger, W.N.; Huq, S.; Brown, K.; Conway, D.; Hulme, M. Adaptation to climate change in the developing world. Prog. Dev. Stud. 2003, 3, 179–195. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R. A Ricardian Analysis of the Impact of Climate Change on African Cropland; The World Bank: Washington, DC, USA, 2008; Volume 2. [Google Scholar]
- IPCC. Climate Change: The Scientific Basis. In Modelling the Turnover of Organic Matter in Long-Term Experiments at Rothamstedt; Jenkinson, D.S., Hart, P.B.S., Rayner, J.H., Parry, L.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- Parry, M.; Canziani, O.; Palutikof, J.; van der Linden, P.; Hanson, C. Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007; Volume 4, pp. 1–976. [Google Scholar]
- Kandlinkar, M.; Risbey, J. Agricultural impacts of climate change: If adaptation is the answer, what is the question? Clim. Chang. 2000, 45, 529–539. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Aggarwal, P.K.; Ainslie, A.; Angelone, C.; Campbell, B.M.; Challinor, A.J.; Hansen, J.W.; Ingram, J.S.I.; Jarvis, A.; Kristjansonak, P.; et al. Options for support to agriculture and food security under climate change. Environ. Sci. Policy 2012, 15, 136–144. [Google Scholar] [CrossRef]
- Di Falco, S. Adaptation to climate change in Sub-Saharan agriculture: Assessing the evidence and rethinking the drivers. Eur. Rev. Agric. Econ. 2014, 41, 405–430. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 825–842. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAO Statistical Yearbook 2012; Food and Agricultural Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Tolessa, T.; Senbeta, F.; Kidane, M. The impact of land use/land cover change on ecosystem services in the central highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Pretty, J.; Toulmin, C.; Williams, S. Sustainable intensification in African agriculture. Int. J. Agric. Sustain. 2011, 9, 5–24. [Google Scholar] [CrossRef]
- Motavalli, P.; Nelson, K.; Udawatta, R.; Jose, S.; Bardhan, S. Global achievements in sustainable land management. Int. Soil Water Conserv. Res. 2013, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.C.; Burcroff, R. Sustainable Land Management: Challenges, Opportunities, and Trade-offs; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Deininger, K.; Jin, S. Tenure security and land-related investment: Evidence from Ethiopia. Eur. Econ. Rev. 2006, 50, 1245–1277. [Google Scholar] [CrossRef] [Green Version]
- Teshome, A.; de Graaff, J.; Ritsema, C.; Kassie, M. Farmers’ perceptions about the influence of land quality, land fragmentation and tenure systems on sustainable land management in the north western Ethiopian highlands. Land Degrad. Dev. 2014, 27, 884–898. [Google Scholar] [CrossRef]
- Gashaw, T.A. Agricultural land fragmentation and productivity in Ethiopia: Review. Int. J. Adv. Sci. Res. 2017, 2, 18–22. [Google Scholar]
- Nguyen, T.; Cheng, E.; Findlay, C. Land fragmentation and productivity in China in the 1990s. China Econ. Rev. 1996, 7, 169–180. [Google Scholar] [CrossRef]
- Kawasaki, K. The costs and benefits of land fragmentation of rice farms in Japan. Aust. J. Agric. Resour. Econ. 2010, 54, 509–526. [Google Scholar] [CrossRef] [Green Version]
- Manjunatha, A.; Anik, R.A.; Speelman, S.; Nuppenau, E. Impact of land fragmentation, farm size, land ownership and crop diversity on profit and efficiency of irrigated farms in India. Land Use Policy 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Di Falco, S.; Penov, I.; Aleksiev, A.; Van Rensburg, T.M. Agrobiodiversity, farm profits and land fragmentation: Evidence from Bulgaria. Land Use Policy 2010, 27, 763–771. [Google Scholar] [CrossRef]
