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Abstract: This article focuses on the energy-saving of each driving distance for battery electric vehicle
(BEV) applications, by developing a more effective energy management strategy (EMS), under different
driving cycles. Fuzzy logic control (FLC) is suggested to control the power management unit (PMU)
for the battery management system (BMS) for BEV applications. The adaptive neural fuzzy inference
system (ANFIS) is a modeling technique that is mainly based on data. Membership functions and
FLC rules can be improved by simply training the ANFIS with real driving cycle data gathered from
the MATLAB/SIMULINK program. Then, FLC console blocks are rewritten by enhanced membership
functions by ANFIS traineeship. Two different driving cycles are chosen to check the improvement
in the efficiency of this proposed system. The suggested control system is validated by simulation
and comparison with the traditional proportional-integral (PI) control. The optimized FLC shows
better energy-saving.

Keywords: electric vehicle; energy management; fuzzy logic control; driving cycles; energy saving

1. Introduction

The main cause of global warming is the pollution produced through exhaust emission from
the traditional internal combustion engine (ICE), and cars today are a critical part of our lifetime.
Battery-powered electric vehicles (BEVs) provide high powertrain efficiency while reducing carbon
dioxide emissions, one of the biggest challenges today [1]. However, battery-related flaws for the
relatively short-range driving associated with long charging time. So, BEVs are prevented from
partaking in commercial competition with large-scale fuel-powered cars [2–4]. We should have a
suitable vehicle model to estimate the energy consumption of electric vehicles [5–7]. Developing an
efficient energy management strategy (EMS) for BEVs is critical to addressing the above issues.

Therefore, battery capacity restrictions in BEVs today strongly stress the importance of
understanding the causes of energy consumption in BEVs during operation, or more precisely
how driving itself influences powertrain efficiency, power consumption, and hence the available
driving cycles range [4,8]. Since the middle of the last century, numerous comprehensive studies have
been conducted around the world, aiming at identifying the leadership that led to the development of
different driving cycles [9]. But also a survey shows how emission, energy consumption, and efficiency

Sustainability 2020, 12, 10466; doi:10.3390/su122410466 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0001-8871-5358
https://orcid.org/0000-0002-5129-7129
https://orcid.org/0000-0002-0150-1064
https://orcid.org/0000-0002-7792-4573
http://www.mdpi.com/2071-1050/12/24/10466?type=check_update&version=1
http://dx.doi.org/10.3390/su122410466
http://www.mdpi.com/journal/sustainability


Sustainability 2020, 12, 10466 2 of 26

of combustion engine vehicles (CEVs) differ while driving [9,10]. However, given the very different
components in the powertrain and regenerative braking potential, it is not clear whether the results of
the power consumption studies associated with driving on CEVs are directly convertible to BEVs.

There are only a few publications on power management system design or simulations related to
BEVs power consumption for each driving distance, range, and efficiency under different driving cycles,
such as [4,11–18]. Some publications use many different driving cycles [17,18]. In [19], the proportional-
integral-derivative (PID) controller tuning method is designed based on the particle swarm optimization
(PSO) algorithm. To overcome the stochastic dynamics and the trade-off between control performance
and control inputs, the average cost function and the idea of linear-quadratic-regulator (LQR) were
used in the algorithm. In [20], a new linear matrix inequalities LMI-based control solution for
autonomous vehicle trajectory tracking has been proposed. By using a model-based fuzzy control
framework, it effectively deals with vehicle speed change and uncertain behaviors of side tire forces.
Also, physical obstructions to the steering inputs and vehicle condition are considered in the control
design despite the strong group stability characteristic and Lyapunov’s stability arguments. In [21],
the operator fault detector is designed for an electric ground vehicle (EGV) with an active front-wheel
steering system, since EGV can be steered by a motor automatically, it is desirable to design a steering
actuator fault detector for safety concerns. The nonlinear vehicle model is converted to the linear
parameter variable (LPV) model and the scheduling vector is related to the linear velocity of the
vehicle. Based on the uncertain LPV model, a gain scheduling fault detector is suggested and an
enhanced system is obtained. By studying the stability and performance of finite-frequency mixed
H/H1, a detector design method was developed.

A comprehensive review is presented in [4], alongside the overall relationship between measured
battery power, measured velocity, accelerated, and road gradient, to obtain specially created BEVs.
In [22], the authors using a particle swarm optimization technique to perfectly control the power flow
inter the power train and other car assistances for specific BEVs. Try to reduce energy consumption
in the vehicle while at the same time keeping passengers comfortable, by offering some suggestions
to the driver. In [23,24], the power control of heating and cooling systems was used to reduced
excessive power consumption and increased the battery health of BEV. These technologies do not
guarantee optimum power distribution in different conditions to keep comfortable and increase
energy consumption. Also, the driver cannot select different operation modes, such as comfort or
energy saving.

