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Abstract: The goal of China’s low-carbon pilot policy (LCP) is not only to solve the problem of
climate change but, more importantly, to achieve the low-carbon transformation of cities. This paper
analyzes the industrialization stage’s moderating effect on LCP policy implementation using the
difference-in-difference model (DID) with the Low Carbon Development Index (LCDI) as the explained
variable. We find that for the low-carbon pilot cities (LCPCs) at the later stage of industrialization, the
LCP policy has a positive impact on LCDI, gradually increasing with the study period’s extension.
The marginal impact reaches its maximum in the second year after its implementation. For the LCPCs
at the middle stage of industrialization, the LCP policy has a weakly negative impact on LCDI. The
marginal impact does not change to positive until the fourth year after its implementation. In terms
of mechanism analysis, the LCP policy enhances LCDI by slowing down the industrialization process
and boosting innovation; the industrialization stage does not constrain the effect. In contrast, the LCP
policy’s impact on LCDI by facilitating FDI (Foreign Direct Investment)inflows is strongly influenced
by the industrialization stage. For the LCPCs at the later stage of industrialization, the LCP policy
can enhance LCDI through FDI. For the LCPCs at the middle stage of industrialization, the LCP
policy reduces the inflow of FDI, and the positive effect of FDI on LCDI does not pass the significance
test. Thus, this paper argues that a one-size-fits-all strategy to policy implementation should be
avoided. Instead, the industrialization stage should be considered a criterion for city classification,
and a differentiated target responsibility assessment mechanism should be adopted according to
local conditions.

Keywords: low-carbon development index; industrialization stage; low-carbon pilot policy;
difference-in-difference

1. Introduction

The Paris Agreement (2015) sets a long-term goal of limiting the global temperature rise to no more
than 2 ◦C and striving to limit it to 1.5 ◦C compared to before the industrial revolution [1,2]. Therefore,
extensive cooperation has been undertaken in various fields to reduce member countries’ greenhouse
gas emissions. To lead international collaboration to address climate change, the Chinese government
has set a series of goals and objectives, including achieving peak carbon emissions by 2030, reducing
CO2 emissions per unit of GDP by 60 percent compared to 2005, increasing the share of non-fossil
energy in primary energy consumption to 20 percent, and increasing forest storage by 4.5 billion cubic
meters compared to 2005 [3,4]. To achieve these targets, since 2010, the National Development and
Reform Commission (NDRC) of China has conducted three batches of low-carbon pilot policy (LCP)
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policies in six provinces and 77 cities [5–8]. This paper defines the LCP policy as a public policy tool
where the government implements procedures that promote low-carbon development in a particular
city to overcome the negative externalities caused by high-carbon development. Public policy theory
suggests that the implementation of a policy is likely to achieve the objectives it was initially set out to
achieve but also that there may be a lag in its entry into force or policy failure (Pal (1992)) [9]. Thus,
we should propose a city classification method to identify the three possible effects of LCP policy
implementation. After several experiments, we find that using the industrialization stage as a city
classification criterion can reflect the heterogeneity of LCP policy in different cities.

Moreover, the LCP policy’s expected targets are not only to reduce the total carbon emissions but
also to require a low-carbon transformation of major high-carbon source sectors, improve the carbon
sequestration capacity, and change the way urban residents live and consume. According to those
expected targets, we construct a set of low-carbon development evaluation index systems covering
the city’s primary carbon source industries and carbon sink fields, including the aspects of macro,
energy, industry, environment, land, and life and 24 quantitative indicators. We also use the improved
TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)model to measure the Low
Carbon Development Index (LCDI). Taking the LCDI as the explanatory variable, this paper applies
the DID model to analyze the industrialization stage’s moderating effect on the implementation of
LCP policy and to profoundly understand its influence mechanism. This is of great significance for
exploring the low-carbon development path of Chinese cities. It helps the promotion of LCP policy
and the mitigation of greenhouse gas emissions in China.

Why can the industrialization stage moderate the impact of China’s LCP policy? The change of
per capita income and economic structure is the sign of industrialization (Chen et al. (2006)) [10]. Thus,
we try to analyze the link between the industrialization stage and the low-carbon development from
these two aspects. First, as per capita income is at different levels, the carbon emission characteristics
and carbon source structure of cities at different industrialization stages are different. During the rapid
industrialization stage, the rapid growth of per capita consumption level is the main factor for carbon
emissions growth. According to statistics, the increase in GDP per capita is the largest positive driver
of China’s carbon emissions, with an average contribution rate of 15.82% (Wang et al. (2010)) [11].
However, as the population ages, this trend gradually weakens. During the post-industrialization
period, as urban residents’ low-carbon consciousness increases, low-carbon consumption methods
will be selected more, and carbon emissions will decouple from industrialization. Zhang et al. (2013)
indicated that the input of high-energy-consuming products such as cement and steel in the early stage
of industrialization indirectly caused more construction-oriented greenhouse gas emissions. With
the increase in per capita income and living standards, the greenhouse gases caused by consumption
emissions occupy the mainstream [12]. With the increase in the per capita income level, the carbon
emissions of households increased rapidly. The urban residents’ demand for indirect carbon emission
products such as induction cookers and air conditioners and direct carbon emission products such
as cars is growing faster. Second, there are significant differences in the urban economic structure at
different industrialization stages, which will impact the city’s carbon emission characteristics. Syrquin
et al. (1989) concluded that in the process of industrialization, the changes in the industrial structure
had the following regularities: the city experienced the early stage of industrialization characterized
by labor-intensive industries, transformed into the mid-term stage of industrialization characterized
by capital-intensive industries, and finally entered a post-industrial period characterized by intensive
technology [13]. In the short term, the city’s energy consumption structure and industrial structure
are relatively stable. The growth of total economic volume will drive the same proportion of total
carbon emissions. In the long term, with the optimization and upgrading of the industrial structure, a
difference in carbon emission intensity can appear due to the city’s different industrial structures. Cities
with low-value-added energy products as production targets have relatively high carbon emission
intensity. In contrast, cities with high-value-added technology products as production targets have
relatively low carbon emission intensity. Shan et al. (2018) investigated cities with service industries
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as the pillar industry, such as Shenzhen, whose carbon emission intensity was as low as 0.04 tons of
carbon dioxide per thousand yuan; cities with steel production as pillar industries, such as Panzhihua,
whose carbon emission intensity was as high as 1.55 tons of carbon dioxide per thousand yuan; cities
with energy production and resource extraction as pillar industries, such as Hegang, whose carbon
emission intensity was as high as 1.72 tons of carbon dioxide per thousand yuan [14]. Liu et al.
(2012) [15] indicated that Chongqing and Tianjin, with energy-intensive manufacturing as the core
industry, had higher coal consumption in the thermal power generation industry. Their total carbon
emissions were in a stage of substantial increase. In contrast, Beijing and Shanghai, which had the
service industry as the core industry, implemented the policy to purchase electricity. Their carbon
emissions growth rate tended to be slow. Third, heterogeneity in the structure of carbon sources
in cities at different industrialization stages is due to significant differences in economic structure.
The IPCC’s(Intergovernmental Panel on Climate Change) fifth climate change assessment indicated
that human-induced greenhouse gas emissions had increased by 10 billion tons of carbon dioxide
equivalent between 2000 and 2010, of which 47% came directly from the energy supply sector, 30%
from industry, 11% from transportation, and 3% from construction [16]. In this paper, the energy
supply sector, the industrial sector, etc., are defined as the main sources of carbon emission for cities.
Differences in driving factors and pillar industries in cities at different industrialization stages lead to
heterogeneity in carbon sources’ structure. This is shown in Figure 1 below. At the early and middle
stages of industrialization, the input of labor and the primitive accumulation of capital drove the
industrialization in China’s cities. The industrial production process in China’s cities has led to a surge
in carbon emissions. Between 1998 and 2006, China’s industry generated 40% of the value-added of
GDP, while energy consumption and carbon emissions accounted for 68% and 83% of the national
total, respectively (Chen (2011)) [17]. At the later stage of industrialization, technological progress
drove the industrialization process in Chinese cities, and the processing and assembly manufacturing
industry became the pillar industry of the cities. As production efficiency increased, the growth of
carbon emissions slowed. At the post stage of industrialization, institutions and innovation drive the
industrialization process of Chinese cities, and high-tech industries become the cities’ pillar industries.
The substitution effect of fossil energy is gradually increasing, as the cost of clean energy is gradually
decreasing. The city thus achieves peak carbon emissions.

Figure 1. Industrialization stage, driver factors, and pillar industries in Chinese cities.

