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Abstract: The disadvantage of photovoltaic (PV) power generation is that output power decreases
due to the presence of clouds or shade. Moreover, it can only be used when the sun is shining.
Consequently, there is a need for further active research into the maximum power point tracking
(MPPT) technique, which can maximize the power of solar cells. When the solar cell array is partially
shaded due to the influence of clouds or buildings, the solar cell characteristic has a number of local
maximum power points (LMPPs). Conventional MPPT techniques do not follow the actual maximum
power point, namely, the global maximum power point (GMPP), but stay in the LMPP. Therefore,
an analysis of the occurrence of multiple LMPPs due to partial shading, as well as a study on the
MPPT technique that can trace GMPP, is needed. In order to overcome this obstacle, the grey wolf
optimization (GWO) method is proposed in order to track the global maximum power point and to
maximize the energy extraction of the PV system. In addition, opposition-based learning is integrated
with the GWO to accelerate the MPPT search process and to reduce convergence time. Simultaneously,
the DC link voltage is controlled to reduce sudden variations in voltage in the event of transients of
solar radiation and/or temperature. Experimental tests are presented to validate the effectiveness of
the proposed MPPT method during uniform irradiance and partial shading conditions. The proposed
method is compared with the perturbation and observation method.

Keywords: photovoltaic; grey wolf optimization; global maximum power point

1. Introduction

In the last few decades, increased demand for electricity has made the search for the use of
renewable energy sources increasingly necessary, attracting strong interest in the diversification of
power generation plants. In addition, considering the increasing interest in clean and sustainable
energy and the reduction of the impact on the environment, the use of renewable energy sources has
been prominent, mainly because these energy sources are the main contenders to replace polluting
fossil-based energy systems.

In this context, wind and solar energy reached prominence among the various sources of renewable
energy for the production of electricity from distributed energy generation systems (DGs). To be
specific, the production of energy from solar energy, using photovoltaic cells, has become indispensable
for the strengthening of DG systems [1–5].

Photovoltaic (PV) modules are responsible for converting solar energy into electrical energy. These
modules are composed of several interconnected PV cells to provide a voltage and electric current
value that can be used in practice, as well as form a set that provides adequate protection for the cells.
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Karami et al. [6] have shown that the energy conversion efficiency of the best solar cells, which are
laboratory manufactured and made of monocrystalline silicon, is of the order of 25%, which represents
a low value when a comparison is made with other currently used forms of energy generation.

Another important point to be considered is that the voltage and output current of the PV modules
also vary according to environmental conditions such as temperature and the incidence of solar
radiation. In order to extract the maximum power from the module in the existence of these variables,
DC-DC converters are used with algorithms for tracking the maximum power point (MPPT) [7].

The evolution of research in the development of new algorithms for searching MPP resulted in
increased efficiency and the better use of energy generation throughout the day. Therefore, in addition
to providing energy to the grid, the search for the extraction of maximum power from PV arrangements
has been one of the main challenges to be addressed in the implementation of PV systems. To this
end, techniques have been systematically used to track the MPP [8]. In contrast, the effects caused by
partial shading can affect the maximization of energy produced from PV systems. Thus, to solve this
problem, control strategies as well as converter topologies have been adopted in most applications of
PV systems connected to the network. MPPT techniques can be classified into four categories [9–26]:

1. Model-based methods:

Constant voltage
Constant current
Pilot cell
Curve fitting
Look up table
Bisect search theorem
Best fixed voltage
Temperature parametric
Linear reoriented coordinates method
Analytical solution (AS) based method
Gradient descent

2. Heuristics methods:

Perturbation and observation (P&O)
Modified P&O
Incremental conductance (IC)
Modified IC
Hill climbing (HC)
Modified HC
Comparison of three points with weighting
Parasitic capacitance (PC) method
Load current or voltage maximization (LCVM) method
DP/dV or dP/dI feedback control
Ripple correlation control
Variable inductance
Temperature parametric
Beta (β) method
Current sweep
System oscillations
PV output Senseless (POS)
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3. Intelligent prediction-based methods:

Fuzzy logic control
Artificial neural network (ANN)
Adaptive neuro-fuzzy inference system ANFIS
Particle swarm optimization (PSO) method

4. Hybrid methods.

One of the model-based, or what is sometimes called fixed-step, methods is the open circuit
voltage fraction method, which estimates the maximum power point value using the Voc value as a
basis, considering it to be linearly proportional to Vmax, which is equal at a fraction of the Voc value.
This method, which is very simple to implement, requires a voltage sensor to be installed. However,
the maximum power value is never reached because it is an estimated PV system that is constantly
turned off to read the current value of Voc.