Currently, the problem of proper charging of plug-in hybrid electric vehicles (PHEVs) is becoming
increasingly difficult due to a large amount of uncertainty on the supply and demand sides of
micro-grid (MG) systems. However, uncoordinated PHEV charging may have negative effects on
MGs, such as increasing the amounts of energy exchanged between MGs and the upstream utility
grid (UUG) as well as reducing the life of battery energy storage systems (BESSs). This could reduce
efficiency and increase the cost of MG systems. In [25] the authors propose an intelligent scheme for
charging PHEVs in ac MGs that can simultaneously reduce the energy derived from UUG to charge
PHEVs and increase the life of BESSs based on a multi-purpose optimization algorithm. In [26] the
authors suggest a scheme for sizing BESSs in isolated MGs, including PHEVs and renewable energy
resources (RERs), where sizing of BESSs is critical because MGs do not have a Supported primary utility
network in isolated mode. The goal is to feed all MG loads continuously without any load separation.
Where the load profile of the MG unit and the output power of the distributed generation (DG) units
are calculated for four different seasons, then the rated maximum power of BESS is determined based
on the load profile plus the output power of the DGs. A strategy based on fuzzy logic control and
adaptive neural fuzzy inference system (ANFIS) was suggested [26,27]. It is very suitable for dealing
with nonlinear problems, thanks to its strength and adaptability. The energy management strategy
achieves a promising performance for energy saving, and the control method achieves good power
flow management in BEVs.
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This article aims to improve the travel distance of an electric vehicle by identifying the optimal BEV
powertrain configuration that reduces battery discharge without reducing the vehicle’s performance
during standard driving cycles. The lithium-ion battery-powered electric car transport group has been
successfully developed as a major contribution to this paper. The energy-saving feature presented in the
simulation can be tested for real-time driving range results on a dynamometer. The developed model
can provide a platform for a wide range of possibilities for future research. The main contributions
and novelty resulting from this work can be summarized as follows:

• Exploiting the concept of improving membership functionality and FLC rules by simply training
ANFIS with real driving cycle data gathered from the MATLAB/SIMULINK program.

• The procedure for FLC console blocks is recast with enhanced membership functions by ANFIS
training. After that, the proposed FLC controller is very suitable for dealing with non-linear
problems, thanks to its strength and adaptability.

• As a result, the new control unit not only improves the reliability of the vehicle’s control system
but also the energy management strategy achieves a promising performance for energy saving.

• The effectiveness of the proposed FLC in comparison to conventional control (PI) is demonstrated
by high-fidelity CarSim/MATLAB experiments under dynamic response conditions where the
improved FLC demonstrates better energy savings.

• Furthermore, the proposed PMU controller could lead to the following new contributions:
• Ensure that battery power is optimal for operating the vehicle.
• Ensure that the risk of battery damage is minimal and protect battery cells from abuse and damage.
• Control the charging and discharging of the battery and ensure that the battery is always ready

for use.
• Extend battery life for as long as possible.

This article is organized as follows: after the introduction within the first section, vehicle modeling
and its parameters are described in the second section. Moreover, discharging curves are obtained
by simulation and validation with the manufacturer’s data-sheet. Within the third section, a method
is presented for the design of the energy management strategy (EMS) for battery electric vehicles,
which ensures that the wants are met due to the distance of drive and acceleration. The fourth section
contains an example of the application where the EMS is employed within the complete simulation of
BEVs. The fifth section gives the concluding remarks.

2. Vehicle Modeling

A lightweight small vehicle (4–5 seats) was visualized based on dimension and performance data
from the various passenger cars available on the market [28] for modeling in this article. Car parameters
can be seen in Table 1. The power train comprises of three main parts as shown in Figure 1, a lithium-ion
battery, an Insulated Gate Bipolar Transistors (IGBTs) inverter with the control system, and a permanent
magnet synchronous motor (PMSM) connected to the wheels via a gearbox transmission, to match
the high speed of the electric motor shaft to the lower speed of the wheels. The simulation structure
is designed and integrated into MATLAB/SIMULINK as shown in Table 2. Finally, the three-phase
voltage and frequency control system is applied to the electrical motor, depending on the driver’s
current request, which is connected by the accelerator pedal or/and brake pedal.
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Table 1. Technical car data.

Technical Data Symbol Value Unit

Top speed - 130 km/h
Acceleration 0–100 km/h 12.4 s

Curb car mass mc 1085 kg
Frontal area Af 2.57 m2

Wheel radius Rw 0.3 m
Air density ρ 1.2041 kg/m3

Drag factor Fd 0.26 -
Rotation resistance factor Frr 0.009 -
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2.1. The Force Model 

This section will explain the energy consumption and analysis of the power train load levels, 
and it’s assumed that the car body is solid, and therefore it can be modeled as a grouped mass at the 
center of gravity of the car [29]. Moreover, the dynamics in only one direction, which is the forward 
longitudinal direction, are of importance while assuming that the stability of the car does not violate 
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Table 2. Technical data of system parameters.

Item Parameters Symbol Value Unit

Inverter

On-State switch resistance Ron 1 mΩ
Snubber resistance Rs 8.3 mΩ
Forward voltage
IGBT/Diode Vf 0.8 V

Switching frequency fw 60 Hz

EEM60 PMSM

Pairs of poles P 4 –
Max. power Pmax 25 kW
Max. torque Tmax 210 Nm
Max. speed Smax 6000 rpm
The d- and q-axis winding
inductances

Ld 174 µH
Lq 293 µH

Stator resistance Rs 8.3 mΩ
Magnetic flux Ψm 71.115 mWb

2.1. The Force Model

This section will explain the energy consumption and analysis of the power train load levels,
and it’s assumed that the car body is solid, and therefore it can be modeled as a grouped mass at the
center of gravity of the car [29]. Moreover, the dynamics in only one direction, which is the forward
longitudinal direction, are of importance while assuming that the stability of the car does not violate
under any circumstances. According to the principle of forces balance contained in Newton’s Second
Law’ of mechanics, the dynamic movement of a car in one completely coordinated axis is determined
by the sum of all forces operating on it in the same direction axis, as shown in Figure 2.
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The tractive force, Fwheel, which must come to the wheels from the electrical machine, must overcome
the sum of all the resistance forces influential on the car which are: force due to aerodynamical drag,
Fd, tires rotation resistance, Frr, acceleration force, Fa, and gradient force on road, Fg. The traction force
of a vehicle can be described as in [30]:

Fwheel =
1
2
ρFdA (vcar − vwind)

2 + mg cos(α)Fr + mg sin(α) + ma (1)

where Fwheel, power train shaft wheel force, ρ, dry air density at 20 ◦C, Fd, aerodynamically drag factor,
A, cross-sectional area (the car front area), vcar, car longitudinal speed [m/s], vwind, the headwind speed
[m/s], m, the equivalent mass of the car, g = 9.81, gravitational constant [m/s2], α, [rad] angle of the
road inclination (road slope), Frr, wheel rotation resistance factor, α = d

dt v(t), car acceleration [m/s2].
Rotation resistance occurs due to many different influences that occur around and inside the

car’s tires through the rotation. The rotation resistance factor depends on tire pressure, linear speed,
road phenomena, road surface type, and car tires. One of the main influences is that the repeated
tire deviation causes a slowdown within the tire material, resulting in an internal force that resists
movement [31], and the direction of this force opposite the direction of movement, and the value is
directly proportional to the gravitational force factor. The rotation resistance depends on more than
seven different influences, which makes estimating the rotation resistance by analytical modeling very
complicated in [29], so, the factor of rotation resistance, Frr, is expressed in [32] as follows:

Frr = 0.01 ∗
(
1 +

3.6
100

vcar

)
(2)

where 3.6 is the velocity conversion unit (the kilometers traveled within one hour).
Figure 3 shows the different velocity dependencies available for Frr in [33,34], both of which

assume that they typically depend on available tire measurements. The marks from Bosch symbolize
tire design velocity limits: 180 km/h for S, 190 km/h for T, 210 km/h for H, 240 km/h for V, 270 km/h
for W, above 240 km/h for Z, and finally, ECO tires are low-roll resistant tires specially designed to
reduce tire rotation energy, which reduces the required rotation effort, that comes in various speed
ranges. Also, Figure 3 usually illustrates three analytic expressions: one is linear [30], one that is
weakly dependent on the velocity square [31], and one that is strongly dependent on the velocity
square [29]. It can also be observed that Frr increase with velocity is somewhat smaller for tires with
a lower velocity rating and that Frr is slightly larger compared to tires with higher velocity ratings.
In [35], based on manufacturer datasheet for new tires from 2005, the average Frr for low-velocity
tires (up to 180–190 km/h) is 0.0098 for high-velocity tires (up to 210-240 km/h) is 0.0101, in whereas
high-velocity tires (greater than 240 km/h) are 0.0113. Both acceleration and gravitational forces are the
product of car mass, and consequently, it follows that a given acceleration level for any car causes the
same force of the wheel as a certain level of the road gradient as shown in Table 3.
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Table 3. Typical gradient and acceleration levels with an equivalent wheel force.

a 1 2 3 4 5 6 m/s2

grade 10.3 20.8 32.1 44.7 59.2 77.3 %
grade 5 10 15 20 25 30 %

a 0.49 0.98 1.46 1.92 2.38 2.82 m/s2

In the state of a road gradient (or slope), car dynamics will be influenced by the gravitation force
factor Fg parallel to the road.

α =

(
rising

driving

)
=

(
gradient %

100

)
(3)

where α is the angle between a road gradient and the horizontal plane (rad/s) while the rising is the
vertical axis and the driving is the horizontal distance as shown in Figure 2. The road inclination
is often expressed as a percentage of gradient %. The mechanical power, Pw, that must come to the
wheels, from the power train required to drive a car at speed v, is the product of the wheel force and
velocity of the car as follows:

Pw = Fw·v(s) (4)

The total energy of the wheels expended while driving, dEw, is as follows:

dEw = Fw·v2(s) (5)

Meanwhile, the car may move up or down, these forces may be resistant or contribute to the net
traction force on the car, meaning that it will be either negative or positive. Thus, driving on an uneven
road will cause temporary storage and drain the energy inherent in the car. Still, passenger cars are
commonly temporarily displacement for only a day or so, from the starting point (home for example),
regardless of the path they took, the potential energy remains the same when returning to the starting
position. Whereas, BEV is usually able to recover some energy from going down as it is with
deceleration. For each time step, you must pay attention to the wheel force tick to calculate propulsion,
braking, and power separately.

2.2. The Battery Model

The battery is the heart of electric cars. There are many different types of batteries, for example,
lead-acid, nickel-metal hydride, lithium-ion, etc. The type of battery selected on this sheet was Li-ion
battery: this category belongs to the family of rechargeable batteries. The lithium-ion battery is the
preferred choice due to its relatively specific power, also its strength to deal with the harsh operating
environment that it undergoes in BEV [36]. The battery was designed using a simple controlled voltage
source in a series with a fixed resistance, as shown in Figure 4. Internal resistance is presumed to
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be fixed for simplicity reasons, though it may usually change depending on the value of the battery
current or the charge and discharge status.
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The circuit equivalent loop that holds the Kirchhoff voltage law is proven to produce a terminal
voltage expressed as:

Vbatt = Ebatt −Ri ∗ Ibatt (6)

where Vbatt is the battery voltage (V), Ebatt is the no-load voltage (V), Ri is the internal resistance
(Ω), Ibatt is the battery current (A). As V and Ri depend on the charging status of the instant battery.
Internal resistance Ri can be expressed as a function of battery charge and operating temperature as
well as certain charge and discharge currents.