In summary, because the cities are at different industrialization stages, the economic structure
and per capita income levels are significantly different, resulting in heterogeneity in the city’s carbon
source structure and carbon emission characteristics, which affect the implementation effect of LCP
policy. Therefore, it is significant to analyze the moderating influence of the industrialization stage on
LCP policy.
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Scholars have not reached a consensus on the impact effects of environmental public policy.
Traditional studies have argued that environmental public policy raises the production costs of firms
and that firms are forced to invest more in response to government-imposed environmental governance
mandates [18]. This view is supported by Greenstone et al. (2012). His research showed that air quality
regulations reduced the TFP(Total Factor Production) in U.S. manufacturing plants [19]. Rogge et al.
(2011) argued that the EU ETS(Emissions Trading Scheme) could not provide sufficient incentives for
fundamental changes in firms’ innovative activities to ensure that political long-term goals could be
achieved [20]. Another point of view comes from Porter’s hypothesis, which argues that environmental
public policies can improve the innovation and competitiveness of firms [21]. There are other scholars
who also support the Porter hypothesis, for example, Rassier et al. (2015) [22], Skoczkowski et al.
(2018) [23], and Wang et al. (2019) [24].

Based on the two different views described above, scholars have discussed the impact of China’s
LCP policy [25–27]. Our study contributes to the previous literature in the following aspects. First,
previous researchers have mainly studied the implementation effect of LCP policy from a qualitative
perspective. Fewer studies have investigated the implementation effect of LCP policy through empirical
analysis methods. Khanna et al. (2014) [28] and Wang et al. (2015) [29] collected documentation and
data from the Chinese government on low-carbon pilot cities, providing some critical observations on
the response to LCP policy. Li et al. (2018) [30] provided an overview of 32 low-carbon pilot cities’
progress based on their official self-assessment reports. However, these studies only present the effects
of LCP policy implementation from a qualitative perspective, which is incomplete and parochial. This
paper examines the implementation effects of LCP policies from the perspective of empirical analysis.
We also estimate the impact of LCP policy on the LCDI. This will help to promote the implementation
of low-carbon transition in cities and will play a vital role in promoting the LCP policy.

Second, as the expected implementation goal of LCP policy not only is to reduce carbon emissions
or carbon emission intensity but also involves the low-carbon development of energy, industry, land,
environment, living and consumption, and other fields, we chose the LCDI as the indicator to reflect the
implementation effect of LCP policy. The LCDI is an index measured by the improved TOPSIS model
according to the low-carbon development evaluation index system constructed in this paper (Table 1).
Compared with the traditional indicators to reflect the effectiveness of LCP policy implementation,
such as carbon emissions (Yu et al. 2019) [26], green development index (Liu et al. 2019) [18], or
land transfer intensity of high-energy-consuming industries (Tang et al. 2018) [25], the LCDI more
comprehensively reflects the effectiveness of a city’s low-carbon development and is more in line with
the content of Chinese government’s expected implementation goals for LCP policy.

Third, the propensity score matching–difference in difference model (PSM-DID) is extremely
difficult to use to study the impact of LCP policies on urban LCDI in China, as the lack of a unified and
authoritative database of Chinese cities limits the application of this method, which requires a large
number of data to ensure the match between the treat and control groups effectively. The classification
of low-carbon pilot cities by industrialization stage proposed in this paper overcomes the imbalance in
the data between the treat and control groups due to the large differences in development stages among
the cities. Such an approach also does not require a large number of control groups as a prerequisite.
Our results show that such a classification has both theoretical and practical implications. This paper’s
findings also provide an essential reference for the Chinese government to adopt a differentiated
assessment method to evaluate the effect of LCP policy implementation.

The remainder of the paper is organized as follows. Section 2 presents the background of the LCP
policy and construction of a low-carbon development evaluation index system. Section 3 presents
the methodology and data description. Section 4 presents the results and discussion of the empirical
analysis and robustness tests. Section 5 presents the conclusion and discussion.
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Table 1. Evaluation Index System of China’s urban low carbon development.

Criterion Indicator Effect Unit Data Source

Macro system

Total Energy Consumption of
Industrial Enterprises (A1) − MtCO2

Statistical Yearbook
of 120 cities

Total carbon emissions of industrial
enterprises (A2) −

million tons of
standard coal CEADs database

Carbon emissions per unit of
industrial value-added (constant price

in 2010) (A3)
− tCO2/RMB CEADs database

Energy system

Coal consumption as a percentage of
total fossil energy consumption (B1) − % Statistical Yearbook

of 120 cities
Natural gas consumption as a

proportion of fossil energy
consumption (B2)

+ % Statistical Yearbook
of 120 cities

Energy consumption reduction rate
per unit of GDP (B3) + % Statistical Yearbook

of 120 cities
power consumption reduction rate

per unit of GDP (B4) + % Statistical Yearbook
of 120 cities

water consumption reduction rate per
unit of GDP (B5) + %

China Urban and
Rural Construction
Statistical Yearbook

Industrial system

The proportion of tertiary industry to
GDP (C1) + % China City

Statistical Yearbook
The proportion of industrial added

value to GDP (C2) − % China City
Statistical Yearbook

Energy consumption reduction rate
per unit of industrial added-value

(C3)
+ % Statistical Yearbook

of 120 cities

Environmental
system

PM10 annual average concentration
(D1) − µg/m3

Bulletin of
Environmental
Quality in 120

Cities
Industrial sulfur dioxide emissions
per unit of industrial value-added

(D2)
− ton/RMB China City

Statistical Yearbook

Industrial wastewater discharged per
unit of industrial added-value (D3) − ton/RMB China City

Statistical Yearbook

Sewage treatment rate (D4) + % China City
Statistical Yearbook

Land system

Green area per capita (E1) + m2/person
China City

Statistical Yearbook
The green coverage rate of urban

built-up area (E2) + % China City
Statistical Yearbook

Forest coverage (E3) + % Statistical Yearbook
of 120 cities

Rate of decline in construction area
per unit of GDP (E4) + %

China Urban and
Rural Construction
Statistical Yearbook

Living system

Annual per capita production of
urban household waste (F1) − kg/person/year

China Urban and
Rural Construction
Statistical Yearbook

Urban water consumption per capita
(F2) − L/person

China Urban and
Rural Construction
Statistical Yearbook

Annual electricity consumption per
capita for urban residents (F3) − Kwh/person China City

Statistical Yearbook
Urban per capita living construction

area (F4) + m2/person
China Regional

Statistical Yearbook
Number of buses owned by ten

thousand people (F5) + Vehicles/104person
China City

Statistical Yearbook

2. Policy Background and Construction of a Low-Carbon Development Evaluation Index System

2.1. The Background of LCP

In 2010, the Chinese government began to carry out initial experiments in five provinces
(Guangdong, Liaoning, Hubei, Shaanxi, Yunnan) and eight cities (Tianjin, Chongqing, Shenzhen,
Xiamen, Hangzhou, Nanchang, Guiyang, Baoding). In 2012 and 2017, the second and third batches
of low-carbon pilot cities were identified, collectively including 6 provinces and 81 cities (districts).
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Compared to the first batch of low-carbon pilot cities, the Chinese government implemented the
Target Responsibility System (TRS) for implementing emission reduction control in the second and
third batches of low-carbon pilot cities, intending to incentivize the local governments to promote
low-carbon development in their cities through institutional innovation and technological progress
(Cheng et al. (2019)) [31].

Overall, the expected target content of the LCP policy implementation covers the following
five areas: (1) building an industrial system characterized by low-carbon and green features and
developing strategic emerging industries and modern service industries; (2) implementing green and
low-carbon lifestyle and consumption; (3) integrating industrial structure, optimizing energy structure,
energy conservation, and efficiency, and increasing carbon sinks through the preparation of low-carbon
development plans; (4) establishing a statistical and management system for greenhouse gas emissions
and a target responsibility system for controlling greenhouse gas emissions; (5) providing priority
policy support and incentive funds for low-carbon management system innovation and technological
advancement. The above analysis shows that the expected target content of LCP policy implementation
is diversified and wide-ranging. Thus, to accurately reflect the policy’s implementation effect, the
explanatory variables used to measure the impact of the system’s performance should also meet such
features. The LCDI measured in this paper is in line with the above characteristics, reflecting the city’s
low-carbon development. Cities at different stages of industrialization make up the second group
of low-carbon pilot cities. According to the industrialization criteria in this paper, a total of 13 cities
are at the middle stage of industrialization, including Qinhuangdao, Jincheng, Hulunbuir, Guilin,
Chizhou, Nanping, Ganzhou, Guangyuan, Zunyi, and Jingdezhen, Yan’an, Jinchang, and Jiyuan; 11
cities (i.e., Jilin, Suzhou, Huai’an, Zhenjiang, Ningbo, Wenzhou, Qingdao, Wuhan, Kunming, Urumqi,
Shijiazhuang) are at the later stage of industrialization; Beijing, Shanghai, and Guangzhou are cities at
the post-stage of industrialization. In addition to these pilot cities, there are many other cities in China
at different industrialization stages, which provides the conditions for this paper to apply the DID
model to investigate the impact of the LCP policy implementation.

The implementation of the LCP will stimulate the interest of cities and industries in low-carbon
development, help China accumulate experience in the low-carbon field, and ensure the implementation
of the strategy of ecological civilization in Chinese cities, which has profoundly influenced the shape
of urban development, promoted low-carbon transition, and reduced urban greenhouse gas emissions.
The LCP policy has also made outstanding contributions to the low-carbon synergistic development of
urban energy, environment, land, living, and other important areas.