The literature also identifies several modifications among the model-based techniques for
improving the performance of MPPT methods by using the search-based methods that are based on
perturbing strategies, such as perturb and observe (P&O) [7–9] or incremental conductance (IC) [10,11].
These methods do not require any knowledge of the PV open circuit voltage or short circuit current,
which makes them flexible for application in any PV system. However, there are some important
considerations regarding their operation. When subjected to continuous and rapid variations in
irradiance or partial shading conditions, these algorithms may fail the maximum point of operation
due to a fall in the local maximum power point.

Intelligent training-based algorithms, such as fuzzy logic or artificial neural networks, were also
developed in order to increase the performance of the search for the maximum power point. Smart
controllers, such as the fuzzy logic controller, showed some advantages over the P&O controller [12,13].
In addition, the neuro-fuzzy hybrid intelligent control system also showed some advantages over
the P&O method [14]. Moreover, several methods of training artificial neural networks have been
developed in order to improve the search speed for the point of maximum power. The maximum
power point search method, P&O, was used to train a neural network, generating an optimal increasing
or decreasing duty ratio in the direction of the maximum power point [15–17].

Although typical MPPT algorithm methods perform well considering the uniformly irradiated
PV arrangement, their performance can be strongly affected when they operate under partial shading
conditions. This is due to the fact that, in most cases, the MPPT techniques mentioned above only reach
the local maximum power point (LMPP) instead of the global maximum power point (GMPP) [18].

Due to these limitations, bioinspired optimization algorithms are being used to deal with partial
shading problems in the search for MPP. As a result, the efficiency of MPPT techniques has decreased.
Therefore, in order to find the GMPP, MPPT algorithms based on meta-heuristic optimization methods
have been proposed in the literature [18]. These methods include particle swarm optimization (PSO) [19],
which is attractive due to the compromise between performance and complexity, as well as maturity
in relation to optimization methods that implement totally numerical or heuristic procedures [20,21].
Thus, unlike traditional MPPT techniques that, in most cases, achieve the LMPP, the BAT-based MPPT
method is able to minimize the effects caused by partial shading, due to the fact that it always reaches
the GMPP, hence improving the performance of the PV system [22,23].

In contrast, it was observed in [24] that combining P&O and the Ant Colony Optimization method
converges faster with the GMPP and presents lower fluctuations in steady state when compared to
similar algorithms based on the PSO algorithm.

In this sense, the development of new algorithms for optimization in solving partial shading
and LMPP is needed. In order to select one of the previously stated MPPT algorithms, it is necessary
to configure the PV system to be able to make a comparison between the MPPT techniques [25,26].
In addition, for the techniques to work properly, it is necessary that some requirements are met:
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1- Stability: the response of the system should be as reliable as possible and a change in energy
should be correctly detected.

2- Fast dynamic response: it is necessary that the MPPT control responds quickly to rapid irradiance
changes in order to maximize the efficiency of the PV system.

3- Small steady-state error: for any MPPT method, after reaching the MPP, it is impossible to
maintain the tracker at a fixed point. Therefore, it is important for the system to continue running
to search that point and minimize the steady-state error.

4- Robustness: it is important to design an MPPT control system that is robust in the face of any
disturbance, such as input noise, measurement error, or variation of system parameters.

5- Efficiency: it is important to have an MPPT control system that performs well, with the same
efficiency, in both low irradiance and high irradiance conditions. Several MPPTs have low
efficiency at low irradiance levels since the controller parameters are designed for rated power
and high irradiance levels.

Thus, the main contribution of this work consists of presenting, through analytical and
experimental results, a PV system with a double stage of energy conversion using the MPPT technique
based on the GWO method to achieve GMPP when the PV is subjected to constant solar irradiance and
partial shading conditions. Opposition-based learning is used with GWO to accelerate the convergence
speed of the GWO method. The implemented opposition-based learning grey wolf optimization
(OGWO-MPPT) technique is evaluated through experiments and compared with the P&O method.

