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Abstract: In recent years, there has been a big data revolution in smart cities dues to multiple
disciplines such as smart healthcare, smart transportation, and smart community. However, most
services in these areas of smart cities have become data-driven, thus generating big data that require
sharing, storing, processing, and analysis, which ultimately consumes massive amounts of energy.
The accumulation process of these data from different areas of a smart city is a challenging issue.
Therefore, researchers have started aiming at the Internet of vehicles (IoV), in which smart vehicles are
equipped with computing and storage capabilities to communicate with surrounding infrastructure.
In this paper, we propose a subcategory of IoV as the Internet of buses (IoB), where public buses
enable a service as a data carrier in a smart city by introducing a neural network-based sustainable
data dissemination system (NESUDA), where opportunistic sensing comprises delay-tolerant data
collection, processing and disseminating from one place to another place around the city. The objective
was to use public transport to carry data from one place to another and to reduce the traffic from
traditional networks and energy consumption. An advanced neural network (NN) algorithm was
applied to locate the realistic arrival time of public buses for data allocation. We used the Auckland
transport (AT) buses data set from the transport agency to validate our model for the level of accuracy
in predicted bus arrival time and scheduled arrival time to disseminate data using bus services.
Data were uploaded onto buses as per their dwelling time at each stop and terminals within the
coverage area of deployed RSU. The offloading capacity of our proposed data dissemination system
showed that it could be utilized to effectively complement traditional data networks. Moreover,
the maximum offloading capacity at each parent stop could reach up to 360 GB with a huge saving of
energy consumption.

Keywords: big data; data scheduling; delay tolerant network (DTN); bus arrival time; public transport;
bus dwell time; neural network

1. Introduction

Nowadays, a huge surge in Internet traffic raises many concerns over the capacity of the
infrastructure. All the mobile devices are equipped with wireless network interfaces and which
introduce new demands in the wireless network leading to the digital society with the emerging
trend of “big data” with features of high-volume, high-velocity, and high-variety. With a limited
spectrum of resources, mobile operators may be struggling to provide adequate bandwidth to handle
the amount of traffic generated by their users. These big data sources in a smart city are posing
sustainability challenges to achieve ecosystem balance and, at the same time, perform the day-to-day
data transmission activities. Therefore, recently, much attention has been focused on accommodating
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big data needs by leveraging the traffic burden from the traditional network to other networks, which
is also known as data offloading. This technique helps to reduce the congestion over the conventional
network and make bandwidth available for other users for effective usage. The Cisco visual networking
index (VNI) [1] has revealed that fixed networks have been used to offload data from mobile data
in 2019, and it was approximately 51% of total global traffic. Therefore, it is possible to offload data
from the network to another available network as per the user’s preferences. Similarly, we also
require an alternative approach to alleviate this pressure on the existing infrastructure. Thus, efficient
data dissemination mechanisms considering the urban Internet bandwidth consumption should be
designed. We consider in addition to the traditional network to shift traffic and improve bandwidth
utilization. Therefore, Wi-Fi enabled and on-board unit (OBU) equipped buses and bus stops show the
potential for forming the communication backbone. The main aim is to utilize public transport buses
to carry data from one place to another place on their predefined route. Our public transport system
exploits nearby communications, short-term storage at bus stops, and predictable bus movement
to deliver non-real-time information. We used the public transport network due to their scheduled
movement and fixed timetable. However, we noticed a delay in bus arrival time in real-life due to
some uncertainties. Therefore, we applied an ANN algorithm to have more realistic information on
bus arrival time at each bus stop. To validate our idea, we used Auckland Transport (AT) historical
data to analyze bus daily movement patterns and applied an advanced neural network algorithm to
understand the variance between predicted arrival time and schedule travel time for more realistic
information to authenticate that public transport can be used as an energy-efficient communication
channel. All public vehicles stop at bus stops for a long or short duration known as bus dwell time
during their fixed travel route, and data were uploaded and downloaded at these bus stops only.
It was important to be within the range of the interfaces for better and fast communication between
bus stops and buses. We utilized the bus arrival time, departure time, and speed of all public buses
to load and offload the data. However, there were some factors such as signals, traffic fluctuations,
peak hours, and road incidents, which often lead to delay in set schedules and results in irregularities
in journey times and bus arrival times. Many other factors are available that lead to the variation of
public bus travel times, and some of these factors were not measurable. Unexpected delays could be
predicted. However, we emphasize more on historical data provided by the transport agency and
carry out analysis to get the most accurate prediction results. The main contributions of this paper are
the following:

1. We obtained the characterizations of the public transport bus systems that currently exist and
determined bus daily movement patterns to form a data transmission network named as neural
network-based sustainable data dissemination system (NESUDA).

2. We applied the advanced neural network algorithm to analyze the arrival time based on historical
data. We analyzed the difference between scheduled and predicted arrival times to estimate the
accuracy of utilizing public buses for data dissemination. The Auckland transport data set was
used to validate our model.

3. We proposed a data dissemination algorithm using data scheduling onto buses as per their dwell
time at each passing stop and stopping stop.

4. For evaluation, a detailed comparative analysis of energy consumption is performed for traditional
and vehicular networks.

The remainder of the paper is structured as follows: in Section 2, we present the literature on
existing work done on utilizing public transport for carrying delay-tolerant data and their arrival
predictions. In Section 3, we develop our data dissemination system using existing road infrastructure
utilizing their scheduled movement and their arrival predictions with the help of the advanced neural
network (ANN) algorithm. Section 4 helps us to validate the road network capacity of Auckland
Transport and estimate the accuracy of predicted and actual arrival time of buses for the allocation
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of data in addition energy consumption analysis. Section 5 concludes this paper with directions for
future work.