2.2. Construction of Low-Carbon Development Evaluation Index System

China’s official government has not defined the criteria for determining whether a city is
low-carbon. Macro-level low-carbon development indicators, such as energy use per unit area or CO2

emissions per unit GDP, may be too aggregated to be meaningful measurements of whether a city is
truly “low carbon” (Lynn et al. (2013)) [32]. The expected implementation targets of the LCP policy
described above also verify that the Chinese government’s determination for low-carbon development
is not limited to reducing carbon emissions or carbon emission intensity. In Section 1, this paper
concludes that the structure of carbon sources and the characteristics of carbon emissions in cities at
different industrialization stages are different. Thus, we try to construct a low-carbon development
index system for Chinese cities based on the major carbon source sectors and carbon sink fields. Our
indicator system is built on the principle of achieving the expected implementation targets of the
LCP policy. Expected Target (4) is reflected by the macro system, Expected Target (1) is reflected
by the industrial system, the living system reflects Expected Target (2), the energy and land system
reflect Expected Target (3), and the environmental system is the external manifestations of low-carbon
development, inspired by the greenhouse gas emissions from waste in the IPCC’s Fifth Climate Change
Assessment. The low-carbon development evaluation index system for China we have built covers the
city’s primary carbon source industries and carbon sink fields, including 24 quantitative indicators,
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which belong to a total of six dimensions of macro, energy, industry, environment, land, and life. The
details are as follows in Table 1. The results of the comprehensive measurement of indicators (LCDI)
can be used as a measure of the degree of low-carbon development of a city.

In the process of constructing the index system, we searched the keyword “low-carbon evaluation”
through Google Scholar, extracted the content related to low-carbon development from the literature,
and constructed a database of urban low-carbon development evaluation indexes. We also convened
research experts in the field of low-carbon development and selected appropriate indicators by a
questionnaire survey to form the low-carbon development evaluation index system in China based
on the expected implementation target of China’s LCP policy and the availability and comparability
of data in Chinese cities. Some of the more important literature that we draw on is listed below,
such as the low-carbon eco-city evaluation tool for China (ELITE) developed by Lawrence Berkeley
National Laboratory (Zhou et al. (2015)) [33], China green development index (Li et al. (2015)) [34],
the Global Green Economy Index (GGEI) 2014 (Tamanini (2013)) [35], the evaluation index system
for the sustainable–smart–resilient–low carbon–eco–knowledge cities (De et al. (2015)) [36], a holistic
low carbon city indicator framework Tan et al. (2017) [37], the global city indicators (Bhada and
Hoornweg (2009)) [38], a low-carbon indicator system for China ((Lynn et al. (2013)) [32]. We thank the
World Bank’s “Promoting Clean and Green Cities in China through International Cooperative Projects”
project for its support of this paper [39].

In addition, we held academic seminars and conducted field research with relevant government
departments to discuss the applicability and scientific validity of the indicator system. If necessary, we
have deleted or added some of the indicators to ensure that the calculation results (LCDI) can be used
to measure the degree of low-carbon development of a city.

In order to ensure the reliability and authority of the data source, the calculation of carbon
emissions in this paper comes from the CEADS (China Emission Accounts and Datasets), which has
been proven to be effective in measuring the carbon emissions of Chinese cities and has been published
in authoritative journals, as shown in Equation (15). All other data are from official data published by
the Chinese government, as shown in Table 1.

3. Research Design

3.1. The Measurement Process of LCDI

Giving each indicator a suitable weight is an important step in LCDI accounting. The methods
of assigning weights mainly include the entropy method [40], fuzzy comprehensive evaluation
method [41], TOPSIS method [42], hierarchical analysis method [43], etc. Due to the shortcomings of
each method, the combination of the above methods has become a more reliable way to assign weights
to indicators.

In this paper, we combined the hierarchical analysis method with the CRITICS method, the
TOPSIS method, and the gray correlation method in a model called the improved TOPSIS model. The
introduction of the CRITICS method overcomes the defect that the entropy method cannot consider the
influence of attributes among indicators. The subjective–objective optimal weight method overcomes
the over-reliance on subjective weights of the single hierarchical analysis method, effectively alleviates
the problem of inaccurate weights due to individual subjective factors, and provides weights for the
application of the TOPSIS method. The improved TOPSIS model effectively overcomes the problem of
inaccurate evaluation results of TOPSIS model due to the same distance between evaluation objectives
and positive and negative ideal solutions. The introduction of the gray correlation model solves the
drawback that it is difficult to explore the typical distribution of the LCDI due to large differences in
data fluctuations.

The specific steps are as follows:

(1) Entropy value—CRITICS method to obtain the criterion layer matrix.
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The target matrix C is standardized by the extreme value method to obtain the matrix CS. The
combined method of entropy and CRITICS is used to measure the weight matrix of CS, named Windex,
the matrix CS is multiplied by the matrix Windex, and the result is called the matrix M = (sij)t×k, where t
represents the year and k represents the standard number of layers.

(2) Calculation of the weight matrix of the TOPSIS model.

The subjective weights of matrix M are measured by AHP(Analytic Hierarchy Process), named
w1. The matrix w1 = (0.283 0.283 0.164 0.09 0.09 0.09), which is determined by using a questionnaire
administered to experts in the field of low-carbon development.; the objective weights of matrix M are
measured by the CRITICS method, named w2. Then, we constructed a matrix that combines w1 and
w2, named W = β(w1,w2)2×k. The purpose is to provide the weight for the TOPSIS model. The key to
the problem is how to obtain the coefficient matrix β of the matrix W. To get the matrix β, the weight
function Wck was constructed, as shown in Equation (1).

Wc
k =

k∑
j=1

β jW j = β1W1 + β2W2 + . . .+ βkWk (1)

Then, the following equation can represent the LCDI.

C =
n∑

t=1

Sit j ×Wc
it j (2)

According to Equation (2), the distance objective function of the LCDI of adjacent years is
constructed as follows:

f (dctct+1) =
m∑

i=1
d2

itit+1(ctct+1)

=
m∑

it=1

m∑
it+1=1

 k∑
j=1

(Sit j − Sit+1 j)wcj

2

=
m∑

it=1

m∑
it+1=1

 k∑
j1=1

k∑
j2=1

(Sit j1 − Sit+1 j1)wcj1(Sit j2 − Sit+1 j2)wcj2


=

m∑
it=1

m∑
it+1=1

 k∑
j1=1

k∑
j2=1

(Sit j1 − Sit+1 j1)(Sit j2 − Sit+1 j2)

wcj1wcj2

(3)

assuming the matrix S′ =
k∑

j1=1

k∑
j2=1

(Sit j1 − Sit+1 j1)(Sit j2 − Sit+1 j2), for which it is easy to prove that the

matrix S′ is an n-order non-negative symmetric positive definite matrix.
The function in Equation (3) can be expressed as follows:

f (dctct+1) = WS′WT (4)

Since the function in Equation (4) is a non-negative symmetric matrix, according to the definition
of Rayleigh entropy, the function in Equation (4) has a unitized eigenvector K corresponding to the
largest eigenvalue, making the function in Equation (4) take the maximum value λmax. The vector K is
the coefficient matrix β, which is also the solution of Equation (1).

The vector K is substituted into Equation (1), and after normalization, the weights Wc
k are obtained,

as shown in Equation (5).

Wc
k =

(Wit j ×K)/
k∑

i=1

Wit j
c, j = 1, 2 . . . . . . n (5)

(3) Improved TOPSIS model to measure urban low-carbon development index.
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The matrix M obtained in step (1) is multiplied by the weight matrix Wc
k. The result obtained is

named A, and the matrix A is normalized to obtain a weighted normalized matrix D. The TOPSIS
method is used to calculate the positive ideal solution matrix and the negative ideal solution matrix of
the matrix D, and the obtained results are named as the matrices R+ and R−.

The gray correlation between matrix D and matrix R+ is calculated. The result is named matrix
Ci

+, as shown in Equation (6). The gray correlation between matrix D and matrix R− is calculated, and
the result is named matrix Ci

−, as shown in Equation (6). According to the experience, the resolution
coefficient κ is equal to 0.5.

c+ =
(
c+i j

)
m×n

=

min
∣∣∣∣R+

j −Ri j

∣∣∣∣+κmax
∣∣∣∣R+

j −Ri j

∣∣∣∣∣∣∣∣R+
j −Ri j

∣∣∣∣+κmax
∣∣∣∣R+

j −Ri j

∣∣∣∣


m×n

c− =
(
c−i j

)
m×n

=

min
∣∣∣∣R−j −Ri j

∣∣∣∣+κmax
∣∣∣∣R−j −Ri j

∣∣∣∣∣∣∣∣R−j −Ri j

∣∣∣∣+κmax
∣∣∣∣R−j −Ri j

∣∣∣∣


m×n

C+
i = 1

n

n∑
j=1

c+i j

C−i = 1
n

n∑
j=1

c−i j

(6)

The Euclidean distance between the matrix D and the matrix R+ is calculated and named matrix
D+, as shown in Equation (7). The Euclidean distance between matrix D and matrix R− is calculated
and named matrix D−, as shown in Equation (7).