2. PV Model

The equivalent circuit of the PV when light is irradiated is depicted in Figure 1. Parallel resistance
Rsh represents the leakage resistance represented by a constant resistance, which is beyond the ideal
diode characteristics [25]. Since the relationship between the PV voltage and the current is severely
nonlinear, modeling of the PV must be preceded in order to perform a full system simulation that can
achieve accurate system characteristics.Sustainability 2020, 12, x FOR PEER REVIEW 5 of 18 
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In a PV array, the open circuit voltage and short circuit current are given by the number of series
and parallel cells

VOC = Ns Voc (1)

ISC = Np Isc (2)

The PV I-V and P-V characteristics of the PV is obtained as follows [26,27]:

Iph = IscSN + It(Tc − Tr) (3)

Id = Io

[
exp

(
q(VL + ILRs)

AkT

)
− 1

]
(4)

Io = Ior

[Tc

Tr

]
· exp

(
qEg

Bk

( 1
Tr
−

1
Tc

))
(5)

IL = Iph − Id −
VL + ILRs

Rsh
(6)

Equation (3) is valid for a certain irradiation level SN and at a particular operating cell temperature
Tc. The I-V and P-V characteristics for various irradiation levels at a constant cell temperature can be
obtained by measuring the PV, current, voltage, and power, as shown in Figure 2.
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Figure 2. Voltage-current and power-current characteristics at various irradiation levels and a
constant temperature.

As the irradiance and the temperature vary throughout the day, the power, the voltage, and the
current also vary as a consequence. Figures 2 and 3 show the I-V and P-V with irradiance
variation, respectively.
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3. Maximum Power Operation of Partial Shading Systems

In PV systems installed in an urban environment, it is common for the installation to suffer some
shading due to the presence of obstacles in the vicinity of the installation. The impact that shading can
cause will depend on various factors, including the type of PV module, the configuration of the bypass
diodes, the configuration of the string, and the nature of the shadow. In the case of partial shading of
the module, the power loss may be proportionally greater than the shaded area and, in addition to the
loss of energy due to shading, there will be loss due to a mismatch of the electrical current between the
modules of the same string as well as a loss due to the mismatch of the electrical voltage in parallel
strings within the same array [28].

In order to minimize the impact on power generation of shadowing in a PV system, the modules
have bypass diodes which, when polarized, deflect the current from that substring. The bypass diode
works as follows: if a cell is shaded, its electrical current is reduced, and the cell’s current is compatible
with the substring current, that cell must be reversely polarized (acting as a charge). If the total voltage
of the substring is less than zero, the bypass diode will polarize, causing the cell to operate close to the
voltage. The current versus the voltage curve of a photovoltaic array will be the result of the individual
curves of each substring and the series-parallel configuration of the strings.

When the system is subjected to a partial shading condition, the global maximum power point
tracking action of the converter, known as GMPPT, seeks to find the value maximum global energy
generation from among the several I-V curves of the module, resulting from the different conditions
of partial shading. The optimization process will then seek to adjust the operation of the DC-DC
converter so that it delivers the maximum output power, regardless of the partial shading condition.
An example of the result of this action is shown in Figure 3 [29].

Regardless of the partial shading condition of the PV system, it is essential that the chosen
timing method leads the operation of the DC-DC converter to the GMPP with agility and precision,
thus guaranteeing the delivery of maximum power generated at any time and under any irradiance
condition [30].

4. MPPT Using the OGWO Method

The grey wolf algorithm, which is a meta-heuristic based on the movement used by wolves
when approaching prey, is hierarchically subdivided by four types of wolf: Alpha α; Beta β; Delta δ;
and Omega ω. This movement is divided into three stages: search for prey; attack; and capture.
The adaptation of the movement to the optimization algorithm follows the wolf hierarchy, which takes
the shape of a pyramid, as shown in Figure 4 [30].
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The social hierarchy of wolves, as discussed above, is based primarily on their level of dominance.
The fitness of wolves also depends on dominant behavior, as the wolf with greater aptitude will present
better performance and ability to make decisions during the hunting process. Therefore, the wolf that
is in the first hierarchy level (α) is considered the fittest amongst the pack. The hunting process is
performed in specific behaviors, mathematically modeled as follows [31]:

4.1. Surrounding the Prey

During the hunting process, wolves surround the prey, formulated as

→

D = |
→

C·
→

Xp(t) −
→

X(t)| (7)

→

X(t + 1) =
→

Xp(t) −
→

A·
→

D (8)

where t is the current iteration,
→

A and
→

C are vector coefficients,
→

Xp is the prey position vector, and
→

X is
the grey wolf position vector.

The vectors
→

A and
→

C are calculated as follows:

→

A = 2
→
a ·
→
r1 −

→
a (9)

→

C = 2 ·
→
r2 (10)

where a decays from 2 to 0 during the iterations
→
r1 and

→
r2 and is a vector of random values in the

interval [0–1].