2.3. Extracting Model Parameters

The model can accurately represent the behavior of many types of batteries, provided the
parameters are well defined. The main advantage of this battery model is that it is easy to draw
parameters from the manufacturer’s discharge curve. Figure 5 shows the computed discharge curve
typically for (Type Li-ion battery: 288 Volt 120 Ampere-hours) and is an indicator of battery voltage
versus elapsed time during discharging. The fixed current used to discharge the battery is 6 Amperes
(0.4C), determined by the nominal amplitude of the battery divided by one hour [37].
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The battery model has been validated by specifying battery parameters, to reproduce the
behavior of the LiFePO4 (3.2 V/20 Ah) battery, a real commercially available device (Li-ion battery
commercial datasheet available at “https://www.ev-power.eu” accessed on 4 January 2020). Through the
manufacturer’s data sheet and model output characteristics, represented by the discharge curve plot.
The controlled voltage source is described by the main equations for the general battery model for a
Li-ion battery as:

Charging phase:

Echg = Vc −K ∗
Q

it + 0.1 ∗Q
+ A ∗ e(−B∗it) (7)

Discharging phase:

Edis = Vc −K ∗
Q

Q− it
+ A ∗ e(−B∗it) (8)

where Vc is the fixed battery voltage (V), K is the polarization voltage (V), Q is the maximum battery
capacity (Ah), it is the extracted capacity (Ah), A is the exponential area capacity (V) and B is the
exponential area time constant inverse (Ah)−1.

2.4. Sizing Battery Pack

The battery pack sizing method depends on a predetermined minimum for all-electric range
and power required by the electric motor to drive the car from initial acceleration to a fixed speed.
Meantime, battery-pack operational variables such as voltage, maximum charging, discharging current,
and power are related to chemistry within individual cells. The cells are connected in series and/or
parallel configurations to provide the required voltage, power, and energy. The main parameters
involved in battery sizing include:

2.4.1. Battery Pack Power

If the car is a battery-powered electric vehicle, all of the power sources comes from the electric
motor and the battery, battery power can be obtained by:

Pbatt =
Pw

ηmotor
(9)

where Pbatt is the maximum battery power in kW, Pw is the wheel power, and ηmotor is the efficiency of
the electric motor.

2.4.2. Specific Battery Energy (SEbatt)

The amount of energy per unit of the battery mass is called the specific energy of the battery.
This parameter is a condensed property of the battery system and is expressed in watt-hours per kilogram
(Wh/kg). The actual energy that can be extracted from the battery system depends on several factors
such as temperature and discharging rate. As a general expression, the battery’s specific energy is:

SEbatt =
Edis

Mbatt
(10)

where Edis is the discharging energy, and Mbatt is the total battery mass. Since the discharging energy
varies with the battery discharging rate, the specific battery energy also varies accordingly.

https://www.ev-power.eu
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2.4.3. Battery Specific Power (SPbatt)

The specific power of the battery system is the parameter that specifies the amount of energy that
can be obtained per unit mass, expressed in watts per kilogram (W/kg), and is determined by:

SPbatt =
Pdis

Mbatt
(11)

where Pdis is the discharging power, and Mbatt is the total battery mass. This parameter also works as
an approximation to the available power level of the battery system.

2.4.4. Battery Pack Capacity

The battery system can measure the amount of free charging produced by the active substance in
the cathode and consumed by the anode. The battery capacity is calculated by the intrinsic properties
of the battery cell design.

Cbatt =
Pbatt
RP/E

(12)

where Cbatt is the maximum battery capacity in kWh, and RP/E is the ratio of the specified power (kW)
to the specified energy (kWh) of the battery.

2.4.5. Maximum Battery Pack Storage

The maximum battery storage is determined by the car’s entire electric range and the electrical
consumption in the electrical model (Equation (13)). For BEV, the charge exhausting mode corresponds
to the entire electric range.

Ebattery pack =
Celectric ∗RAll−electric

0.8
(13)

where Ebatt is the maximum battery energy storage in kWh, Relectric is the fully electric range of the
vehicle in km, and Celectric is the electric consumption during the fully electric operating in Wh/km.
The denominator constant of 0.8 in the equation depends on the design of the state of charge (SOC%)
control logic of 20% used for most battery systems [38,39].

2.4.6. Efficient Battery Power

Battery energy efficiency is defined as the percentage of electrical energy that is connected by a
battery from a particular charge state to the energy required to return the battery to the same charge
condition. Although battery efficiency is not a clear parameter for measuring battery performance, it is
effective as a comparative measure of different power and energy management strategies. If using the
battery management system operates the battery by reducing high energy quick discharges, the battery
efficiency is expected to increase compared to the battery operation without a management system.
In the case of a pure electric vehicle, a comparison should be made based on the battery charger profile
itself. The battery discharging energy (Edis) can be expressed as a function in the discharging time tf,
open-circuit voltage Voc, the internal resistance Ri and the current constant discharging Id as:

Edis =

∫ t f

0
Pd (t)dt = t f ∗ (Voc − Id ∗Ri)Id (14)

Charge the battery for the same discharging period tf, the same as the magnitude of charging
current, as the discharging current gives the charging energy (Echg) as:

∣∣∣Echg
∣∣∣ = ∫ t f

0
|Pd| (t)dt = t f ∗ (Voc + |Id| ∗Ri)|Id| (15)
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Therefore, the battery efficiency expressed as a function of the current battery can be indicated as:

ηbatt =
Edis
Echg

=
Voc − |Id| ∗Ri

Voc + |Id| ∗Ri
(16)

2.4.7. Battery Cell Numbers

Battery cells must be placed in series and parallel to meet voltage and power needs. Particularly,
strings rank in a series can lead to increased voltage and resistance while strings rank in parallel can
lead to increased energy capacity.