2. Related Work

A huge range of wireless devices and data generated from these devices are incurring a fast
escalation of both network bandwidth and energy demands. However, it is very challenging to attain
a high-level quality of collective services and energy-efficient wireless networking in this big data
era [2,3]. Therefore, one of the research community’s main aims is to maximize the performance of the
communication system in an energy-efficient manner [4–6]. For example, a significant surge in Internet
traffic has raised many concerns over the strength of the infrastructure that keeps things running [7].
Accommodating this evolution requires an alternative approach [8] to alleviate this pressure on existing
infrastructure. Many researchers started exploring the Internet of Vehicles (IoV) [9–11] as a data mule
to deliver data from different places. Many cooperative approaches have been proposed for data
gathering from different locations [12]. Another paper discussed the suitable logical links to transfer
data in bulk using vehicles [13]. In this approach, the author plots an overlay network over an existing
network, and all the moving nodes act as relay nodes. The results proved that a huge amount of
data could be transmitted using road infrastructure. In summary, data offloading strategies [14] were
reported in the literature to transfer huge amounts of data onto vehicles. The authors in paper [15]
performed a study on 3G data offloading through a Wi-Fi network. They have discussed on-the-spot
offloading and delayed offloading with results on offloading efficiency for different traffic intensity, file
size distributions, and delay the deadline. Paper [16] also discussed on-spot offloading for the available
network in the heterogeneous networks in terms of offloading efficiency and delay. Rosamaria et al. [17]
introduced an architecture for convenient parking management in smart cities using intelligent parking
assistants to attain sustainable urban mobility. IPA hardware informs drivers about the availability of
a parking stall and allows them to reserve it. Paper [18] used spatiotemporal features of the Xingtai
bus company dataset and then combined two prediction models, a long short-term memory (LSTM)
and artificial neural networks (ANN) comprehensive prediction model for bus arrival time prediction.
The ANN outperforms the results in accuracy and travel time prediction.

The existing data dissemination schemes using vehicles, such as [19–23], are primarily based on
the opportunistic transfer of bulk data. Komnios et al. [24] focused on metropolitan environments
intending to provide delay tolerant services to those areas where end-to-end connectivity is not
possible. It utilizes the CARPOOL plan to connect between ferries and gateways to compute routes
for online gateways. Therefore, free public Internet access, Wi-Fi hot spots and their connections
were setup through public transport such as ferries, buses, and trams. DTN gateways are in offline
mode near all ferries’ stops to get an Internet request from all end-users and in such a way act
as a relay node. With prior knowledge of contacts between gateways, a high delivery ratio with
minimum overhead has been achieved. For heterogeneous networks and to connect parked vehicles to
the Internet, Bendouda et al. [25] proposed a programmable architecture called a software-defined
vehicular network based on connected dominating sets of vehicles. In another piece of work [26], the
author proposed a code transportation technique to transmit data all over a smart city. When any of the
moving vehicles enter the range of deployed sensors, sensors synchronize their pushed code with the
cloud center and start transmission onto the vehicle with a data mule. The author [27] used taxis and
buses as a data carrier and validated the model using a large data set in Rio de Janeiro, Brazil. Yilong
et al. [28] also introduced collaborative content delivery using a group of vehicles to cooperate with
RSU for data dissemination. Naseer et al. [29–31] also proposed a data dissemination scheme using a
moving vehicle for data accumulation and delivery. The strategy also used conventional networks and
moving vehicles based upon their trajectories to collect data with delay tolerance to send from one
place to another. A comparison illustrates that energy cost is less in a vehicular network in comparison
with cellular networks. In our previous work [32–34], we have already defined software-defined
connectivity to disseminate data using public transport networks. The controller takes all forwarding
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decisions based upon user’s profiles and their preferences. In such a way, there is a huge saving of
energy to send data using the existing road network. However, for large-scale data transfers, such
schemes can lead to better results if the bus’s accurate time for arrival is known in advance for data
offloading onto public transport vehicles.

Furthermore, many researchers have already addressed the bus arrival time prediction problem
for many other reasons. Major techniques brought in to practice for predicting arrival time were
historical based models, regression models, Kalman filter-based models, and machine learning models.
Manasseh and Sengupta [35] used the concept of machine learning to predict the driver’s destination.
They used a data set of the San Francisco Bay Area for about 2–9 weeks and achieved 97% accuracy.
For example, Patnaik et al. [36] predicted bus arrival time with a set of multiple linear regression
models applying a set of features such as boarding and landing passengers, distance, several bus stops,
dwell times, and weather descriptors as independent variables. One of the recent studies [37], which
concentrates on finding nonlinear relationships between the independent variable and dependent
variables to handle complicated and noise data using ANN model-based approaches. In such a way,
they predict bus arrival time prediction of different bus routes for accurate measurement. The authors
in paper [38] introduced a deep learning-based mobile data offloading model using mobile edge
computing. They offloaded data onto vehicles based upon prediction value, priority, and cross-entropy
method. Zhang et al. [39] proposed a data-driven approach for predicting bus travel time, and using
those prediction results in traffic flow theory. These data-driven approaches predict future travel time
by using large databases and their empirical relationships, excluding the physical behaviors of the
trained system. Recent studies on bus arrival time predictions reveal that the ANN model is best
known for its accuracy and robustness [40]. In addition to it, Mahdi et al. [41] proposed an offloading
strategy for railway data centers to offload huge amounts of stored non-critical data. The data gets
offloaded when the train enters and keeps on offloading until it leaves the train station and remains
in coverage. Therefore, all existing work motivates the development of a novel system model for
an energy-efficient network with a reasonable amount of data offloading onto buses. In this paper,
we propose a neural network-based data dissemination architecture for initiating our data transfer
with bus arrival time prediction for accurate modeling of data allocation onto buses.