D+ =

√
n∑

j=1

(
Ri j −R+

j

)2

D− =

√
n∑

j=1

(
Ri j −R−j

)2
(7)

According to the matrices Ci
+, Ci

− obtained from Equation (6), and the matrices D+, D− obtained
from Equation (7), the proximity of Euclidean distance is calculated, and the results are named Ti

+, Ti
−,

as shown in Equation (8).
T+

i = a c+
c+max

+ b D−
D−max

T−i = a c−
c−max

+ b D+

D+
max

(8)

In Equation (8), 0 ≤ a, b ≤ 1, a + b = 1, the decision-maker can determine the amount of a and b.
The a and b in this paper are equal to 0.5.

The comprehensive closeness (LCDI) is calculated, as shown in Equation (9).

LCDI =
T+

i

T+
i + T−i

(9)

Ti
+ and Ti

− respectively reflect the positional relationship and shape closeness of the data curve
between each evaluation object and the positive ideal solution and negative ideal solution.

3.2. Industrialization Index Calculation Process and Judgment Criteria for Industrialization Stage

Based on the research results of Syrquin et al. (1989) [13], Chen et al. (2006) [10], Huang (2018) [44],
this paper uses a weighting method that combines threshold and hierarchical analysis to measure the
city’s industrialization index as shown in Equation (10)

I_INDEXit = ω1ZPERGDPit +ω2ZIRit +ω3ZMRit +ω3ZURBANit +ω3ZERit (10)

I_INDEXit is the industrialization index. I_INDEXit = 0 represents that the city is at the
pre-industrialization stage. Zero < I_INDEXit < 33 means that the city is at the early industrialization
stage. 33 ≤ I_INDEXit < 66 represents that the city is at the middle stage of industrialization.
33 < I_INDEXit ≤ 66 means that the city is at the later stage of industrialization. I_INDEXit = 100
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represents that the city is at the post stage of industrialization. ω is the 5 × 1 column weight matrix
obtained by the analytic hierarchy process. According to the research results of Huang (2018) [44], the
matrixω = [0.36,0.22,0.22,0.12,0.08]. ZPERGDPit represents the standardized value of GDP per capita
(USD). ZIRit represents the standardized value of the added-value of the primary industry to GDP.
ZMRit represents the standardized value of the ratio of manufacturing value added to value added of
goods-producing sectors. ZURBANit represents the standardized value of the urbanization rate. ZERit
represents the standardized value of the proportion of employees in the primary industry to the total
number of employees.

In this paper, the threshold method is used to standardize the variables, as shown in Equation (11).
Zi j = (Ii j − 2) × 33 + (Ni j −mini j)/(maxi j −mini j) × 33, Ii j = 2, 3, 4
Zi j = 0, Ii j = 1
Zi j = 100, Ii j = 5

(11)

The standardized reference values of the various indicators at different industrialization stages
are shown in Table 2.

Table 2. The standardized reference values of the indicator at different stages of industrialization.

Indicators
Industrialization Stage

(I_INDEX = 2) (I_INDEX = 3) (I_INDEX = 4)

PRGDP (2010USD) min12 = 1654
max12 = 3308

min13 = 3308
max13 = 6615

min14 = 6615
max14 = 12398

IR (%) min22 = 33
max22 = 20

min23 = 20
max23 = 10 λi j = 66 + S / (S + I) × 33

MR (%) min32 = 20
max32 = 40

min33 = 40
max33 = 50

min34 = 50
max34 = 60

URBAN (%) min42 = 30
max42 = 50

min43 = 50
max43 = 60

min44 = 60
max44 = 75

ER (%) min52 = 60
max52 = 45

min53 = 45
max53 = 30

min54 = 30
max54 = 10

Note: I represents the proportion of the secondary industry in GDP, and S represents the proportion of the tertiary
industry in GDP.

3.3. Construction of the DID Model

The DID model was first introduced in 1985, and it was widely used in the quantitative evaluation
of public policy or project implementation effects in econometrics [45]. This paper uses the DID method
to analyze the industrialization stage’s moderation of LCP policy implementation. Since each variable
selected in this paper is from 10 years (2008–2017), the DID model is realized by the two-way fixed
effect model, which controls the time’s fixed effect and the city’s individual fixed effect. The model is
set as follows:

LDCIi,t = λ0 + λ1I_STAGEi,t ×DIFFi,t + λ2Xi,t + µi + νi + εi,t (12)

where i represents the city and t represents the year. LDCIi,t is an index measured by Equations (1)–(9),
which represents the level of low-carbon development. DIFFi,t is the dummy variable. DIFFi,t = 1
indicates that city i is the low-carbon pilot city (LCPC) in year t, and DIFFi,t = 0 indicates that city i
is not an LCPC in year t. I_STAGEi,t represents the industrialization stage measured by Equations
(10) and (11). Xit is the control variable, and it includes the industrialization index, innovation, and
FDI(Foreign Direct Investment). The details of these variables are shown in Table 3. µi represents time
fixed effect, νi represents urban individual fixed effects, and εit represents random disturbance terms.
λ1 in Equation (12) captures the average impact of LCP policy.
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Table 3. Description of variables and data.

Variable Definition Mean S.D. Min Max

C
Carbon emissions of urban
industrial enterprises in million
tons of CO2

48.51 55.87 0.12 396.74

LDCI Low-carbon development index
measured by Equations (1)–(9) 0.49 0.06 0.36 0.66

I_INDEX Industrialization index measured
by Equations (10) and (11) 67.54 20.17 13.53 100

I_STAGE Stage of industrialization judged
by Industrialization index (I) 2.53 0.50 2 3

FDI Openness level indicated by total
FDI in ten billion U.S. dollars 10.99 15.83 0 112.16

RD Enterprise technology innovation
indicated by innovation index 67.93 24.98 1.37 99.66

PERGDP
Level of economic development
measured by per capita GDP in
ten thousand U.S. dollars

7324.38 4632.87 1314.29 43755

IR The added value of the primary
industry as a proportion of GDP 9.25 6.14 0.79 32.5

MR

Urban manufacturing
development level measured by
ratio of manufacturing
value-added to value-added of
goods-producing sectors

57.92 16.34 0.6 91.53

URBAN

The urban spatial structure
measured by the proportion of
urban permanent residents in the
total population

56.47 13.66 21 94.7

ER

The urban employment structure
measured by the ratio of the
number of employees in the
primary industry to the total
number of employees

26.74 16.61 0.04 88.9

I The added value of the secondary
industry as a proportion of GDP 50.16 8.11 27.87 82.08

S The added value of the tertiary
industry as a proportion of GDP 40.69 8.29 16.75 70.22

This paper draws on the model constructed by Kudamatsu (2012) [46], employing the following
model to identify the marginal impacts of the LCP policy on the LCDI:

LDCIi,t = β0 +
2017∑

j=2013

β jI_STAGEi,t × T j + β2Xi,t + µi + νi + εi,t (13)

where Tj is the dummy variable and βj corresponds to the LCP policy marginal impact on the LCDI in
year j (j = 2013, 2014, 2015, 2016, 2017).

To identify the mechanism by which LCP policy affect the LCDI, we set up the following regression
model to analyze the effects of LCP policies on industrialization index, innovation index, and FDI:

I_INDEXi,t, FDIi,t, RDi,t = θ0 + θ1I_STAGEi,t ×DIFFi,t + µi + νi + εi,t (14)

where I_INDEX represents the urban industrialization index measured by Equations (10) and (11). FDI
represents foreign direct investment. RD represents innovation. θ1 represents the effects of the LCP
policy on industrialization index, innovation, and FDI.

3.4. Sample Selection, Data, and Variables

3.4.1. Sample Selection

This article selects the second batch of LCPCs as the treatment group. Based on the principles of
data availability and comparability, the LCPCs, including Yan’an, Jinchang, and Jiyuan, where data
could be obtained, were excluded, and the LCPCs at the post stage of industrialization, including
Shanghai, Beijing, and Guangzhou, which cannot be matched to the control group, are eliminated. The
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final experimental group includes, first, the LCPCs at the middle stage of industrialization, including
Qinhuangdao, Jincheng, Hulunbuir, Guilin, Chizhou, Nanping, Ganzhou, Guangyuan, Zunyi, and
Jingdezhen; second, the LCPCs at the later stage of the industrialization, including Jilin, Suzhou,
Huai’an, Zhenjiang, Ningbo, Wenzhou, Qingdao, Wuhan, Kunming, Urumqi, and Shijiazhuang. As the
control group, 283 non-pilot cities were selected. Cities with missing data wre eliminated. Considering
that Guangdong, Liaoning, Hubei, Shanxi, Yunnan, and Hainan were the low-carbon pilot provinces,
the cities belonging to them as the control group may interfere with the policy evaluation results.
Therefore, cities belonging to the above six provinces were excluded. Tfirst batch of low-carbon pilot
cities was also eliminated. The control group was finally determined to include 32 non-pilot cities at
the middle stage of industrialization and 36 non-pilot cities at the later stage of industrialization.