- Reidsma, P.; Ewert, F.; Lansink, A.O.; Leemans, R. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. Eur. J. Agron. 2010, 32, 91–102. [Google Scholar] [CrossRef]
- Rahman, S.; Rahman, M. Impact of land fragmentation and resource ownership on productivity and efficiency: The case of rice producers in Bangladesh. Land Use Policy 2008, 26, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Koopmans, T.C. An Analysis of Production as Efficient Combination of Activities; John Wiley: New York, NY, USA, 1951. [Google Scholar]
- Niroula, G.S.; Thapa, G.B. Impacts of land fragmentation on input use, crop yield and production efficiency in the mountains of Nepal. Land Degrad. Dev. 2007, 18, 237–248. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Kuyvenhoven, A.; Qu, F. Impact of land fragmentation on rice producers’ technical efficiency in South-East China. NJAS Wagening. J. Life Sci. 2010, 57, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; van Den Broeck, J. Efficiency estimation from Cobb-Douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Bentley, J. Economic and ecological approaches to land fragmentation: In defense of a much-aligned phenomenon. Annu. Rev. Anthropol. 1987, 16, 31–67. [Google Scholar] [CrossRef]
- De Lisle, D. Effects of distance on cropping patterns internal to the farm. Ann. Assoc. Am. Geogr. 1982, 72, 88–98. [Google Scholar] [CrossRef]
- Blarel, B.; Hazell, P.; Place, F.; Quiggin, J. The economics of farm fragmentation: Evidence from Ghana and Rwanda. World Bank Econ. Rev. 1992, 6, 233–254. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lien, G.; Hardaker, J.B. Technical efficiency in competing panel data models: A study of Norwegian grain farming. J. Product. Anal. 2014, 41, 321–337. [Google Scholar] [CrossRef]
- Greene, W. Fixed and random effects in stochastic frontier models. J. Product. Anal. 2005, 23, 7–32. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, S.C.; Wang, H.; Horncastle, A.P. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Kumbhakar, S.C.; Heshmati, A. Efficiency measurement in Swedish dairy farms: An application of rotating panel data, 1976–88. Am. J. Agric. Econ. 1995, 77, 660–674. [Google Scholar] [CrossRef]
- Jondrow, J.; Lovell, C.K.; Materov, I.S.; Schmidt, P. On the estimation of technical inefficiency in the stochastic frontier production function model. J. Econom. 1982, 19, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Belay, K.; Manig, W. Access to rural land in eastern Ethiopia: Mismatch between policy and reality. Agric. Rural Dev. Trop. Subtrop. 2004, 105, 123–138. [Google Scholar]
- Hung, V.P.; MacAulay, T.G.; Marsh, P.S. The economics of land fragmentation in the north of Vietnam. Aust. J. Agric. Resour. Econ. 2007, 51, 195–211. [Google Scholar] [CrossRef] [Green Version]
- Sherlund, S.M.; Barrett, C.B.; Adesina, A.A. Smallholder technical efficiency controlling for environmental production conditions. J. Dev. Econ. 2002, 69, 85–101. [Google Scholar] [CrossRef]
- Bizimana, C.; Nieuwoudt, W.L.; Ferrer, S.R. Farm size, land fragmentation and economic efficiency in southern Rwanda. Agrekon 2004, 43, 244–262. [Google Scholar] [CrossRef]
- Heston, A.; Kumar, D. The persistence of land fragmentation in peasant agriculture: An analysis of South Asian cases. Explor. Econ. Hist. 1983, 20, 199–230. [Google Scholar] [CrossRef]