3. System Model

3.1. Neural Network-Based Sustainable Data Dissemination System (NESUDA)

The proposed framework depicts a neural network-based sustainable data dissemination system
(NESUDA) as shown in Figure 1 for large-scale data transfer using a set of buses as a data carrier to be
picked up at each bus stop. Our system consists of a central controller (CC), data center (DC), roadside
units (RSU) deployed at the bus stop, and buses. The traditional way is to use a traditional network to
handle this data. However, this alternative communication channel layer of public transport networks
can be used for large-scale data transfer accumulated at each data center using a set of buses and data
picked up at each bus stop. This channel is being technologically advanced from DTN working on the
paradigm of store-carry-forward. The generated data are accumulated at the data center near bus stops.
The central controller takes all decisions to upload data onto selected buses as per bus route. Our model
takes advantage of the existing public transport network for data dissemination. These buses can be
utilized efficiently for delay-tolerant data transmission. The central controller takes all decisions to
upload data onto selected buses as per bus route. All public transport vehicles are equipped with
removable storage devices and on-board units. Moving further, the collection of data is at all bus stops
where buses stop for a long or short duration during their travel route and data are uploaded onto
buses and downloaded on these parking spots only at the other end. It is important to be into the
range of interface for better and fast communication between bus stops and buses. The network used
for communication is periodic and predictable as per the scheduled timetable. The most significant
part of the data dissemination system is the accuracy in bus arrival time for allocating data as per their
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arrival and dwell time at each bus stop. Therefore, we implement an advanced neural network for
predicting arrival time for more realistic arrival time information for data transfer.Sustainability 2020, 12, x FOR PEER REVIEW 5 of 25 

 

Figure 1. Neural network-based sustainable data dissemination system (NESUDA). 

3.2. Bus Arrival Time Prediction Model 

In the proposed system, we allocate data onto buses at each bus stop. The performance of data 
allocation highly depends upon coverage, mobility, and duration. For accurate modeling of data 
allocation, it is mandatory to know the accurate arrival time, leaving time, and dwell time of the bus 
at each bus stop. Thus, machine learning techniques are applied to develop a bus arrival time 
prediction model to give precise bus arrival information for applying proactive strategies for data 
dissemination. The provision of time and accuracy is important information for data allocation onto 
these buses for successful data transmission. The accurate information helps the controller to make a 
forwarding decision based upon the source and destination location and the route of the bus. An 
advanced neural network model is adopted using input features such as bus stops, bus routes, trips 
and many other features of a transport agency. Figure 2 shows the architectural diagram of the ANN 
algorithm w. It encompasses three layers, i.e., an input layer, a hidden layer, and an output layer. 

1. Input layer: This layer provides input to the neural network such as bus route, trips, and its 
corresponding metadata. The bus route consists of its name, id, and agency name. The bus trip 
is characterized by shape coordinates, trip id, route id, and direction. The first and last bus stop 
of each route is the source and destination stop, respectively. The input layer interacts with the 
data provided, accepts data in the form of signals or features. These features are then normalized 
to achieve better numerical precision when a mathematical model is applied at the hidden layer 
[42]. At this stage, small random values are initialized to the weights. The input layer just passes 
on the information to the hidden layer after adding weights without any computation. It is 
represented below. (Table 1) 

Xi = θ(X1, X2,...Xn) (1) 

 

Figure 1. Neural network-based sustainable data dissemination system (NESUDA).

3.2. Bus Arrival Time Prediction Model

In the proposed system, we allocate data onto buses at each bus stop. The performance of data
allocation highly depends upon coverage, mobility, and duration. For accurate modeling of data
allocation, it is mandatory to know the accurate arrival time, leaving time, and dwell time of the bus at
each bus stop. Thus, machine learning techniques are applied to develop a bus arrival time prediction
model to give precise bus arrival information for applying proactive strategies for data dissemination.
The provision of time and accuracy is important information for data allocation onto these buses for
successful data transmission. The accurate information helps the controller to make a forwarding
decision based upon the source and destination location and the route of the bus. An advanced neural
network model is adopted using input features such as bus stops, bus routes, trips and many other
features of a transport agency. Figure 2 shows the architectural diagram of the ANN algorithm w.
It encompasses three layers, i.e., an input layer, a hidden layer, and an output layer.

1. Input layer: This layer provides input to the neural network such as bus route, trips, and its
corresponding metadata. The bus route consists of its name, id, and agency name. The bus trip is
characterized by shape coordinates, trip id, route id, and direction. The first and last bus stop of
each route is the source and destination stop, respectively. The input layer interacts with the data
provided, accepts data in the form of signals or features. These features are then normalized to
achieve better numerical precision when a mathematical model is applied at the hidden layer [42].
At this stage, small random values are initialized to the weights. The input layer just passes on the
information to the hidden layer after adding weights without any computation. It is represented
below. (Table 1)

Xi = θ(X1, X2, ..., Xn) (1)
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2. Hidden layer: This layer accepts all the information from the input layer and feed-forward to
all hidden layers to process it and forward it to the output layer. Next, this layer extracts all
the features from the input layer and performs processing or training of the network with an
activation function. The main motive of the activation function is to add nonlinearity into the
network. There are many activation functions such as sigmoid, logistic, and hyperbolic tangent
functions (tanh), ReLU, are the most common choices. In our model, the ReLU function is used as
a rectifier unit for all input values and direct to (0, θ). This function is given by

f (θ) = max(0,θ) (2)

Here, the function outputs zero if the input values in the nonlinear function are negative or else
equal to the value gives as input.

3. Output layer: The output layer consists of results generated from previous layers. It updates
errors as well as the weights associated with the connections (edges). The number of neurons in
this layer corresponds to the output values of the problem. The neuron with n inputs calculates
its output, as shown in Equation (3). As discussed above, all the input features are feed-forward,
and then some bias weight is applied to the hidden layer, and finally, the output layer process the
desired variables to be predicted.

a = f (
n∑

i=1

WiXi + b) (3)

where Xi is the ith input Wi is the value of ith weight b is the bias, and f is an activation function.
4. Training, testing, and validation: Although the basic procedure of training any neural network

is the same, however, the accuracy of the outcome relies on the features of input or output
combinations. Therefore, it is highly important to validate a network to verify that training
accuracy is sufficient or more iterations are required. During our ANN training algorithm as
shown in Figure 3, we separate data input into two categories: one part is used to define the
model, and the other part is used to validate the model. We use transport network input features
as per time, date, stops, stop time. Next, we sort this input data to feed-forward to the input layer,
the first 70% of data can be considered as training data to construct the model, and the next 30%
is used for testing and validation.