4.2. Hunting for Prey

The behavior of grey wolves consists of recognizing the location of the prey and surrounding it.
However, there is no way to be sure of the prey’s exact location. To simulate this behavior, alphas,

betas, and deltas are supposed to have the best knowledge of the possible prey location. The best
three are then chosen, and the rest are forced to follow them. The modeling of this behavior is
proposed below:

→

Dα =

∣∣∣∣∣→C1·
→

X α −
→

X
∣∣∣∣∣, →Dβ = ∣∣∣∣∣→C2·

→

X β −
→

X
∣∣∣∣∣,→Dδ = ∣∣∣∣∣→C3·

→

X δ −
→

X
∣∣∣∣∣ (11)

→

X1 =
→

Xα−
→

A1·
→

(Dα),
→

X2
→

= X β−
→

A2·
→

(Dβ),
→

X3 =
→

Xδ−
→

A3·
→

(Dδ) (12)
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→

X(t + 1) =

→

X1 +
→

X2 +
→

X3

3
(13)

4.3. Attacking the Prey

The grey wolves first corner the prey. When it loses its energy and stops moving, the leader closest
in proximity preys on it. The vector coefficient is decreased to reduce the distance between the position
of the prey and the position of the wolves. In order to reduce the distance, the value of α should be
minimized as follows:

a = 2−
( 2

max.iter

)
(14)

where max.iter is the maximum number of iterations adopted in the simulation and a is decreased from
2 to 0. Figure 4 shows the displacements of the wolves in two-dimensional and three-dimensional spaces.

For tracking the MPP, the duty ratio (D) of the Boost converter refers to the positions of the wolves

in each state (
→

X) as follows:
D(k + 1) = D(k) − a ·e (15)

The objective function of the algorithm is determined by

Ppv(k) > Ppv(k− 1) (16)

where PPV (k) is the current power, PPV (k − 1) is the previous power at the output of the PV array,
and k is the iteration value. Figure 5 shows the flowchart for the GWO method, where Pbest,I indicates
the best value obtained in iteration i while Gbest indicates the best global value found by the method.

However, the opposition-based learning (OBL) method can direct the search for the best solution
by bioinspired algorithms, in the opposite direction of the current search. The process involves that,
at a given moment, the agents are together around the best position found, with a decrease in diversity.
In this case, this technique allows for a change of positions of some of its agents to the opposite
coordinates, exploring new possibilities in the search space [32,33]. Figure 5 presents the flowchart of
the opposition-based learning grey wolf algorithm (OGWO).
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5. System Description

Figure 6 shows the complete scheme of the PV system connected to the single-phase electrical
network studied in this work. The topology consists of a PV array, followed by a DC-DC boost
converter and a single-phase full bridge inverter for connection to the grid. The experimental set
that is implemented is based on a digital signal processor, where all the algorithms, such as phase
locked loop (PLL) and MPPT, and controllers, are embedded, as well as the current controller, inverter,
boost converter MPPT controller, and inverter DC bus controller.
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also synchronizes the output current with the grid voltage and controls the DC-link voltage. Figure 
7b shows the block diagram for controlling the inverter, which includes an inner loop for current 
control and an outer loop for voltage control. One of the important functions of the inverter is to 
synchronize the output current with the grid voltage to maintain a unity power and control the DC-
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The inverter, which converts the DC to the AC current that flows into the utility or local loads,
also synchronizes the output current with the grid voltage and controls the DC-link voltage. Figure 7b
shows the block diagram for controlling the inverter, which includes an inner loop for current control
and an outer loop for voltage control. One of the important functions of the inverter is to synchronize
the output current with the grid voltage to maintain a unity power and control the DC-link voltage.
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6. Experimental Results

In order to validate the performance of the proposed OGWO-MPPT algorithm, an experimental
setup is implemented using PV arrays, for which the specification is described in Table 1. The power
circuit consists of a DC-DC converter and DC-AC inverter that are made up of insulated-gate bipolar
transistor (IGBT) modules from Semikron. Through a signal conditioning circuit employing Hall
effect transducers (LEM), the magnitudes of voltage and current are measured and conditioned.
The MPPT and PLL algorithms and the current and voltage controllers are on the DSpace (Microlabbox).
The photovoltaic arrangement consists of 60 W PV arrays with a specification as described in Table 1,
while the system parameters are listed in Table 2. The experimental setup is shown in Figure 8.
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Table 1. Parameters of the 60-W Array at 25 ◦C and 1000 W/m2.

Maximum power 60 W

MPP voltage (Vmp) 17.2 V

MPP current (Imp) 3.5 A

Open-circuit voltage (Voc) 21.5 V

Short-circuit current (Isc) 3.85 A
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Table 2. System Parameters.