- Wan, G.; Cheng, E. Effects of land fragmentation and returns to scale in the Chinese farming sector. Appl. Econ. 2001, 33, 183–194. [Google Scholar] [CrossRef]
- Tappan, G.; McGahuey, M. Tracking environmental dynamics and agricultural intensification in southern Mali. Agric. Syst. 2007, 94, 38–51. [Google Scholar] [CrossRef]
- Wang, H. Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontier model. J. Product. Anal. 2002, 18, 241–253. [Google Scholar] [CrossRef]
- Battese, G.E.; Malik, S.J.; Gill, M.A. An investigation of technical inefficiencies of production of wheat farmers in four districts of Pakistan. J. Agric. Econ. 1996, 47, 37–49. [Google Scholar] [CrossRef]
- Seyoum, E.T.; Battes, G.E.; Fleming, E.M. Technical efficiency and productivity of maize producers in eastern Ethiopia: A study of farmers within and outside the Sasakawa-Global 2000 project. Agric. Econ. 1998, 19, 341–348. [Google Scholar]
- Tan, S.; Heerink, N.; Qu, F. Land fragmentation and its driving forces in China. Land Use Policy 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Cholo, T.; Fleskens, L.; Sietz, D.; Peerlings, J. Is land fragmentation facilitating or obstructing adoption of climate adaptation measures in Ethiopia? Sustainability 2018, 10, 2120. [Google Scholar] [CrossRef] [Green Version]
Variables | Description of Variables | % | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
ln (Output) | Barley yield per ha observed in plot j, kg | 7.43 | 0.91 | 4.47 | 10.69 | |
Inputs | ||||||
ln (Manure) | Manure applied per ha on plot j, kg | 3.96 | 2.06 | 0 | 7.73 | |
ln (Labour) | Family labour available to be used per ha on plot j in 2015, hours | 5.92 | 1.22 | 2.17 | 8.95 | |
ln (Fertiliser) | Chemical fertiliser applied per ha on plot j, kg | 5.39 | 1.87 | 0 | 10.03 | |
Plot-invariant causes of inefficiency | ||||||
Education and experience | ||||||
Literacy | 1 if household head can read and write | 25 | 0.25 | 0.43 | 0 | 1 |
Experience | Farming experience, years | 35.6 | 16.9 | 1 | 76 | |
Land fragmentation indicators | ||||||
Plot | Number of plots | 25.5 | 16.3 | 2 | 80 | |
SFI | Simpson index for land fragmentation | 0.87 | 0.1 | 0.5 | 0.97 | |
Distance | Sum of non-overlapping distance from home to all plots, km | 2.8 | 1.6 | 0.2 | 7.2 | |
Land | Total land holding size, ha | 1.6 | 1.5 | 0.13 | 8.32 | |
Plot-varying causes of inefficiency | ||||||
Plot characteristics | ||||||
Slope | 1 if slope of barley plot j is steep | 26 | 0.26 | 0.44 | 0 | 1 |
Fertility | 1 if barley plot j is fertile | 31 | 0.32 | 0.47 | 0 | 1 |
Distance 1 | Distance to a barley plot j from home, km | 0.71 | 0.66 | 0.001 | 2.7 | |
Land 1 | Plot j allocated for barley production, ha | 0.08 | 0.09 | 0.002 | 0.61 | |
SLM practices | ||||||
Legume | 1 if legume applied on plot j last year | 65 | 0.65 | 0.48 | 0 | 1 |
Indigenous | 1 if indigenous tree planted on plot j | 46 | 0.46 | 0.50 | 0 | 1 |
Seed | 1 if quality barley seed used on plot j | 42 | 0.42 | 0.50 | 0 | 1 |
Obs. | Number of observations | 184 |
Model | Test Statistics | A.1 No Technical Inefficiency | A.2 TL Model vs. CD Model | A.3 Joint Effect of LF Indicators Is Zero | A.4 Joint Effect of SLM Practices Is Zero | A.5 No Interaction Effect | |
---|---|---|---|---|---|---|---|
RESF | Equation (11) | ||||||
λ | 4.86 | 23.13 | |||||
df | 1 | 6 | |||||
p-value | 0.025 | 0.000 | |||||
decision | rejected | rejected | |||||
TFESF II | Equations (11) and (12) | λ | 647.104 | 462.90 | 8.05 | 42.56 | 13.23 |
df | 1 | 7 | 2 | 4 | 8 | ||