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 25 

as per time, date, stops, stop time. Next, we sort this input data to feed-forward to the input 
layer, the first 70% of data can be considered as training data to construct the model, and the next 
30% is used for testing and validation. 

 

Figure 2. Bus arrival time prediction using an advanced neural network (ANN) architecture. 

 
Figure 3. ANN model for the public transport network. 

The steps below will be followed by our ANN model to predict arrival time: 
Step 1: Generating observations of the bus route: A random observation of all trips is to be 

generated and update zero for bus stops whose arrival time is to be predicted. 

Figure 2. Bus arrival time prediction using an advanced neural network (ANN) architecture.



Sustainability 2020, 12, 10327 7 of 26

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 25 

as per time, date, stops, stop time. Next, we sort this input data to feed-forward to the input 
layer, the first 70% of data can be considered as training data to construct the model, and the next 
30% is used for testing and validation. 

 

Figure 2. Bus arrival time prediction using an advanced neural network (ANN) architecture. 

 
Figure 3. ANN model for the public transport network. 

The steps below will be followed by our ANN model to predict arrival time: 
Step 1: Generating observations of the bus route: A random observation of all trips is to be 

generated and update zero for bus stops whose arrival time is to be predicted. 

Figure 3. ANN model for the public transport network.

Table 1. Variables used in the proposed model.

Symbol Meaning

Xi Input variables

Wi Weight

f (θ) ReLU function

s Speed of the bus

tcd Contact duration

ten Entering time

tdw Dwell time

tex Exit time

d Distance between RSU and bus

rsp(t) Received signal strength

dre f Reference distance

Pr Received power

σ Normal distribution random variable

dex Distance after t seconds of bus leaving

nb Background noise

ρ Mac efficiency

µ Throughput

λmax Max data rate
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The steps below will be followed by our ANN model to predict arrival time:
Step 1: Generating observations of the bus route: A random observation of all trips is to be

generated and update zero for bus stops whose arrival time is to be predicted.
Step 2: Retrieve bus stop location details of all bus routes: Next, following our algorithm, we will

fetch all the bus stops concerning their routes. For example, on the bus routes, there are a total of
29 bus stops. We will be calculating the bus arrival time for all these bus stops.

Step 3: Generate a symbolic formula and perform ANN model training: Our ANN model is
accepting input as bus stop sequence (BS), the distance between two stops (d), the cumulative distance
for the whole test trip CDtt, the time between stops (Ts), arrival time in seconds (ATs), speed (S), and
cumulative travel time (CTTs). Therefore, the initial symbolic formula description of the model to be
fitted will be as.

X = (Bs + ds + CDtt + Ts + ATs + S + CTTs)t (4)

Step 4: Computing prediction and storing the predicted value: In the previous step, when a model
is trained with sample data of a fixed route, ANN model results are used to predict bus arrival time
for all other routes. These values will be stored in the predicted data frame and will be used for the
comparison between actual and predicted arrival time. Similarly, Step 3 and Step 4 will be repeated for
all the test trips.

Step 5: Performance metrics evaluations: We will consider the following performance metrics to
estimate the results from the ANN model for all the predicted and actual arrival time values.

• Mean absolute percentage error (MAPE)=MAPE is defined as the average percentage difference
between the observed value and the predicted value of bus arrival time. Where yi = Predicted
value, y0 = observed value.

MAPE =
1
n

n∑
i

∣∣∣yi − y0
∣∣∣

y0
× 100% (5)

• Symmetric mean absolute error (SMAPE) = It is an accuracy measure based on percentage
(or relative) errors between the observed value and the predicted value.

SMAPE =
1
n

n∑
i

∣∣∣yi − y0
∣∣∣

(
∣∣∣yi|+|y0

∣∣∣)/2
× 100% (6)

3.3. Data Offloading Model onto Buses

Next, after predicting the arrival time of the bus, we have better information about the time of
the bus arrival at each bus stop to be into the ranges of RSU to get data to be allocated onto them.
The offloading capacity of each bus stop depends upon two parameters. (1) contact duration, and
(2) data throughput. We will first analyze the contact duration of buses, including entering, exiting
time, and dwell time at each bus stops for data allocation. Each bus stops for a shorter period at
the passing stop and a longer period at parent stops (source/destination). However, bus dwell time
depends upon many factors such as passenger activity, time of day, route type, and bus floor. Moreover,
all buses’ real-time information is periodically being sent to the base stations so that they can keep
track of the vehicles and which ultimately helps to determine the link stability and data offloading at
each bus stop. Data throughput can be obtained as a percentage of maximum data being transferred
with respect to current bandwidth. To attain maximum efficiency in our proposed work, we will
consider two types of stops, such as stopping stops and passing stops. Stopping stops further include
all the stops, where buses stop for a longer or shorter duration, including parent stops (source or
destination stops).We also assume that bus entering and exit speed will be equal as buses slow down
while entering stops. Additionally, the location of RSU does not affect contact duration as it is placed
exactly where the bus stops. Figure 4 gives a schematic overview of the operation to offload a large
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amount of delay-tolerant background data over the road infrastructure between two remote data
centers using bus stops in between.