Grid voltage 220 V

Grid frequency 60 Hz

Filter inductance 3 mH

DC = link capacitor 330 uF

Figure 9 shows the power extracted from the photovoltaic system using the OGWO-MPPT method
when the PV array is fully exposed to the sun. Figure 9a,b show the PV voltage and current when the
irradiance changes from zero to 1000 W/m2. Figure 9c shows the tracking of MPP, where it took 0.5 s
to achieve the maximum power point due to the effect of opposition-based learning in achieving the
maximum power point faster than the regular GWO.
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The PV array is then partially covered by semi-transparent sheets to simulate and form a partial
shading condition. The performance of the OGWO-MPPT algorithm is fast, capturing the GMMPT in
less than 1 s, as shown in Figure 10. The PV voltage, current, and power are shown in Figure 10a–c.
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Figure 10. PV voltage, current, and power of the proposed MPPT for a different irradiation level
decreases (a) PV voltage, (b) PV current, (c) PV power.

To test the OGWO-MPPT under different irradiance conditions, more semi-transparent sheets
were added to cover a wider area of PV array. The tracker very quickly captured the GMPPT, still with
a convergence time of less than 1 s. The PV voltage, current, and power are shown in Figure 11a–c.

In order to validate the OGWO-MPPT under different conditions, the semi-transparent sheets were
removed from the PV array. The tracker very quickly captured the GMPPT, still with a convergence
time of less than 1 s. The PV voltage, current, and power are shown in Figure 12a–c. The PV voltages
and currents in this method are well regulated to extract the maximum power with minimum
low-frequency ripples.

Figure 13 shows the PV power, current, and voltage when the P&O MPPT method is used for the
same condition as Figure 11. It is obvious that P&O method has high oscillations in the steady state
and take longer to reach steady state. P&O tracked an LMPP of 36 W with high oscillations around the
maximum point, as shown in Figure 13c.
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The results from Figures 9–12 demonstrate the accuracy of the proposed optimization method
in conducting the operation of the boost converter to GMPP, regardless of the irradiance or shading
conditions of the PV system. The proposed optimization method allows for the best possible power to
be generated, which guarantees the maximum energy productivity of a real PV system.

7. Conclusions

In this work, the problem related to partial shading in PV systems is overcome by using a global
MPPT algorithm, implemented by using the OGWO method to maximize the extraction of energy
available in PV arrangements connected to the grid. For a better understanding of the functioning of a
PV panel, an equivalent circuit that behaves in a similar way was used. An equation of the equivalent
circuit was used in order to observe the behavior of the panel, as well as to plot the I-V and P-V curves
for different solar radiation values. It appears that there is a considerable change in the characteristic
curves as a result of partial shading effects. The entire conversion system, from the photovoltaic panel
to connection to the grid, is described and analyzed.

Therefore, an MPPT controller has been implemented based on the GWO optimization method so
that the PV system can effectively reach GMPP. The OBL algorithm is added to the GWO to accelerate
the reach of MPP by directing the search for the best solution. In order to apply the proposed solution
to mirror a real operating condition as closely as possible, partial shading conditions were emulated by
using semi-transparent sheets over a typical PV system.

Experimental tests of several cases of the system were conducted to better demonstrate the
functioning of the OGWO-MPPT method. The algorithms also demonstrate the ability to converge
to the GMPP even for abrupt variations in solar irradiance when the PV array is subjected to partial
shading in the shortest convergence time, as well as the smallest power fluctuation in steady-state
condition. Finally, when compared with the P&O method, it was found that the proposed method has
shorter convergence time and lower fluctuations around the MPP.
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Future work on this topic will be to implement the same algorithm in different topologies of PV
grid-connected systems in order to assess the method performance with different topologies, as well as
to test other parameters of the GWO algorithm in order to improve the dynamic performance of the
proposed method.
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Nomenclature

Iph the photocurrent
Id the diode saturation current
A diode ideality factor of a solar cell
Voc cell open voltage
VOC PV array open voltage
Isc cell short-circuit current
ISC PV array short-circuit current
Ns number of series solar cells
Np number of parallel solar cells
Io diode saturation current
k Boltzmann constant
q charge [C]
Rsh the parallel resistance
SN the unit solar irradiance
B the manufacturing constant
It short-circuit current temperature coefficient at surface temperature rise [A/K]
T ambient temperature [K]
Tc solar cell temperature [K]
Tr solar cell reference temperature [K]
Io reverse saturation current [A] at solar cell operating temperature
Eg energy band gap (Si PN junction energy gap, 1.12 [eV])
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