Nseries =
Vpack

Vcell
, Nparallel =

Epack

Ecell
(17)

where Vcell and Vpack are the battery cell voltages and pack, Ecell and Epack are the battery cell energy
capacity and pack, Nseries is the number of series cells, and Nparallel is the number of parallel cells.

The studied 288 V/120 Ah battery bank is composed of six-packs in parallel, and every pack is
made up of 6 × 48 V/20 Ah modules in series. The specifications are listed in Table 4.

Table 4. Technical data of battery system parameters.

Specifications Symbol Value Unit

Type of cells LiFePO4 Lithium-ion battery
Nominal voltage Vn 3.2 V

Internal resistance Ri <2 mΩ
Nominal capacity Cn 20 Ah
Max. cell voltage Vmax 3.8 V
Min. cell voltage Vmin 2.6 V

Open circuit output voltage Vo 2.8–3.7 V
Optimal discharging current (0.5C *) - <10 A
Maximal discharging current (3C *) - 60 A
Optimal charging current (0.5C *) - <13 A
Maximal charging current (1C *) - 20 A

Cycle life (0.5C, 80% DOD *) - >2000 Cycles
Self-discharge rate - <3% % per month

Weight (tolerance +/− 50 g) W 0.65 kg
Dimensions (width × length × height) - 71 × 178 × 28 mm

Energy E 64 Wh

* 0.5C, 1C and 3C are the stability rates during high current discharge, determined by the high discharge current
(Ah) divided by the battery’s nominal capacity (Ah). * DOD is the depth of discharge.

2.5. Monitoring and Estimating the Battery SOC

The state of charge (SOC) indicates the remaining battery capacity. SOC units are percentage
points (0% = empty, 100% = full). SOC is usually used when discussing the current state of the used
battery. SOC rating can help determine thresholds for each battery operating mode (i.e., charge or
discharge) and overcharge and over-discharge can also be avoided. SOC is expressed as:

SOC(t) = Q−
∫ t

0
i(t)dt (18)

The state of discharge (SOD) is defined as the charge gauge derived from the battery, as:

SOD(t) = ∆q =

∫ t

0
i(t)dt (19)
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The depth of discharge (DOD) is the inverse of SOC (100% = empty, 0% = full), one on SOC.
DOD is often seen when discussing battery life after repeated use.

DOD(t) =

∫ t
0 i(t)dt

Q
∗ 100% =

SOD(t)
Q

∗ 100% (20)

The state of health (SOH) is the battery status today compared to its ideal state. The SOH units
are percentage points (100% = new battery). By detecting SOH, the battery life and health status can be
estimated and the percentage of battery life can be used to determine whether or not it will be replaced.

3. Energy Management Strategy

The EMS is responsible for distributing energy between multiple energy systems in light of the
vehicle’s continuous energy requirements, as shown in Figure 6. Then the EMS task is to implement
decision-making rules and restrictions for generating this energy distribution and recovery orders or
actions. All simulations started with the battery charged to 95% of its energy capacity, as a margin of a
few percent is typically used in BEVs to prolong the battery lifetime. Figure 7 demonstrates the energy
management strategy in the Simulink model.
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The energy management strategy (EMS) corrects DC bus load disturbances in a low time horizon.
Indeed, the horizon period is the EMS decision era, and it is time-limited to generate reference power
paths. Figure 8 shows battery power limits (Pbatt max, Pbatt min) and power rate limits (dPb/dt) as a
function of battery charge status. In graphs (a) and (b), the battery discharging power limit and battery
charging limit, respectively, (∆EMS) represent the charging and discharging power limits during a
specified period of EMS decisions. Consequently, the inclusion of these restrictions in the definition of
EMS allows control of step-change for both charging and discharging levels.

Sustainability 2020, 12, x FOR PEER REVIEW 12 of 26 

 
Figure 7. Schematic diagram of the energy management strategy in a Simulink model. 

The energy management strategy (EMS) corrects DC bus load disturbances in a low time 
horizon. Indeed, the horizon period is the EMS decision era, and it is time-limited to generate 
reference power paths. Figure 8 shows battery power limits (Pbatt max, Pbatt min) and power rate limits 
(dPb/dt) as a function of battery charge status. In graphs (a) and (b), the battery discharging power 
limit and battery charging limit, respectively, (∆EMS) represent the charging and discharging power 
limits during a specified period of EMS decisions. Consequently, the inclusion of these restrictions in 
the definition of EMS allows control of step-change for both charging and discharging levels. 

 
Figure 8. Battery discharging and charging power limitation. 

3.1. Battery Management System 

The old battery management systems (BMS) do not include a power control unit. Advanced 
battery technologies such as lithium-ion require a power control unit to ensure the safety and long-
term performance of the battery pack. The suggested power control unit also controls battery 
recharging by forwarding recovered energy (i.e., regenerative braking) to the battery pack as shown 
in Figure 7. The suggested power control unit will also work on: 

1. Fully protect the battery from damage. 
2  Monitor cells, units, and packages to ensure that they operate within the appropriate range and 

avoid faulty operation such as short circuits, overvoltage, overcharging, over-discharging, and 
overheating of particular importance to Li-ion cells. 

Figure 8. Battery discharging and charging power limitation.

3.1. Battery Management System

The old battery management systems (BMS) do not include a power control unit. Advanced battery
technologies such as lithium-ion require a power control unit to ensure the safety and long-term
performance of the battery pack. The suggested power control unit also controls battery recharging
by forwarding recovered energy (i.e., regenerative braking) to the battery pack as shown in Figure 7.
The suggested power control unit will also work on:

1. Fully protect the battery from damage.
2. Monitor cells, units, and packages to ensure that they operate within the appropriate range

and avoid faulty operation such as short circuits, overvoltage, overcharging, over-discharging,
and overheating of particular importance to Li-ion cells.