1. Data offloading for stopping stops: Recall that the objective is to use public transport vehicles to
carry large amounts of delay-tolerant data while reducing traffic load from existing infrastructure.
All buses pass by bus stops, and data can be offloaded as per the dwell time, enter time, exit time,
and contact duration of the bus into the range of the deployed RSU.

tcd = ten + tdt + tex (7)

where ten, tdt, tex, and tcd are the bus entering time, dwell time, exit time, and contact duration
at each bus stop, respectively. We assume that bus entering/exit speed is the same and gradually
decreases/increases with speed (s) until it further reaches the next bus stop. We state the communication
range (CR) for each bus while coming in contact with the RSU deployed at each bus stop as

dex = st2 + v0t + d (8)

where d is the distance between the RSU deployed and the bus during stay time. dex is the distance
after t seconds of the bus leaving the stop or from the range of deployed RSU. Bus stops at stopping
stop, in this case, bus leaves a station from standstill situation and therefore v0 = 0.
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To calculate data throughput, it is important to know the received signal power (rsp). This
depends upon the distance from the deployed RSU and the bus arrival or staying time. We will be
calculating rsp(d) using the distance between RSU and log-normal shadowing path loss model as
follows

rsp(d) = Pr − 10ϕ log(dex/dre f) + σ (9)

where Pr is the received power from RSU at reference distance dre f, ϕ is the path loss component (PLE),
σ is the normally distributed random variable. Pr can be further obtained by following

Pr = Ptr − 20log 4 ∗ π ∗ dre f/λ (10)

where Ptr is the transmitted power and λ is the signal wavelength in meters and can be obtained from
λ = c/f, where c is the speed of light and f is the frequency. d is the distance from the RSU, and the bus
and effective distance can be 2d, the diameter of the radius coverage area of RSU deployed at bus stops.
Every bus will be in coverage as it starts entering at bus stops. Their data will start offloading at a
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distance from 0 to 2d meters. Moving further, received signal power rsp also depend upon the time (t),
therefore considering dre f = 1 m, rsp with respect for time is defined.

rsp(t) = Pr − 10ϕ log
(1

2
st2 + d

)
+ σ (11)

We use the IEEE802.11 module as an interface to make a connection between the bus and RSU.
The maximum throughput is calculated based upon signal-to-noise ratio SNR(db), which can be
calculated as follows:

SNR(in db) = rsp(t) − nb (12)

where nb is the background noise. Furthermore, SNR(db) based upon a time can be obtained as:

SNR(t) = Pr − nb − 10ϕ log
(1

2
st2 + d

)
+ σ (13)

The maximum bit rates λmax rates are attained from MCS mapping tables bandwidth bw based
upon different frequencies (f ), number of spatial streams (SS), and duration of the guard interval (GI).

∀snri
≤ snr(t) < snri+1

→ λmax (14)

where i = 0, 1, 2, . . . , 9 from MCS index to attain maximum bit rate and F is the mapping function.
The throughput µ(en/ex) can be obtained from the maximum data rate (λmax) and MAC efficiency (ρ).

µen/ex = λmaxρ (15)

Hence, offloading capacity (Oc) is the sum of the capacity for stopping bus stop, or non-stopping
bus stops as defined above as two different cases.

Ostopping =

Nstp∑
i=1

µi
st ∗ ti

st + 2
ti
max∑

t=0

µi
en/ex ∗ ∆ti

 (16)

where µi
st is the maximum throughput at stay time ti

st for all the stopping bus stops. Parent bus stops
will also be considered under stopping bus stops. i is the range from 1 up to N number of stops
(1 ≤ i ≤ Nstp ) referring to all stops including parent stops.

3.4. Data offloading for Passing Stops

The bus just passes through the passing stop with a constant speed (i.e., s = 0), and there are no
passengers to board at a bus stop. In this case, the bus comes in contact with any bus stop for a very
short duration. Where time (t) is defined as

t = 2tps (17)

where tps = dex/vps, vps is the velocity at the time of passing stops. Substituting values in (5), it is:

dex = vps ∗ t + d (18)

Furthermore, to obtain received signal power again for passing stops is defined as

rsp(t) = Pr − 10ϕ log(vps ∗ t + d) + σ (19)
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The offloading efficiency of passing stop is

Opassing = 2
Nps∑
j=1

t j
max∑

t=0

µ
j
ps ∗ ∆t j (20)

where j is the list of stops, where bus passes by (1 ≤ j ≤ Nps).

3.5. Total Data Offloading for NESUDA

We have analyzed offloading efficiency for two different types of bus stops. If the bus stops
for some time at any stopping bus stop, then we obtain offloading efficiency of stopping bus stop
Ostopping from equation 16. On the other hand, if the bus just passes through any passing stop, then
the offloading efficiency Opassing will be calculated from equation 20. The total offloading efficiency
O(Total) of the public transport network can be acquired from the equation

O = Ostopping + Opassing (21)

By substituting (16) and (20) into (21), we have

O(Total) =
Nstp∑
i=1

µi
st ∗ ti

st + 2
ti
max∑

t=0

µi
en/ex ∗ ∆ti

+ 2
Nps∑
j=1

t j
max∑

t=0

µ
j
ps ∗ ∆t j (22)

4. Evaluation Results

4.1. Case Study: Auckland Public Transport Network

We use the Auckland city public transportation system as an example to validate our proposed
system. This data set allows us to study the spatial-temporal characteristics of the bus system to
be utilized for data transmission. The AT map, as shown in Figure 5, clearly shows Auckland bus
routes with their respective bus stops. We collected Auckland transport data sets from “Auckland
Transport Open GIS data” resources. This is freely downloadable in general transit feed specification
(GTFS) format.
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4.1.1. Data Preprocessing of Collected Dataset

The obtained dataset includes all the information related to buses and bus stops. It comprises the
trip id of a bus, timestamp, longitude, and latitude of all the bus stops, etc. These data include trips
over different routes with different directions, either upstream or downstream. The trips, stop_times,
and routes dataset are the baseline dataset for the analysis to get details like scheduled arrival time
and the departure time of all buses, fixed latitude and longitude positions of bus stops, which in turn
helps to compute different data features for bus arrival time prediction.