3.4.2. Data Description

The data come from the China City Statistical Yearbook (2009–2018), China Environmental
Statistics Yearbook (2009–2018), China Urban and Rural Construction Statistical Yearbook (2009–2018),
China Regional Statistical Yearbook (2008–2018), China Energy Statistical Yearbook (2009–2018), urban
statistical yearbooks (2009–2018), Environmental Statistics Bulletin of each city (2008–2017), etc. All
monetary value data are calculated at constant prices in 2007.

(1) Indicators in the LCDI accounting process. The accounting method of the total carbon
emissions of industrial enterprises (Indicators A2) in Table 1 comes from the CEADs database
(http://www.ceads.net) [47]. The equation is as follows:

C j = AD′ j ×NCV j × EF j ×O j (15)

where j represents the energy types, coming from the accounting of each city. Cj represents the energy
consumption of industrial enterprises of different energy types. AD’j is the energy consumption of
different energy types (unit: 104 t). NCVj is the net heating value of different energy types (unit:
PJ/104 t). EFj represents the carbon emission factor (unit: MtCO2/PJ). Oj represents the oxygenation
efficiency of different types of energy (unit: %). The values of NCVj, EFj, and Oj come from Shan, Y et
al. (2018) [14].

The indicators in Table 1, such as carbon emissions per unit of industrial value-added (Indicator
A3), industrial sulfur dioxide emissions per unit of industrial value added (Indicator D2), and industrial
wastewater emissions per unit of industrial value added (Indicator D3), are all indicators divided
by the value added per unit of the industry to obtain the treatment indicators. The value added
per unit of the industry was calculated in constant 2007 prices. The indicators in Table 1, including
annual per capita production of urban household waste (Indicator F1), urban water consumption per
capita (Indicator F2), annual electricity consumption per capita for urban residents (Indicator F3), were
divided by the resident population for each indicator, respectively, to obtain the treatment indicator.
The rest of the indicators in Table 1 are direct data obtained from the government’s statistical yearbook,
with the sources indicated in Table 1.

(2) Variables in the industrialization index accounting process. The variable PERGDP represents
GDP per capita in constant 2010 prices in thousands of US dollars. It is based on the World Bank’s data
on China’s historical GDP, using the purchasing power evaluation method, with the same proportional
weighting to obtain each city’s GDP per capita. The variable MR represents the level of urban industrial
structure, and the goods-producing sector value added is replaced by the sum of primary and secondary
industry value added. The URBAN is a variable that uses the resident population as a uniform caliber,
representing the state of urban spatial structure. Suppose the proportion of the primary industry in the
GDP is less than 10%. In that case, the variable IR is transformed into the weighted value of I and R,
as shown in Table 2, where I represents the value-added of the secondary sector as a proportion of
GDP and S represents the proportion of the tertiary sector as a proportion of GDP. The variable ER

http://www.ceads.net
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represents the employment structure of the city. In this process, all the variables are obtained directly
from statistical yearbooks or bulletins from all government levels in China, as shown in Table 3.

(3) Variables in the DID model construction process. We used the China Innovation and
Entrepreneurship Index (Zhang 2019) [48] to measure the innovation capacity. The data come from
the Peking University Open Research Data Platform. FDI is measured in terms of the amount of real
foreign investment in the year. We used 2007 constant prices to generate deflation. Industrialization
index was measured by Equations (10) and (11). By choosing the industrialization index as a control
variable, we aimed to determine whether the LCP policy affects its industrialization progress. The data
descriptions of the above variables are presented in Table 3.

4. Empirical Results

4.1. Parallel Trends Test

The critical hypothesis of the DID model is to find a suitable control group as a counterfactual
substitute for the treatment group. This means that the assumption of parallel trends needs to exist
between the treatment group and the control group. Therefore, it is necessary to conduct the parallel
trend test of variables before empirical analysis. This paper regards 2012 as the baseline year. P’s
significance is used to determine whether there is a significant LCDI difference between the treatment
and control groups.

The results in Table 4 show that before implementing the LCP policy, for the cities at the middle
stage of industrialization and the later stage of industrialization, as wis no significant difference in the
LCDI between the treatment group and the control group. However, a significant difference appears in
the LCDI between the treatment group and the control group in the second year after implementing the
LCP policy if the sample of the regression model is the cities at the later stage of industrialization. In
contrast, for the cities at the middle stage of industrialization, it was not until the fourth year of policy
implementation that a significant difference appeared. Therefore, the assumption of parallel trends
cannot be rejected. In addition, taking the industrialization stage as the city classification standard
can reflect the different marginal impact of LCP policy on different types of cities, indicating that the
industrialization stage can moderate the effect of LCP implementation.
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Table 4. Test of the parallel trend.

Variables I_STAGE = 2 I_STAGE = 3 All Sample

4 years before the policy
implement × Treatedit

−0.0018
(0.043)

0.048
(0.046)

−0.027
(0.032)

3 years before the policy
implement × Treatedit

−0.035
(0.044)

0.008
(0.045)

−0.013
(0.032)

2 years before the policy
implement × Treatedit

0.022
(0.043)

−0.01
(0.045)

0.005
(0.032)

1 year before the policy
implement × Treatedit

−0.045
(0.043)

−0.018
(0.045)

−0.03
(0.032)

year of the policy
implement × Treatedit

−0.05
(0.043)

−0.013
(0.045)

−0.03
(0.032)

1 year after the policy
implement × Treatedit

−0.045
(0.043)

0.008 **
(0.045)

−0.018
(0.031)

2 years after the policy
implement × Treatedit

−0.003
(0.043)

0.014
(0.045)

0.025
(0.032)

3 years after the policy
implement × Treatedit

−0.054
(0.043)

0.028
(0.045)

−0.011
(0.031)

4 years after the policy
implement × Treatedit

0.009 **
(0.043)

0.040
(0.045)

0.016
(0.032)

5 years after the policy
implement × Treatedit

0.002
(0.043)

0.049
(0.045)

0.027
(0.032)

LNI_INDEX −0.064 **
(0.06)

−0.02 ***
(0.1)

−0.028 **
(0.041)

LNRD 0.002 *
(0.016)

0.018 **
(0.06)

0.006 *
(0.016)

LNFDI 0.015
(0.01)

0.009 ***
(0.01)

0.015 ***
(0.07)

R-squared 0.50 0.30 0.38
No. of Obs. 420 470 89

Time fixed effect Yes Yes Yes
City fixed effect Yes Yes Yes

Notes: Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

4.2. Average and the Marginal Impact of LCP Policy on the LCDI of Cities at Different Stages of
Industrialization

Since the LCDI is a result measured by multiple indicators, we excluded the impact of industrial
structure, energy structure, and energy efficiency on LCDI due to endogenous considerations. To unify
the dimensions and eliminate the influence of heteroscedasticity, we performed logarithmic processing
on the variables. Table 5 presents the average and marginal impacts of the LCP policy on LCDI of the
LCPC at different industrialization stages. The samples used in columns (1) to (4) are all cities at the
middle stage of industrialization, and the samples in columns (5) to (8) are all cities at the later stage
of industrialization.
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Table 5. Average and the marginal LCP policy impact on LCDI.

Variables
I_STAGE = 2 I_STAGE = 3

Average Marginal Average Marginal

(1) (2) (3) (4) (5) (6) (7) (8)

DIFF(Treati t × T) −0.007 *
(0.019)

−0.007 *
(0.019)

0.041 **
(0.02)

0.041 **
(0.02)

Treatit × T × year2013
−0.032
(0.033)

−0.024
(0.033)

0.014 **
(0.035)

0.014 **
(0.035)

Treatit × T × year2014
−0.016
(0.033)

−0.025
(0.033)

0.06 ***
(0.035)

0.054 ***
(0.035)

Treatit × T × year2015
−0.039 *
(0.033)

−0.032 *
(0.033)

0.038
(0.035)

0.035
(0.035)

Treatit × T × year2016
0.0024 *
(0.033)

0.013 *
(0.033)

0.048
(0.035)

0.047
(0.035)

Treatit × T × year2017
0.014 **
(0.033)

0.023 **
(0.033)

0.046
(0.035)

0.056
(0.035)

LNI_INDEX −0.016 **
(0.057)

−0.013 **
(0.058)

−0.028 **
(0.1)

−0.022 **
(0.1)

LNRD 0.003 **
(0.016)

0.0018 **
(0.016)

0.021 **
(0.06)

0.019 **
(0.06)

LNFDI 0.016
(0.01)

0.016
(0.01)

0.008 **
(0.01)

0.008 **
(0.01)

CONS −0.721 **
(0.12)

−0.520
***

(0.20)

−0.721
***

(0.013)

−0.505 **
(0.21)

−0.731
***

(0.013)

−0.715 **
(0.45)

0.731 ***
(0.013)

−0.735 **
(0.45)

R-squared 0.48 0.49 0.48 0.50 0.30 0.29 0.30 0.30
No.of Obs. 420 420 420 420 470 470 470 470

Time fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Standard errors in parentheses; ***p < 0.01, ** p < 0.05, * p < 0.1.