3. Ensure safe operation and extend battery life for as long as possible.
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4. Communicate with the supervisor of the vehicle and meet all the requirements for operating
the vehicle.

5. Balance cell groups during dynamic charging and discharging to ensure that the entire battery
system provides optimum performance.

3.2. Power Control Unit Suggested

The main function of the suggested power control unit is to connect and disconnect the battery
from the load or the charger. It also measures the current and voltage of the battery pack and limits
the flowing current in [40]. Figure 9 shows a schematic diagram of the suggested power control
unit. The power control unit model relies on the battery pack specifications that monitor its status,
calculating secondary data, report that data, control its environment, authenticate, and balance it.
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For lithium-ion batteries are the main energy storage units for BEVs, these batteries must be able to
handle random charges due to regenerative braking. The regenerative braking force can reach a 10 kW
level. Safety limits must be applied to ensure the optimal and safe operation of the battery pack.
The constant-current constant-voltage (CCCV) charge technique is the charge profile recommended by
most manufacturers of lithium-ion batteries [41]. Figure 10 shows the charge profile for a single Li-ion
battery cell. The three most common stages are charge, discharge, and standby. These stages can also
be summarizing below.
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In Stage 1: (Charging Mode), this mode works when the EMS orders the battery to be charged.
This mode can include a power level, in which case the charge current is controlled to deliver the
required power. Also, a different charging strategy is determined depending on the SOC of the batteries.
Figure 10 shows a diagram of the three battery charging strategies as follows:



Sustainability 2020, 12, 10466 14 of 26

(1) Bulk charging mode or CC charge (current control)—used for fast charging when the SOC is low,
where the charger current is kept at a steady rate, and the battery voltage is enabled to grow
accordingly during recharging.

(2) Absorption charging mode or CV charge (voltage control)—used to prevent battery overcharging
when the SOC is higher than a certain level.

(3) Float charging mode (voltage control)—used when the battery is close to full charge and maintains
the full charge state of the battery.

In Stage 2: (Discharging Mode), this mode works when EMS orders the power storage device
(batteries) to discharge. In this mode, the discharge current is controlled to deliver the required power.
There are two factors that EMS should consider: (a) the energy capacity of an electrochemical battery
decreases at a higher discharging current [42,43]; and (b) a minimal SOC is often required during
discharge to increase the life of the cycle [44,45].

In stage 3: (Standby Mode), the system usually enters into standby mode when charging ends
when the maximum SOC is reached. In this mode, the battery pack is still attached to the system but is
not significantly charged or discharged. For the electrochemical battery, float charging can be used to
compensate for the self-discharging [46–51].

3.3. Suggested Fuzzy Logic Controller

Fuzzy logic control is used as a strategy implementation tool, Figure 9. First, the input variables
and output variables of the FLC have to be defined, then a set of fuzzy rules suitable for the control
strategy can be created. The main objective of BMS control is to improve the battery operating point and
electric motor through efficient operation, reliability, and high power quality of the power train. This is
done by controlling charging and discharging limits utilize FLC. Thus the electric motor operation
should be adjusted according to the battery charging state (SOC) and current road load. As shown
in Figure 9, the input variables for the power control unit are the SOC of the battery, voltage state,
and current at the node to which it is connected. If the SOC battery charge state is low that is (less than
20%) and the node voltage is high, the EV battery will be charged, but if the SOC battery charge state is
high that is (greater than 80%) and the node voltage is lower, the EV will be discharged. Also, there are
several different conditions where both the SOC and the node voltage can be low or both are high.
In these situations, specified charging and discharging rates are employed. Thus, to keep node voltage
changes within standard rates, FLC should be adjusted to monitor such other conditions also. Figure 11
provides a schematic diagram of an FLC.
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Second, the functions of the individual membership and the fuzzy sets of FLC are determined
based on the fuzzy expert knowledge system to more accurately reflect the status of the input and
output variables. Each membership function consists of some fuzzy sets. A fuzzy set is a set of values
related to fuzzy input. Each element of the fuzzy set contains real values that range in varying degrees
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between 0 and 100%, as shown in Figure 11, known to be the degree of their membership within the
set. Also, the symmetric triangle function was chosen because it provides good results and has better
transition performance and calculations using these simpler shapes. E.g., affording to a battery expert,
the battery state SOC membership function is divided into three levels, high SOC (>80%), medium SOC
(40–80%), and low SOC (<40%), each value represents a fuzzy set. Figure 12 below shows the battery
SOC% membership function.
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3.4. Adaptive Neural Fuzzy Inference System

FLC relies fundamentally on the fuzzy expert knowledge system based on the description included
in Section 3.4, and thus it cannot achieve satisfying efficiency permanently. So ANFIS theory will be
used to improve membership functions and FLC rules after training ANFIS with actual driving cycle
data for better efficiency [44,45]. This paper aims to save energy by a specific path. Figure 13 illustrates
the adaptive neural fuzzy inference system (ANFIS) consisting of two inputs in a general form of
common rules and one output. The method of adjusting the fuzzy logic control within ANFIS has five
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Simulating ANFIS requires five main steps, as follows:

(1) Obtaining training data of different driving cycles, each driving cycle is characterized by different
road modes, and partial samples of NEDC and UDDS driving cycles are selected in the simulation
of ANFIS training to achieve the improved FLC. In simulations, points 0–100, 500–600, 1000–1100
of the different driving cycles are determined as samples.