1. Calculating the distance between two bus stops

To evaluate bus arrival time, it is important to know the travel time and distance between two
consecutive bus stops. There are many techniques available for calculating the distance between two
bus stops. As defined in the description of the data set, the bus stop file contains its stop id along with
longitude and latitude attributes. We use the well-known distance computation Haversine formula [43]
to calculate distance as below:

D = 2r arscin( √Havrsine(φ2 −φ1 + cosφ1 cosφ2Haversine(λ2 − λ1)) (23)

where D is the distance to be calculated, r is the radius of the earth, which is 6378.1 km, and ϕ1, ϕ2

implies the latitude of stop1 and stop 2. λ1 and λ2 denotes the longitude of stops 1 and 2.

2. Calculating bus travel time between two bus service stops

The bus travel time is another feature to be calculated to help us with our bus arrival time
prediction. An array of timestamp values is obtained from all the bus stops spots. Eventually, this
feature from the stop time file will help to compute the travel time between consecutive bus stops and
the cumulative time taken at each bus stop. Time value in this array is in the format of “HH:MM: SS”,
so this array will be converted into seconds by the given formula.

Time (s) = HH × 3600 + MM × 60 + SS. (24)

The array will be revised with these calculated times in seconds for each consecutive bus stop.
To calculate the bus travel time for the current bus stop, the current time is subtracted from the next
time. In some cases, the bus starting from the main bus stop (source) starts with some delay. This may
be because of passengers boarding and delay in completing the existing trip. It was also seen that some
buses start 1∼2 min ahead of the scheduled time from the source.

3. Calculating speed between two bus service stops

Speed is another feature to extract to know the whole day journey of a route. It is being calculated
as distance covered per unit of time. However, we will be concerned about the average speed over the
linkages between all the bus stops of a bus route. With the extraction of this feature, we could calculate
the delay in seconds that the bus is arriving early or late on a bus route. The negative value of delay
implies that the bus is arriving late at a bus stop instead of the actual time, and the early arrival of the
bus is being denoted by the positive value. The correlation matrix helps to understand the relationship
between multiple features and attributes in the dataset to train our model. The correlation score value
varies between 0 and 1, as shown in Figure 6. If there is a strong and perfect positive correlation, then
the result is represented by a correlation score value of 0.9 or 1 or otherwise less.
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4. Testing and validation

To test and validate our ANN model on the AT network, we used 3 months of data from 20 April
to 20 June. The collected data were converted to 1410 route segments with 1048574 trips in their
operational times for each bus running along the route upstream and downstream. The total bus
stops were 18,423 to be considered for RSU deployment. The AT training sample date is shown below
in Figure 7. This is the ready data set used for testing and validation after applying preprocessing
functions, removing unwanted data and null values. It is known as GTFS static and includes all the
bus schedules and associated geographic information. This dataset is static and does not consider
dwell time, passenger boarding, alighting, and other parameters. We used the first 70% as training
data to construct the model, and the next 30% is used for testing and validation. We used a maximum
of 500 iterations for our model. Of the testing set, 20% of the data set was taken as a validation test.
This division has been used by many researchers [44] and helps to have better prediction results and
minimum mean absolute percentage error (MAPE).

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 25 

Figure 7. This is the ready data set used for testing and validation after applying preprocessing 
functions, removing unwanted data and null values. It is known as GTFS static and includes all the 
bus schedules and associated geographic information. This dataset is static and does not consider 
dwell time, passenger boarding, alighting, and other parameters. We used the first 70% as training 
data to construct the model, and the next 30% is used for testing and validation. We used a maximum 
of 500 iterations for our model. Of the testing set, 20% of the data set was taken as a validation test. 
This division has been used by many researchers [44] and helps to have better prediction results and 
minimum mean absolute percentage error (MAPE). 

 

Figure 7. Auckland transport sample data for testing and validation. 

4.1.2. Auckland Transport Capacity Analysis 

Our main aim was to effectively utilize the existing public transport for data dissemination. For 
this evaluation, we count all the possible routes of road network from sources to destinations. This 
study shows the benefits of using buses to carry data. To begin with, we first studied the potential 
transmission capacity of the Auckland region for one day during weekdays. We are considering all 
the bus services, which start at 4.30 am, including frequent services, local services, busway services, 
and connector services. Moreover, we have inbound and outbound services for a route, but with 
different bus stops. The frequency is an important factor impacting the data capacity for that time of 
day. We can see the increasing trend between 7 and 9 am and 4–6 pm. These are the peak times for 
the bus services with additional bus services scheduled during weekday days. We have calculated 
the bus services running during daytime hours, and we assume that each bus has a capacity to carry 
100 GB, and based upon this, we calculated the capacity of all Auckland regions of different areas. 
We define the capacity c(i,j) as the maximum amount of data that can be transported from i to j by 
buses in a time frame as follows (in Mbit/s). 

ܿ(݅, ݆) = ݏܤ   ௧ܸ
௧∈,

 (25) 

where Si is the storage capacity (in MBits) of every bus, B is the number of buses participating in 
carrying data with storage for particular demand between locations i and j in the time T (in hours), 
and Vt is the number of buses per unit of time going from i to j. The overall capacity of all buses per 
day for north Auckland is 106,031.8 TB, which is massive and can be utilized efficiently to carry data. 
For example, video surveillance data get captured by cameras, and the Auckland bus service can 
collect data from different regions to efficiently carry that data to the transport center for further 
analysis. As these data are not urgent and can be delayed up to a few hours. As said before, Auckland 
central is the hub of the Auckland region. The bus services start from Auckland CBD and go in all 
directions. In this way, the Auckland central area has more capacity to disseminate data as it has more 
capacity for the whole day. The average capacity of Auckland central per day is 210,226.8 TB. 

Figure 7. Auckland transport sample data for testing and validation.