From column (1) in Table 5, the result shows that the coefficient of DIFF is −0.0007 at the 10%
significance. This indicates that the LCP policy did not significantly enhance the LCDI of LCPC at
the middle stage of industrialization during the study period (2008–2017). From column (5), the
result shows that DIFF’s coefficient was 0.041 at 5% significance. This indicates that LCP policy can
significantly enhance the LCDI of LCPCs at the later stage of industrialization during the study period
(2008–2017). After controlling the industrialization index, innovation, and FDI in columns (2) and (6),
we found that the results are still significant.

The results of the marginal analysis in columns (3) and (4) shows that for the LCPCs at the middle
stage of industrialization, the LCP policy effect was negative in the first three years, did not become
positive until the fourth year of policy implementation, and was most significant in the fifth year
after it is issued. The LCP policy reduces LCDI by approximately 0.7% throughout the study period.
The marginal analysis results in columns (7) and (8) indicates that for the LCPC at the later stage
of industrialization, the effect increases in the first two years and is most significant in the second
year after it is issued. The LCP policy enhances the LCDI by approximately 4.1% throughout the
study period.

The results show that, gradually adding control variables, for the cities in the middle and later
stages of industrialization, the industrialization indexes were significantly negative at the 5% level.
This indicates that the more profound the industrialization process in China, the lower the LCDI. This
result is explained by Wang and Su (2019) [49], who argued that industrialization’s economic benefits
are far greater than the environmental pollution it generates. In terms of the size of the coefficient,
a 1% increase in LCDI decreases the industrialization index of mid-industrialization cities by about
2.5%. In comparison, the industrialization index of later-industrialization cities only decreases by
about 1.45%. From the perspective of carbon emission trends, the study by Zhou et al. (2018) [50]
concluded that the post-industrialization-stage cities (i.e., Hong Kong, Shenzhen) had achieved the
peak of total carbon emissions. The cities at the later stage of industrialization, such as Dongguan
and Jiangmen, showed a slowdown in the growth rate of total carbon emissions. In contrast, in those
cities (i.e., Zhuhai, Zhongshan, Zhaoqing, Maoming, Yangjiang, Shanwei, Shaoguan, and Zhanjiang) at
the middle stage of industrialization, carbon emissions experienced soaring increases. The control of
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greenhouse gas emissions had a negative impact on the industrialization process, and it was difficult for
local governments to find a harmonious development path between the two. This is why the Chinese
government uses relative indicators such as carbon emissions intensity as a quantitative indicator
for Target Responsibility System (TRS) rather than absolute indicators such as the total amount of
carbon emissions.

The results also show that regions with higher FDI present higher LCDI. However, compared
with the cities at the later stage of industrialization, the FDI’s promotion effect on the LCDI of cities at
the middle stage of industrialization was not significant at the 5% level. Zhang et al. (2020) found
that the impact of FDI on carbon emissions in different regions of China was heterogeneous and that
foreign investment behavior in eastern China can curb carbon emissions. In contrast, the opposite
effect was seen in the western and central regions [51]. Therefore, we try to explain this result from
the perspective of regional heterogeneity. In this article’s sample structure, the cities at the middle
stage of industrialization located in central and western China accounted for 78% of the sample
size. In comparison, the cities at the later stage of industrialization located in central and western
China accounted for only 42%. China’s eastern region has stricter environmental policies, which has
prompted those low-quality foreign direct investments to gradually shift to the west and central areas
in China, where economic development and environmental policies are more relaxed, to reduce costs.
In the long run, it will bring more advanced technology and management experience to enterprises in
central and western China, but in the short term, it may cause a decline in LCDI.

According to the regression results of columns (2), (4), (6), and (8) in Table 5, the innovation effect
on LCDI of cities at the middle or later stages of industrialization is significantly positive at the 5%
level. This is because innovation can dramatically reduce carbon emissions in the energy supply and
industrial sectors in the short term. According to the IPCC’s fifth climate change assessment, between
2000 and 2010, the greenhouse gas emissions generated by the energy supply sector and the industrial
sector accounted for 47% and 30% of the total anthropogenic greenhouse gas emissions. This means
that technological innovation in carbon emission reduction can directly affect about 77% of greenhouse
gas emissions [52]. Thompson (2006) [53] indicated that the carbon emissions caused by fossil energy
use were related to a series of issues such as environmental monitoring costs, carbon taxes, and energy
demand expectations. Its substitution relationship with other production factors directly determines
the economic effect of carbon emission reduction technologies. In most cities in China, fossil energy’s
substitution effect, especially of coal, is small. Once more capital and labor are invested in production,
carbon emission reduction technologies will inevitably affect enterprises’ survival and growth.

4.3. Mechanism Analysis

In this section, we draw on the analysis method adopted by Liu et al. (2019) [18] and use the DID
model constructed by Equation (15) to analyze the impact of LCP policy on the industrialization index,
innovation, and FDI of cities at different industrialization stages.

From columns (1) and (4) in Table 6, the results show that the LCP policy has a significant and
negative impact on the industrialization index, reflecting that it has effectively reduced the city’s
industrialization index at different industrialization stages. This is because the central government
has imposed a target responsibility system on the second batch of low-carbon pilot cities’ industrial
structure, requiring them to build a low-carbon industrial system characterized by low-carbon, green
environmental protection and recycling. Therefore, in the short term, the industrial structure’s
transformation may reduce the manufacturing industry’s added value, leading to a decline in the
industrialization index. This point is consistent with the research of Li et al. (2019) [54], who believes
that the central government’s attitude towards environmental policies and whether it imposes a target
accountability system on local governments will affect the effect of policy implementation. Wang et
al. (2015) indicated that officials were afraid of losing their jobs if the energy-saving target was not
met. Local officials competed to impress their superiors with enthusiastic energy cuts—sometimes
with surprising outcomes. Chinese steel, cement, and other energy-intensive factories were kept
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on hold. Thousands of homes in some areas were left without electricity as local governments
ordered power cuts to meet the energy-saving targets [55], which will undoubtedly harm the local
manufacturing industry’s development. Obviously, due to the lack of the material basis for industrial
transformation, the LCP policy has a more pronounced impact on the manufacturing industries of the
LCPC at the middle stage of industrialization, so the decline in their industrialization index is even
more pronounced.

Table 6. The impact of LCP policy on urban industrialization index, innovation index, and FDI.

I_STAGE = 2 I_STAGE = 3

(1) (2) (3) (4) (5) (6)

I_INDEX RD FDI I_INDEX RD FDI

DIFF(Treatit × T) −1.53 *
(0.8)

0.571 *
(2.32)

−1.61 **
(0.55)

−0.63 *
(0.76)

1.15 *
(0.93)

3.66 ***
(1.38)

CONS 38.03 ***
(0.54)

52.9 ***
(1.56)

2.41 ***
(0.37)

73.92 **
(0.51)

79.84 ***
(0.62)

11.16 ***
(0.92)

Time fixed effect Yes Yes Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes Yes Yes

R-squared 0.34 0.12 0.32 0.24 0.30 0.21
No.of Obs. 420 420 420 470 470 470

Notes: Standard errors in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

It can be seen from columns (2) and (5) that the LCP policy positively impacts innovation,
indicating that it has effectively improved the pilot regions’ innovation level. This is similar to the
findings of Liu et al. (2019) [18]. Their research indicated that LCP policy could encourage companies
in pilot regions to conduct more technological progress.

According to the regression results in columns (3) and (6), the LCP policy hurts the FDI of the
LCPCs at the middle stage of industrialization at a significance level of 5%. In comparison, the LCP
policy positively affects the FDI of the LCPC at the later stage of industrialization at a significance
level of 1%. For the LCPC at the middle stage of industrialization, the research results on LCP policy
and FDI’s relationship are consistent with those of Cai et al. (2016) [56]. Their results show that
strict environmental regulations can prevent the inflow of low-quality foreign investment and help
the local government avoid becoming a “pollution shelter” for multinational companies. Obviously,
due to the underdeveloped service industry and the low proportion of the added value of high-tech
industries in the manufacturing industry’s added value, this type of city does not have the basis
for building a low-carbon industrial system. Therefore, local governments are suffering from the
slowdown in economic growth and rising unemployment caused by foreign investment loss. For
this reason, stimulating domestic demand and vigorously developing tourism have become the
main strategies for stimulating the economy of this type of city. For the LCPCs at the later stages
of industrialization, the per capita income of urban residents is higher, and the demand for urban
environmental health is more urgent, which forces city leaders to pay attention to the treatment of
urban environmental pollution. Moreover, to complete the low-carbon pilot program’s objectives and
tasks, win the favor of superiors and maintain official positions, city officials are more willing to receive
high-quality foreign investment. For this reason, the implementation of a wide range of investment
subsidy policies for low-carbon foreign-funded enterprises has attracted more foreign capital. This
investment subsidy policy’s continuity determines whether this type of city can successfully achieve a
low-carbon transition.