p-value | 0.000 | 0.000 | 0.020 | 0.000 | 0.010 | ||
decision | rejected | rejected | rejected | rejected | rejected |
Variables | Model I | Model II | ||
---|---|---|---|---|
Elasticities | SE | Elasticities | SE | |
ln (Labour) | 0.2280 *** | (0.0580) | 0.0970 | (0.0737) |
ln (Manure) | 0.2125 *** | (0.0228) | 0.2133 *** | (0.0322) |
ln (Fertiliser) | 0.5595 *** | (0.0499) | 0.5064 *** | (0.0543) |
Seed | 0.0960 *** | (0.0233) | ||
Indigenous | 0.0504 ** | (0.0212) | ||
Legume | 0.0369 | (0.0272) | ||
Returns to scale | 1.08 | 1.00 |
Residual Efficiency | Persistent Efficiency | Overall Efficiency | |
---|---|---|---|
Mean | 0.72 | 0.67 | 0.49 |
SD | 0.09 | 0.16 | 0.16 |
Min | 0.32 | 0.26 | 0.08 |
Max | 0.91 | 0.91 | 0.82 |
Variable | Model I | Model II | ||||
---|---|---|---|---|---|---|
Production Function | Coef | SE | Coef | SE | Coef | SE |
ln (Labour) | 0.3579 *** | (0.0001) | 0.3581 *** | (0.0007) | 0.3130 *** | (0.0015) |
ln (Manure) | 0.3052 *** | (0.0001) | 0.2867 *** | (0.0011) | 0.2882 *** | (0.0026) |
ln (Fertiliser) | 0.3512 *** | (0.0001) | 0.3534 *** | (0.0010) | 0.3347 *** | (0.0021) |
Seed | 0.8214 *** | (0.0087) | ||||
Indigenous | 0.2698 *** | (0.0116) | ||||
Legume | 0.3867 *** | (0.0145) | ||||
Factors affecting inefficiency | ||||||
Land1 | 4.3284 *** | (1.5262) | 14.9436 *** | (3.4223) | 1.7271 | (8.2861) |
Land 1 × land 1 | −28.0562 *** | (8.1049) | −19.7118 | (14.3803) | ||
Distance 1 | 0.1215 | (0.1796) | −0.0782 | (0.1632) | −0.9651 * | (0.5051) |
ln (Manure) | 0.4952 *** | (0.0839) | 0.2813 *** | (0.0545) | (0.19989 | (0.1977) |
Seed | −0.5605 *** | (0.1862) | −0.3087 | (0.1909) | −0.4987 ** | (0.1974) |
Indigenous | 0.1126 | (0.1813) | −0.0764 | (0.1778) | −0.7642 ** | (0.3771) |
Legume | 0.2946 | (0.1919) | 0.2418 | (0.1889) | 0.7974 | (0.2210) |
Slope | −0.4997 ** | (0.2100) | −0.1249 | (0.2237) | −0.3610 | (0.2736) |
Fertility | −0.4291 ** | (0.1845) | −0.4033 ** | (0.1887) | −0.3919 ** | (0.2014) |
Experience | −0.0060 | (0.0057) | −0.0128 ** | (0.0063) | −0.4556 | (0.2255) |
Literacy | −0.3662 * | (0.1998) | −0.1207 | (0.1993) | 0.0008 ** | (.0002) |
Labour | 0.0007 *** | (0.0002) | −0.3610 *** | (0.2736) | ||
Land 1 × ln (Manure) | 1.5810 | (1.2991) | ||||
Land 1 × Indigenous | 4.2977 | (3.0124) | ||||
Distance 1 × ln (Manure) | −0.0042 | (0.1087) | ||||
Distance 1 × Indigenous | 1.1818 *** | (0.3702) | ||||
Constant | −24.6601 | (17.543) | 0.58461 | (0.5786) | 0.3439 | (1.2611) |
Observations | 184 | 184 | 184 | 184 | 184 | 184 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cholo, T.C.; Peerlings, J.; Fleskens, L. Land Fragmentation, Technical Efficiency, and Adaptation to Climate Change by Farmers in the Gamo Highlands of Ethiopia. Sustainability 2020, 12, 10304. https://doi.org/10.3390/su122410304
Cholo TC, Peerlings J, Fleskens L. Land Fragmentation, Technical Efficiency, and Adaptation to Climate Change by Farmers in the Gamo Highlands of Ethiopia. Sustainability. 2020; 12(24):10304. https://doi.org/10.3390/su122410304
Chicago/Turabian StyleCholo, Tesfaye C., Jack Peerlings, and Luuk Fleskens. 2020. "Land Fragmentation, Technical Efficiency, and Adaptation to Climate Change by Farmers in the Gamo Highlands of Ethiopia" Sustainability 12, no. 24: 10304. https://doi.org/10.3390/su122410304
APA StyleCholo, T. C., Peerlings, J., & Fleskens, L. (2020). Land Fragmentation, Technical Efficiency, and Adaptation to Climate Change by Farmers in the Gamo Highlands of Ethiopia. Sustainability, 12(24), 10304. https://doi.org/10.3390/su122410304