(2) Use the data to train ANFIS.
(3) Get new membership functions.
(4) Obtaining the new FLC block in the MATLAB.
(5) Obtain simulation results.

where x1 and x2 as status input variables and Yi representing the output variable, Ai are the input
membership functions, Ψi are the rules firing strengths, as follows:

Rule 1:
IF x1 is Ai AND x2 is Bi THEN Yi = Ψi (x1, x2) (21)

Rule 2:
IF x2 is Ai AND x2 is Bi THEN Yi = Ψi (x1, x2) (22)

Using (Pbatt max) as the output function’s fuzzy inference system, the rule instance for creating a
fuzzy base rule as:

FIS→ IF speed is fast AND battery SOC is high THEN Pbatt max = Pbatt max (23)

By recursive calculation of each rule, the fuzzy logical output variable Pbatt is evaluated as the
maximum output, where Aij is the combined membership function which is evaluated as:

Pbatt max =

∑imax
i=1

∏ j=2
j=1 Ai j(x j)Ψi∑imax

i=1
∏ j=2

j=1 Ai j(x j)
(24)

4. Results and Discussion

The battery-powered electric vehicle model is shown in Figure 6 by applying the detailed
mathematical models of the system described earlier in the MATLAB/Simulink® environment.
Simulation results are obtained based on typical driving cycles. Different driving patterns and
situations have been chosen to assess the performance of the proposed EMS to define typical driving
patterns on different types of roads. In this paper, two different driving cycles were simulated:
NEDC and UDDS. Figure 14 shows simulated car results for 20 s (a) car speed, (b) battery power,
(c) battery voltage, (d) battery current, and (e) battery charge status (%), respectively. The electric car
starts to operate from the stop position at the time (t = 0), and the car is suddenly pushed to 70% of
the vehicle’s acceleration. After about (t = 0.8 s), the power required for the car reaches about 10 kW.
The brakes are pushed to 70% at the time (t = 8 s), which causes the electric motor to convert the brake
energy using the regenerative braking method, the energy is stored again in the battery and charged
for (t = 8 s). After that the accelerator is suddenly pushed back to 70% at the time (t = 16 s), thus it is
observed that the battery power and current decrease are slowly until the battery reaches the value of
the initial charge state.
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The simulation results performed under the accelerated braking cycle revealed in Figure 14,
Reveal that FLC gives a 35% increase in the fundamental output with improved quality (i.e., less THD
compared to PI) and that the resulting THD was 1.564% for PI, versus 0.552% for FLC. FLC results also
showed good and high performance in time domain response, and the effect of rapid perturbations
rejection on the system compared to the charts in the literature. Thus, the core loss of PMSM greatly
reduces, thus improving the efficiency of the drive system.

The results obtained are tabulated as a comparative performance in light of the settling time and
peak overshoot, as shown in Table 5. The outputs of the conventional proportional integrated control
(PI) system have a very high overshoot and settling time. The enhanced fuzzy logic controller (FLC)
has a better settling time and lower overshoot.
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Table 5. The comparative performance of the control units used.

Parameter Controller Rise Time Settling Time Peak Overshot

Battery Power PI 387.466 us 794 ms 1.158%
FLC 315.564 us 700 ms 0.585%

Battery Voltage PI 471.870 us 782 ms 0.815%
FLC 396.549 us 713 ms 0.405%

Battery Current PI 398.030 us 793 ms 0.226%
FLC 320.362 us 700 ms 0.201%

4.1. Description of Driving Cycle NEDC

The driving cycle is a series of points representing the car’s speed against time, to calculate the
car’s efficiency (Energy Saving). The New European Driving Cycle (NEDC) consists of four ECE-15
repeated driving cycles and an (Extra-Urban Driving Cycle) or EUDC to simulate highway driving in a
vehicle. NEDC driving cycle operates at a distance of 11 km per hour approximately in 1180 s and has
an average speed of 33.6 km per hour, as shown in Table 6. During this cycle, the SOC of the battery
pack almost decreased to 50% from 70% of the initial SOC. The frequent start and stop characteristics
of city driving were more suitable for energy recovery using regenerative braking. Simulation results
show that the car was able to meet the driver’s requirements, as it can be seen that the demand and
actual speeds of the car were identical. Figures 15–17 show graphs of the demanded and actual speeds
of the NEDC driving cycle simulator, along with the plots of the motor, and the battery. The entrance
to the simulation will be the repeated NEDC 15 times as this should provide a drive distance of 165 km
which should be acceptable.

Table 6. Characteristics of NEDC driving cycles.

Parameter NEDC

Total time (s) 1180
Total distance (km) 11.01663
Maximum speed (km/h) 120.09
Average speed (km/h) 33.6
Average acceleration (m/s2) 0.528
Average deceleration (m/s2) −0.719
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4.2. Description of Driving Cycle UDDS

The Urban Dynamometer Driving Schedule (UDDS) driving cycle aims to simulate city driving
conditions that are used to test light vehicles. UDDS driving cycle operates at a distance of 12 km
per hour approximately 1369 s and has an average speed of 31.6 km per hour, as shown in Table 7.
During this cycle, the SOC of the battery pack almost decreased to 45% from 70% of the initial SOC.
Simulation results show that the car was able to meet the driver’s requirements, as it can be seen that
the demand and actual speeds of the car were identical. Figures 18–20 show graphs of the demanded
and actual speeds of the UDDS driving cycle simulator, along with the plots of the motor, and the
battery. The entrance to the simulation will be the repeated UDDS 15 times as this should provide a
drive distance of 180 km which should be acceptable.
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Table 7. Characteristics of UDDS driving cycles.