Sustainability 2020, 12, 10327 14 of 26

4.1.2. Auckland Transport Capacity Analysis

Our main aim was to effectively utilize the existing public transport for data dissemination.
For this evaluation, we count all the possible routes of road network from sources to destinations.
This study shows the benefits of using buses to carry data. To begin with, we first studied the potential
transmission capacity of the Auckland region for one day during weekdays. We are considering all
the bus services, which start at 4.30 a.m., including frequent services, local services, busway services,
and connector services. Moreover, we have inbound and outbound services for a route, but with
different bus stops. The frequency is an important factor impacting the data capacity for that time of
day. We can see the increasing trend between 7 and 9 a.m. and 4–6 p.m. These are the peak times for
the bus services with additional bus services scheduled during weekday days. We have calculated
the bus services running during daytime hours, and we assume that each bus has a capacity to carry
100 GB, and based upon this, we calculated the capacity of all Auckland regions of different areas.
We define the capacity c(i,j) as the maximum amount of data that can be transported from i to j by
buses in a time frame as follows (in Mbit/s).

c(i, j) = Bsi

∑
t∈i, j

Vt (25)

where Si is the storage capacity (in MBits) of every bus, B is the number of buses participating in
carrying data with storage for particular demand between locations i and j in the time T (in hours),
and Vt is the number of buses per unit of time going from i to j. The overall capacity of all buses
per day for north Auckland is 106,031.8 TB, which is massive and can be utilized efficiently to carry
data. For example, video surveillance data get captured by cameras, and the Auckland bus service
can collect data from different regions to efficiently carry that data to the transport center for further
analysis. As these data are not urgent and can be delayed up to a few hours. As said before, Auckland
central is the hub of the Auckland region. The bus services start from Auckland CBD and go in all
directions. In this way, the Auckland central area has more capacity to disseminate data as it has more
capacity for the whole day. The average capacity of Auckland central per day is 210,226.8 TB.

In South and West Auckland, there are in total 107 and 138 bus services, which run all over the
day. There is a train service in the south, which starts from Auckland central and covers central to the
south covering many suburbs. Therefore, the overall capacity of all buses per day in south Auckland
is 12,037.2 TB. As shown in Figure 8, among all of the four regions of Auckland, the North and
Central Auckland bus service haves more capacity in comparison with South and West Auckland to
disseminate data all over Auckland just because of the scheduled train services in that area. The mean
capacity of all Auckland transport bus service is 85,274.025 TB in total, which demonstrates the great
potential of using our proposed for data dissemination. These bus systems can participate in data
dissemination from one place to another which can help to leverage the heavy data burdens on the
traditional telecommunication infrastructure as well as best utilize the public transport for added value
services in the big data era.
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4.2. Auckland Transport Test Trips

To evaluate our bus arrival time prediction model, three test trips were conducted for different
routes of the Auckland public transport network. Table 2 is presented to demonstrate the set of test
trips with random bus trips that were created by the algorithm for bus route 744, 141, and 70 runs in the
afternoon hours of the day. The ANN model was trained and tested with such random observations,
and then MAPE and SMAPE metrics were estimated for actual arrival time and predicted bus arrival
time values from the ANN model. Figures 12–14 illustrate the selected bus route with bus stops
(snapshot from the moovit app). This ready data set is used to train the model to predict arrival time at
each bus stop in offline mode.

• Test Trip 744: The testbed selected as a sample is the Auckland Transport bus route 744. Which is
one of Auckland’s central services and connects St Heliers To Panmure via Glen Innes, considering
downstream direction covering 29 stops with trip duration for 25 min and length of route of 7 km
in between Stop 1 and Stop 29. Figure 9a illustrates the behaviors of actual and predicted bus
arrival times at each bus stop after validation of the neural network algorithm. On the x-axis,
the bus stop numbers are plotted, starting from the target station of each testing sample up to
the last destination of the bus trip. On the y-axis, the arrival time (seconds) taken at which a
bus reaches any bus stops on its route is plotted. The trained algorithm trend proves that there
is a slight difference at a few bus stops between actual and predicted arrival times. Figure 9b
represents the delay (seconds) to reach each bus stop. The negative value represents that the bus is
arriving late at each bus stop. On the other site, positive values indicate the early arrival of buses
at each stop, which ultimately represents the variation in bus arrival time. We are considering
buses to carry data with delay-tolerant features. Therefore, this much delay variation is acceptable
to use buses as another communication mode.

• Test Trip 141: The next test trip selected is number 141, which is called Henderson West Loop
Anticlockwise. This trip has 32 stops and covers the whole journey in approximately 33 min.
The bus departs from Stop A Henderson Interchange and finishes at Stop B Henderson Interchange.
The operating hours for this bus are from 05:15 to 23:15 every day, including weekend hours from
06:38 to 23:08. Same way as the previous trip, Figure 10a illustrates that there is variation between
predicted and actual arrival time. However, Figure 10b clearly shows that the bus is arriving early
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most of the time at each stop except 5 or 6 bus stops, which clearly states that we can use public
transport as another communication mode with delay-tolerant features.

• Test Trip 70: This test trip 70 starts from 56 Customs St east near Britomart and ends in Stop A
Botany town center. This trip covers a total of 46 stops in approximately 58 min. This bus route
is operational every day, and the first journey starts at 00:05 and ends at 23:50 every weekday,
and on the weekend, it begins at 06:15 am and ends at 23:35. Similarly, Figure 11a illustrates the
trend of actual and predicted bus arrival time at each bus stop. This route shows that actual and
predicted arrival time is different on each bus stop and never on the scheduled time. In Figure 11b,
delay(seconds) represents all the negative values and implies that the bus is late at each bus stop.

Table 2. Set of test trips with the number of bus stops.

Test Trip Number of Bus Stops

Test trip 744 29

Test trip 141 32

Test trip 70 46
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Table 3 presents containing typical MAPE interpretation to analyze our ANN model results.

Table 3. Mean absolute percentage error (MAPE) value and its interpretations.