4.4. Robustness Test

This paper conducts a robustness test by changing the study period of LCP policy, including
2008–2013, 2008–2014, 2008–2015, 2008–2016, 2009–2017, 2010–2017, 2011–2017, and 2012–2017,
respectively. The results are shown in Tables 6 and 7.
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Table 7. Robustness test for changing the LCP policy study period (I_STAGE = 2).

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8

2008–2013 2008–2014 2008–2015 2008–2016 2009–2017 2010–2017 2011–2017 2012–2017

DIFF(Treatit × T) −0.02
(0.03)

−0.022 *
(0.02)

−0.031 *
(0.02)

−0.012 *
(0.02)

−0.022 *
(0.02)

−0.012 *
(0.02)

−0.008 *
(0.02)

−0.003 *
(0.02)

LNI_INDEX −0.1 **
(0.07)

−0.07 ***
(0.07)

−0.05 **
(0.07)

−0.04 **
(0.06)

−0.06 **
(0.07)

−0.09 **
(0.09)

−0.01 **
(0.02)

−0.009 **
(0.11)

LNRD 0.03 ***
(0.02)

0.01 **
(0.02)

0.01 **
(0.02)

0.001 *
(0.02)

0.001 **
(0.02)

0.003 **
(0.02)

0.01 **
(0.02)

0.002 **
(0.02)

LNFDI 0.003
(0.01)

0.002 *
(0.01)

0.02
(0.01)

0.02 *
(0.01)

0.02 *
(0.01)

0.02 *
(0.01)

0.02
(0.01)

0.02
(0.01)

CONS −0.27
(0.26)

−0.44 *
(0.25)

−0.52 *
(0.24)

−0.59 **
(0.22)

−0.52 **
(0.25)

−0.41
(0.32)

−0.79 **
(0.37)

−0.83 **
(0.43)

Time fixed
effect Yes Yes Yes Yes Yes Yes Yes Yes

City fixed
effect Yes Yes Yes Yes Yes Yes Yes Yes

R-squared 0.29 0.24 0.30 0.39 0.53 0.58 0.64 0.61
No.of Obs. 255 295 335 375 380 340 300 260

Notes: Standard errors in parentheses; ***p < 0.01, ** p < 0.05, * p < 0.1.

The results of the regression models for different study periods in Table 6 show that for the LCPCs
at the middle stage of industrialization, the DIFF coefficients were negative at the 10% significance
level for all study periods except for 2008–2013. This is consistent with the results obtained in the
previous section. Further, it verifies that the LCP policy could significantly enhance the LCDI of LCPCs
at the middle stage of industrialization during the different study periods. According to the results in
Table 7, for the LCPCs at the middle stage of industrialization, the industrialization index hurt the
LCDI, while innovation positively impacted the LCDI. This is consistent with the previous results. FDI
has a positive effect on LCDI but remains insignificant in some regressions.

For the LCPC at the middle stage of industrialization, by transforming the different LCP policy
study periods, we get that the average impact effect of the LCP policy started to improve during
the study period 2008–2016 (the fourth year after the implementation of the LCP policy). This is
consistent with the previous findings on the marginal impact of the LCP policy. Further, this verifies
the robustness of our results.

The regression models’ results for different study periods in Table 8 show that for the LCPCs at
the later stage of industrialization, the DIFF coefficients are positive at the 10% significance level for all
study periods. This is consistent with the previous section’s results and further verifies that the LCP
policy can significantly enhance the LCDI of LCPCs at the later stage of industrialization. According to
the results in Table 8, for the cities at the later stage of industrialization, the industrialization index
hurt the LCDI, while innovation and FDI had a positive impact on the LCDI. This is consistent with
the previous results.
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Table 8. Robustness test for changing the LCP policy study period (I_STAGE = 3).

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8

2008–2013 2008–2014 2008–2015 2008–2016 2009–2017 2010–2017 2011–2017 2012–2017

DIFF(Treatit × T) 0.014 **
(0.03)

0.035 *
(0.03)

0.039 *
(0.02)

0.039 *
(0.02)

0.040 **
(0.02)

0.047 **
(0.02)

0.049 *
(0.03)

0.049 *
(0.03)

LNI_INDEX −0.19 *
(0.19)

−0.14 **
(0.17)

−0.07 **
(0.13)

−0.007 *
(0.11)

−0.018 *
(0.11)

−0.097 *
(0.12)

−0.088 *
(0.14)

−0.047 *
(0.15)

LNRD 0.03 **
(0.07)

0.06 ***
(0.06)

0.02 **
(0.06)

0.03 **
(0.06)

0.05 *
(0.06)

0.04 **
(0.07)

0.07 **
(0.08)

0.09 *
(0.08)

LNFDI 0.003 **
(0.02)

0.003 *
(0.02)

0.008 *
(0.01)

0.005 *
(0.01)

0.009 **
(0.01)

0.01 **
(0.01)

0.007 **
(0.01)

0.001 *
(0.01)

CONS −1.69 **
(0.80)

−1.59 *
(0.73)

−1.11 *
(0.58)

−0.92 *
(0.51)

−0.89 *
(0.52)

−0.52
(0.59)

−0.77
(0.66)

−0.91
(0.74)

Time fixed
effect Yes Yes Yes Yes Yes Yes Yes Yes

City fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.17 0.17 0.24 0.27 0.32 0.36 0.39 0.28
No.of Obs. 275 325 370 415 410 365 320 275

Notes: Standard errors in parentheses; ***p < 0.01, ** p < 0.05, * p < 0.1.

For the LCPCs at the later stage of industrialization, by switching different LCP policy study
periods, we obtain that the average impact effect of LCP policy continues to strengthen as the study
period lengthens, which is consistent with the previous findings on the marginal impact of LCP policy.
This further validates the robustness of our results.

5. Conclusions and Discussion

Many cities in China are facing a dilemma between industrialization and low-carbon transition.
To promote the green and low-carbon development of cities, the Chinese government has implemented
the LCP policy. Cities at different stages of industrialization have apparent differences in their economic
and industrial structures, which impact the implementation of the LCP policy. Therefore, it is of great
significance to study industrialization stage’s moderating effect on LCP policy implementation. This
paper selects the second batch of low-carbon pilot cities as the object of study and does the following.
First, based on the expected targets of the LCP policy implementation, this paper constructs a low-carbon
development evaluation index system for Chinese cities and uses the improved TOPSIS model to
measure the LCDI. Second, the industrialization index is measured using the threshold-hierarchy
analysis, and the industrialization stage is judged using the relevant criteria. Finally, The DID model is
applied to analyze the moderating effect of the industrialization stage on LCP policy implementation.
We also tested the LCP policy’s impact through industrialization index, innovation, and FDI. Our
conclusions are as follows.

First, there is heterogeneity in LCP policy implementation on the LCDI of LCPCs at different
industrialization stages. For the LCPCs at the later stage of industrialization, the effect is positive, and
the marginal impact reaches its maximum in the second year after its implementation. The robustness
test shows that the impact gradually increases with the extension of the study period. For the LCPCs at
the middle stage of industrialization, the impact is weakly negative, and the marginal impact does not
change to positive until the fourth year after its implementation. Second, we analyzed how the LCP
policy affects LCDI through industrialization index, innovation, and FDI. The results show that the
LCP policy hurts the industrialization index, regardless of whether the LCPC is at the middle stage of
industrialization or the later stage of industrialization, and the higher the industrialization index, the
lower the LCDI. China’s industrialization reduces the LCDI of cities. The LCP policy can significantly
stimulate the innovation activity of the LCPC at the middle stage of industrialization or at the later
stage of industrialization. Innovation can enhance LCDI by improving energy efficiency and reducing
the carbon emission intensity. The LCP policy can promote FDI inflow into the LCPC at the later stage
of industrialization. In contrast, the impact is negative if the study sample is the LCPC at the middle
stage of industrialization. FDI can improve the LCDI, but the impact of technology spillover from FDI
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is more significant on the LCDI of cities at the later stage of industrialization than that at the middle
stage of industrialization.

Based on the conclusions above, we identify some implications for the Chinese government
to facilitate the LCP policy implementation and propose some policy recommendations to promote
low-carbon development. For Chinese government departments, a one-size-fits-all LCP policy
Target Responsibility System (TRS) assessment is hugely unfair to the LCPCs at the middle stage of
industrialization. It would force city leaders to take extreme measures, such as power restrictions
and production shutdowns, to complete the assessment tasks to win favor with their superiors. This
paper’s findings indicate that the LCP policy’s implementation needs to be tailored to local conditions.
Using the industrialization stage as a criterion to classify cities and adopt differentiated assessment
criteria will have a greater incentive to promote the implementation of LCP. For the LCPCs at the
later stage of industrialization, the central government should set a series of absolute indicators, such
as total carbon emissions, to comprehensively assess the policy implementation’s effectiveness in
the transport sector, construction sector, industrial sector, energy supply sector, and forest carbon
sequestration sectors. For the LCPCs at the middle stage of industrialization, the central government
should appropriately lengthen the period for examining the policy implementation effectiveness. In
addition, relative indicators, such as carbon emission intensity, should be set to focus on assessing the
policy implementation’s effectiveness in the industrial and energy supply sector.