Parameter UDDS

Total time (s) 1369
Total distance (km) 11.99685
Maximum speed (km/h) 91.15
Average speed (km/h) 31.6
Average acceleration (m/s2) 0.429
Average deceleration (m/s2) −0.464
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A reduction in traction energy demand can be observed when moving from NEDC to UDDS,
while brake energy increases by 21.8% as shown in Figure 21, which shows more opportunities to
exploit regenerative braking.
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5. Conclusions

In this research, an energy management strategy was conducted for electric vehicles in
MATLAB/SIMULINK environment. The electric car battery is chosen in a way that meets the power
and energy requirements of a specific driving cycle. The loss of every component in the car depends on
the interior conditions of the car, such as voltages, currents, speed, torque, and charge/discharge status.
The battery good fuzzy logic control is set up and is the basis for the power management controller in
the same battery management system. The results show that EMS tested vehicle strategies can achieve,
in nearer-reality test conditions such as those for NEDC, higher efficiency levels than those currently
evaluated in UDDS. This model also helps to develop the PMS system, which controls all adapters
in addition to the PMSM motor, so that it does not exceed the maximum battery power. Finally, it is
possible to precisely control the charge and discharge of the battery.

The driver can choose the operating mode (energy-saving) using the graphical user interface or
device selector. Moreover, the benefits of the proposed EMS and its control strategy can be summarized
as follows:

1. Simulation results showed better performance of the proposed adaptive FLC over conventional
PI control.

2. Adaptive FLC introduced an effective solution to correctly EMS.
3. Using adaptive FLC, much better results can be achieved due to lower harmonic current and thus

torque ripple less than conventional PI.
4. Several tests were performed using simulations to analyze harmonic components for speed.

All THD values are less than 5%, which is acceptable harmonic distortion according to the
IEEE standard.

5. Finally, adaptive FLC offers very good speed control performance.
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Nomenclature

ANFIS Adaptive Neural Fuzzy Inference System
BESSs Battery Energy Storage Systems
BEVs Battery Electric Vehicles
BMS Battery Management System
CC Constant Current
CEVs Combustion Engine Vehicles
CV Constant Voltage
DC Direct Current
DG Distributed Generation
DOD Depth of Discharge
ECE-15 European Standard Urban Driving Cycles
EGV Electric Ground Vehicle
EMS Energy Management Structure
EUDC Extra-Urban Driving Cycle
EV Electric Vehicle
FLC Fuzzy Logic Controller
HEVs Hybrid Electric Vehicles
ICE Internal Combustion Engine
IGBTs Insulated Gate Bipolar Transistors
Li-ion Lithium-Ion
LPV Linear Parameter Variable
LQR Linear Quadratic Regulator
MGs Micro-Grids
NEDC New European Driving Cycle
PHEVs Plug-in Hybrid Electric Vehicles
PI Proportional Integral
PID Proportional Integral Derivative
PMS Power Management Strategy
PMSM Permanent Magnet Synchronous Motors
PMU Power Management Unit
PSO Particle Swarm Optimization
RERs Renewable Energy Resources
SOC State of Charge
SOD State of Discharge
SOH State of Health
THD Total Harmonic Distortion
UDDS Urban Dynamometer Driving Schedule
UUG Upstream Utility Grid
List of Notations
Symbol Description
a Acceleration (m/s2)
A The cross-sectional area of the vehicle (m2)
Bpk The peak flux density in the B-H hysteresis curve
Cd Aerodynamic drag coefficient
d,q Direct, quadrature axis components
Ed Drag energy (W)
Eg Gravitational energy (W)
Ek Kinetic energy (W)
Eon+off The energy dissipated during turn-on and turn-off (W)
Er Rolling energy (W)
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Err
The energy dissipated during turn-off (due to the reverse
recovery process) (W)

Et The total energy of the section (W)
f Frequency of the flux
Fa Acceleration force (Nm)
Fd Drag force (Nm)
Fg Gravitation force (Nm)
Fr Rolling force (Nm)

Fresistive
The sum of the resistive forces acting to decrease the vehicle
speed (Nm)

fsw Switching frequency

Ftractive
The sum of all the tractive forces acting to increase the
vehicle speed (Nm)

Fw Tractive force (Nm)
g Gravitation constant (m/s2)
IIGBT The average current (A)
k Coupling coefficient

K
The scaling constant for transformation between three-phase
to two-phase space vectors

kc Eddy current parameter
kh Hysteresis parameter
Ld, Lq The d- and q-axis winding inductances
Lm Mutual inductance of three inductors (mH)
m Vehicle mass (kg)
n Depends on Bpk, fr, and steel material (typically 1.6–2.2)
np Number of pole pairs
Pa Unit of standard atmospheric pressure (Pascal)
r Wheel radius (m)
Rc Core loss resistance (Ω)
RCE IGBT on-state resistance (Ω)
RF diode on-state resistance (Ω)
RL_ac AC load resistance (Ω)
RL_dc DC load resistance (Ω)
Rs Stator winding resistance (Ω)
TNo. Number of turns per inductor
v(t) Vehicle speed (m/s)
Vbatt Battery voltage (V)
vcar Vehicle speed (m/s)
VCE The IGBT threshold voltage of the on-state characteristics (V)
vwind Wind speed (m/s)
w Wheel speed (rad/s)
wel The electrical angular speed (rad/s)
wr The rotor angular speed (rad/s)
α Road inclination angle (rad/s)
ρ Air density (kg/m3)
Ψd, Ψq Flux linkage in the d- and q-axis
Ψm Flux linkage related to the permanent magnet
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