MAPE Interpretation

<10 Highly accurate forecasting

10–20 Good forecasting

20–50 Reasonable forecasting

>50 Inaccurate forecasting

Table 4 is created to show the MAPE and SMAPE values calculated for each test trip, and the
lowest MAPE and SMAPE that were estimated for the model was observed for test case trip 744 with
13.91% and 0.1477 error, respectively.

Table 4. Calculated MAPE and symmetric mean absolute error (SMAPE) error values.

Test Trip MAPE SMAPE

Test Trip 744 14.98 0.1447

Test Trip 141 13.34 0.1551

Test Trip 70 19.83 0.0687
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Algorithm 1: Data Allocation onto Buses

Input: s: Source location, d: Destination location, t: Stay Time, b: Available bus
Output: Status Message
1. while true do
2. m←wait(s); // wait for message from nodes
3. move (ϕs, λs); // Reach near source location or bus-stop
4. Available (b, t) // Check for available bus and stay time
5. Upload (s, b) // Upload data onto bus
6. move (ϕd, λd); // Reach near destination location or bus-stop
7. download (b, d)
8. If !valid() then
9. Notify (d)
10. end if
11. end while

To evaluate our proposed model, we already used the AT data set. We assume that an
IEEE802.11ac-based WLAN is dedicated for data allocation at each bus stop with different bandwidths
such as 20 MHz, 40 MHz, 80 MHz, and 160 MHz as per algorithm 1 This represents the data allocation
from the source until the destination for the broadcast job. The data gets allocated onto available
buses near-the source location and download at the near destination location. Finally, a data integrity
check is done after merging data at the destination stop. We used different parameters to calculate
offloading efficiency for stopping stops and passing stops. We will be considering 20 MHZ as the
worst-case scenario to evaluate path loss for distance and normal distribution for buses when they
start approaching bus stops and leave bus stops. Assuming the stay time of the bus between 20 s as
the minimum guaranteed value and can increase up to 120 s. The velocity of buses at the entering or
leaving time will be considered as 20 m/s. To evaluate the performance, we will consider different
values of PLE to evaluate the performance for different environmental conditions at each bus stop with
the noise level value to be −90 db. Figures 15 and 16 show the path loss and distribution of vehicles
obtained from Equation (9). Path loss increases with the distance and reaches up to 80 db.
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Figure 16. Buses normal distribution.

The stay time of buses to be in coverage of the RSU is proportional to the speed of the vehicle.
Therefore, the offloading data rate, as shown in Figure 17, depends upon the bus density and the speed
of the bus while entering/leaving the bus stop. We plot the CDF of stay time at each passing stop and
end-stop, as shown in Figures 18 and 19. It shows that more than 50% of the buses stop at the end stop
for more than 9 min. Figure 20 shows the SNR versus time for different PLE values and changes as
per timings. We applied the RBAR method to theoretically estimate the maximum data throughput
plotted in Figure 21 for the time to be in coverage of RSU as defined in equation 12. To illustrate the
offloading capacity of upper bound and lower bound for different environments for different values
for the transmitter is shown in Figure 22. For the upper bound, we assumed GI = 400 ns, 3 spatial
streams, and 160 MHz channel, and for the lower band, 1 spatial stream, GI = 800 ns, and 20 MHz
bandwidth. For example, with PLE = 2.5, we can achieve up to 60 GB offloading capacity for passing
stop and 160 GB for stopping stop. By employing new standards, we can achieve more capacity as per
each stopping station with maximum data rates.
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In our previous work [45], we defined the energy consumption model for traditional networks
and public transport networks. We evaluated the energy cost while transferring data using traditional
networks or public transport networks from one place to another. As per our case study, we will
calculate energy consumption to send data from different locations of Auckland using both networks.
For example, while sending data from Auckland CBD to Henderson, there are two possible networks,
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and the distance is 17 km. The bandwidth to upload/download data using the core network will be
considered as bup and bdown. However, while using a bus network for data dissemination, the weight
of the package is appx 0.95 (2 TB) and αdiesel as a constant with value 38, 290, 237.52 J/L to convert
fuel volume into liters and joules. Table 5 gives a detailed description of the energy parameters used
as per the distance in each location. We plot the energy consumption value as per different values
of the data volume and distance in Figures 22 and 23 The results show that our system will make an
energy-efficient network selection in comparison with a traditional network.

Table 5. Energy cost parameters of Auckland city.

From To LAN Edge
Routers

Core
Routers bup bdown

Distance
(km)

Auckland CBD Henderson 6 2 5 0.1 0.1 17

Manukau Albany 13 2 15 0.1 1.0 39

Auckland CBD Danemora 6 2 3 0.1 10.0 23

Manukau Auckland
CBD 11 2 3 1.0 1.0 30

Auckland CBD Albany 8 2 14 1.0 1.0 18
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5. Conclusions and Future Work

This paper exploits the existing road infrastructure, including public transport networks and
utilizes them to disseminate data to overcome the limitations of conventional wired/wireless networks.
To determine the scheduled movement of moving buses, we used the Auckland Transport case study
to analyze their patterns. An advanced neural network algorithm was developed to predict bus arrival
time prediction at each bus stop for each route. Computed features like distance traveled, demand
characteristics, and time of day, average speed, travel time between bus stops were obtained from the
Auckland Transport data set. As the available data were limited and historical, some assumptions
were made for data processing to create input to train our model, and some data points were ignored
because of errors and duplicates. Since the methodology used to develop all predictions is the same for
all test trips, their MAPE and SMAPE errors are similar and can be presented in a range. Based on
these performance metrics, our ANN model proves that there exists a delay in the actual and predicted
arrival time of the bus. However, we can utilize them efficiently to disseminate data with delay-tolerant
features. This difference can help to estimate the realistic arrival time of the bus to allocate data as per
destination and the route. The offloading capacity is analyzed for each stop and terminal and proves
that the public transport network can be utilized efficiently for data dissemination with significant
savings of energy. We will study how to adapt the network selection decision between the traditional
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Internet network and our proposed transportation system-based data dissemination network in our
future work for guaranteed delivery of data.
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