Furthermore, based on the reason that the LCP policy will lead to the reduction of FDI of the
LCPCs at the middle stage of industrialization, it is evident that encouraging innovation becomes
the leading choice for the city manager to complete the LCP assessment tasks. However, we need to
pay more attention to the conditions of the LCPCs themselves at this stage. The lack of talent and
inadequate institutional design result in apparent shortcomings in the city’s innovation drive, so that
cooperation and exchange with neighboring large cities, especially provincial capital cities, in the field of
low-carbon development is incredibly important. The main cooperation methods include introducing
more advanced thermal power-generation technology and energy-saving technology renovation for
high-energy-consuming industrial enterprises and adopting more advanced demand-side energy
efficiency management. The purpose of this is to slow down the growth of total carbon emissions
in the industrial production process and energy supply sector and to shorten the time for the city’s
total carbon emissions to peak. For the LCPCs at the later stage of industrialization, the LCP policy,
innovation, and FDI are mutually reinforcing. City managers should take advantage of the powerful
conditions created by the innovation and FDI’s technological spillover effect to spare no effort to
promote the development of low-carbon industries and the deployment of clean energy technologies
to achieve a low-carbon transition. Furthermore, institutional innovation should be more broadly
focused on addressing potential inconsistencies between low-carbon development and government
management systems.

Evaluating the effectiveness of policy implementation has been a hot topic of academic research.
In this paper, we used the DID model to study the moderating effect of industrialization stage on
China’s LCP policy. We used the LCDI index as an explanatory variable to accurately reflect the
Chinese government’s intended goal of implementing LCP policy. However, our study has some
limitations. First, this study is highly focused on how to promote the effective implementation of LCP
policies in Chinese cities, and the research is extremely specific. Second, we adopted a combination of
field research and theory to construct a low-carbon development evaluation index system in China,
and the scope of application of the index system may be limited to the assessment of the Chinese
government’s effect on low-carbon pilot policies. Third, the subjective weights obtained by applying
hierarchical analysis in the measurement process of LCDI were obtained by means of questionnaire
analysis, which may be disturbed by human factors.

However, our research paradigm is recommendable. The established index system is practiced in
a double difference model with the measured LCDI index through a large workload of field research
and literature search. This in itself is somewhat innovative. In addition, the improvement of the
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measured model of LCDI is one of the main contributions of this paper. We always take the attitude
that there must be variability in the evaluation system of urban low carbon development in each
country, and the reason for this variability is that each country has different development stages and
characteristics. Our next step is to explore the low-carbon development assessment systems adapted
to cities in different continents through a larger survey and research in order to better disseminate the
results we have obtained.

Author Contributions: Conceptualization, Q.S., Q.W., and J.C.; software, Q.S. and P.T.; data curation, Q.S. and
Y.M.; project administration, Q.W. and J.C.; funding acquisition, Q.W. and J.C. writing—review and editing, Q.S.,
Q.W., J.C., P.T., and S.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China [grant number: 71991482]
and the National Social Science Foundation of China [grant number: 19ZDA112].

Acknowledgments: A special acknowledgment is made to the World Bank’s “Promoting Clean and Green
Cities in China through International Cooperative Projects” project for its support of the construction of this
indicator system.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Workman, M.; Dooley, K.; Lomax, G.; Maltby, J.; Darch, G. Decision making in contexts of deep uncertainty-An
alternative approach for long-term climate policy. Environ. Sci. Policy 2020, 103, 77–84. [CrossRef]

2. Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.;
Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature
2016, 534, 631–639. [CrossRef]

3. Zhou, N.; Price, L.; Yande, D.; Creyts, J.; Khanna, N.; Fridley, D.; Lu, H.; Feng, W.; Liu, X.; Hasanbeigi, A. A
roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary
energy by 2030. Appl. Energy 2019, 239, 793–819. [CrossRef]

4. den Elzen, M.; Fekete, H.; Höhne, N.; Admiraal, A.; Forsell, N.; Hof, A.F.; Olivier, J.G.; Roelfsema, M.; van
Soest, H. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions
peak before 2030? Energy Policy 2016, 89, 224–236. [CrossRef]

5. Lo, K.; Li, H.; Chen, K. Climate experimentation and the limits of top-down control: Local variation of
climate pilots in China. J. Environ. Plan. Manag. 2020, 63, 109–126. [CrossRef]

6. NDRC. Notice of the National Development and Reform Commission on Launching Low Carbon Provinces
and Cities Pilot. Available online: http://www.gov.cn/zwgk/2010-08/10/content_1675733.htm (accessed on 10
December 2020).

7. NDRC. Notice of the National Development and Reform Commission on Launching the Second Batch
of National Low-Carbon Provinces, Regions and Low-Carbon Cities Pilot Work. Available online: http:
//qhs.ndrc.gov.cn/gzdt/201212/t20121205_517419.html (accessed on 10 December 2020).

8. NDRC. Notice of the National Development and Reform Commission on Launching the Third Batch of
National Low-Carbon Provinces, Regions and Low-Carbon Cities Pilot Work. Available online: http:
//www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170124_836394.html (accessed on 10 December 2020).

9. Pal, L.A. Public Policy Analysis: An Introduction; Scarborough: Nelson, ON, Canada, 1992.
10. Jiagui, C.; Qunhui, H.; Hongwu, Z. The Synthetic Evaluation and Analysis on Regional Industrialization.

Econ. Res. J. 2006, 6, 4–15.
11. Wang, F.; Wu, L.H.; Yang, C. Driving factors for growth of carbon dioxide emissions during economic

development in China. Econ. Res. J. 2010, 2, 1.
12. Zhang, Y.; Xia, Y.; Fan, Y. How CO2 emissions structure evolves with the process of industrialisation. Int. J.

Glob. Environ. Issues 2013, 13, 43–63. [CrossRef]
13. Syrquin, M.; Chenery, H. Three Decades of Industrialization. World Bank Econ. Rev. 1989, 3, 145–181.

[CrossRef]
14. Shan, Y.; Guan, D.; Hubacek, K.; Zheng, B.; Davis, S.J.; Jia, L.; Liu, J.; Liu, Z.; Fromer, N.; Mi, Z. City-level

climate change mitigation in China. Sci. Adv. 2018, 4, q390. [CrossRef]

http://dx.doi.org/10.1016/j.envsci.2019.10.002
http://dx.doi.org/10.1038/nature18307
http://dx.doi.org/10.1016/j.apenergy.2019.01.154
http://dx.doi.org/10.1016/j.enpol.2015.11.030
http://dx.doi.org/10.1080/09640568.2019.1619539
http://www.gov.cn/zwgk/2010-08/10/content_1675733.htm
http://qhs.ndrc.gov.cn/gzdt/201212/t20121205_517419.html
http://qhs.ndrc.gov.cn/gzdt/201212/t20121205_517419.html
http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170124_836394.html
http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170124_836394.html
http://dx.doi.org/10.1504/IJGENVI.2013.057331
http://dx.doi.org/10.1093/wber/3.2.145
http://dx.doi.org/10.1126/sciadv.aaq0390


Sustainability 2020, 12, 10577 22 of 23

15. Liu, Z.; Liang, S.; Geng, Y.; Xue, B.; Xi, F.; Pan, Y.; Zhang, T.; Fujita, T. Features, trajectories and driving
forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and
Chongqing. Energy 2012, 37, 245–254. [CrossRef]

16. Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.;
Dasgupta, P. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.

17. Chen, S. Reconstruction of sub-industrial statistical data in China (1980–2008). China Econ. Q. 2011, 10,
735–776.

18. Liu, C.; Zhou, Z.; Liu, Q.; Xie, R.; Zeng, X. Can a low-carbon development path achieve win-win development:
Evidence from China’s low-carbon pilot policy. Mitig. Adapt. Strat. Glob. Chang. 2019, 1–21. [CrossRef]

19. Greenstone, M.; List, J.A.; Syverson, C. The Effects of Environmental Regulation on the Competitiveness of US
Manufacturing; National Bureau of Economic Research: Cambridge, MA, USA, 2012. [CrossRef]

20. Rogge, K.S.; Schneider, M.; Hoffmann, V.H. The innovation impact of the EU Emission Trading
System—Findings of company case studies in the German power sector. Ecol. Econ. 2011, 70, 513–523.
[CrossRef]

21. Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J.
Econ. Perspect. 1995, 9, 97–118. [CrossRef]

22. Rassier, D.G.; Earnhart, D. Effects of environmental regulation on actual and expected profitability. Ecol.
Econ. 2015, 112, 129–140. [CrossRef]
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