Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years
Abstract
:1. Introduction
2. Study Area and Data Analysis
2.1. Study Area
2.2. Data Processing
2.2.1. Drought and Flood Grade
2.2.2. Modern Precipitation and Streamflow Data
2.2.3. Principal Component Regression Model and Quality Evaluation
2.3. Overall Reconstruction Workflow
3. Streamflow Reconstruction
3.1. Precipitation Reconstruction of Five Stations
3.1.1. Drought Flood Grade and Precipitation Model
3.1.2. Reconstruction Result of Precipitation
3.2. Streamflow Reconstruction of the Ganjiang River
3.2.1. Reconstruction Model of Precipitation and Streamflow
3.2.2. Results of Streamflow Reconstruction
3.3. Model Validity and Uncertainty Analysis
4. Discussion
4.1. Analysis of Variation Characteristics
4.2. Relationship between Streamflow and ENSO
4.3. Effect of Temperature, Monsoon, and Solar Activity
4.4. Hydrological Frequency Curve Analysis
4.5. Land use, Flood Control, and Basin Sustainable Development
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Danker Dankers, R.; Feyen, L. Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res. Atmos. 2008, 113, 1–17. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.T.; Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature 2017, 552, 45–50. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press Cambridge: New York, NY, USA, 2013. [Google Scholar]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Zhang, X. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Yan, J.; Huang, C.; Chen, Y. Cross-century Global Environmental Problems and Behavioral Countermeasures; Science Press: Beijing, China, 1999. [Google Scholar]
- Shankman, D.; Davis, L.; de Leeuw, J. River management, landuse change, and future flood risk in China’s Poyang Lake region. Int. J. River Basin Manag. 2009, 7, 423–431. [Google Scholar] [CrossRef]
- Gao, T.; Xie, L.; Liu, B. Association of extreme precipitation over the Yangtze River Basin with global air-sea heat fluxes and moisture transport. Int. J. Climatol. 2016, 36, 3020–3038. [Google Scholar] [CrossRef]
- Luo, X. Annals of Water Resources in Jiangxi Province (1991-2000); China Water Conservancy and Hydropower Press: Beijing, China, 2005. [Google Scholar]
- Mirza, Q. Climate change and extreme weather events: Can developing countries adapt? Clim. Policy 2003, 3, 233–248. [Google Scholar] [CrossRef]
- Ren, M.; Bao, H.; Yang, R. An Outline of China’s Physical Geography; Foreign Languages Press: Beijing, China, 1985. [Google Scholar]
- Zhang, Y. Water Resources of Jiangxi Province; Jiangxi Science and Technology Press: Nanchang, China, 2005. [Google Scholar]
- Zhang, B. Poyang Lake Research; Shanghai Scientific and Technical Publishers: Shanghai, China, 1988. [Google Scholar]
- Wu, N.; Luo, Y.; Liu, T.; Huang, Z. Experimental study on the effect of the Three Gorges Project on water level in Lake Poyang. J. Lake Sci. 2014, 26, 522–528. [Google Scholar]
- Fang, C.; Cao, W.; Mao, J.; Li, H. Relation between Poyang Lake and Yangtze River and the Three Georges Reservoir’s Influence. J. Hydraul. Eng. 2012, 43, 175–181. [Google Scholar]
- Huang, Y.; Luo, W. Analysis of characteristics and variation tendency of runoff in Ganjiang River. Yangtze River 2012, 43, 27–31. [Google Scholar]
- Gu, C.; Mu, X.; Gao, P.; Wan, X. Variation of runoff and sediment discharge and response to human activities in the Ganjiang River. J. Sediment Res. 2016, 41, 38–44. [Google Scholar]
- Meko, D.M.; Therrell, M.D.; Baisan, C.H.; Hughes, M.K. Sacramento river flow reconstructed to A.D. 869 from tree rings. J. Am. Water Resour. As. 2001, 37, 1029–1039. [Google Scholar] [CrossRef]
- Smith, L.P.; Stockton, C.W. Reconstructed Stream Flow for the Salt and Verde Rivers from Tree-Ring Data. J. Am. Water Resour. As. 2010, 17, 939–947. [Google Scholar] [CrossRef]
- Gou, X.; Chen, F.; Cook, E.; Jacoby, G.; Yang, M.; Li, J. Streamflow variations of the Yellow River over the past 593 years in western China reconstructed from tree rings. Water Resour. Res. 2007, 43, 1820–1830. [Google Scholar] [CrossRef]
- Watson, T.A.; Barnett, F.A.; Gray, S.T.; Tootle, G.A. Reconstructed Stream Flows for the Headwaters of the Wind River, Wyoming, USA. J. Am. Water Resour. As. 2009, 45, 224–236. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Song, H.; Cai, Q.; Bao, G.; Li, X. Tree-ring hydrologic reconstructions for the Heihe River watershed, western China since AD 1430. Water Res. 2010, 44, 2781–2792. [Google Scholar] [CrossRef]
- Gou, X.; Chen, F.; Jacoby, G.; Cook, E.; Yang, M.; Peng, J.; Zhang, Y. Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. Int. J. Climatol. 2007, 27, 1497–1503. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y.J.; Wei, W.S.; Yu, S.L.; Zhang, T.W.; Shang, H.M.; Zhang, R.B.; Qin, L.; Fan, Z.A. Tree-ring recorded hydroclimatic change in Tienshan mountains during the past 500 years. Quatern. Int. 2015, 358, 35–41. [Google Scholar] [CrossRef]
- Yuan, Y.; Shao, X.; Wei, W.; Yu, S.; Yuan, G.; Trouet, V. The Potential to Reconstruct Manasi River Streamflow in the Northern Tien Shan Mountains (NW China). Tree-Ring Res. 2007, 63, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Wang, B.; Guo, H.; Wu, X.; Zhou, M.; Wang, Z.; Liu, X.; Xia, L.; Deng, Z. Reconstruction and analysis of July-September precipitation in Mt. Dagangshan, China. Acta Ecol. Sin. 2011, 31, 2272–2280. [Google Scholar]
- Yang, H. Compilation and Research of Jiangxi Local Records. Jiangxi Soc. Sci. 2000, 40, 72–76. [Google Scholar]
- Gong, G. Research Methods of Climate Change in Historical Period; Science Press: Beijing, China, 1983. [Google Scholar]
- Ge, Q. Climate Change through Every Chinese Dynasty; Science Press: Beijing, China, 2011. [Google Scholar]
- Zhang, D.; Liu, C.; Jiang, J. Reconstruction of Six Regional Dry/Wet Series and Their Abrupt Changes during the Last 1000 Years in East China. Quat. Sci. 1997, 17, 1–11. [Google Scholar]
- Xue, J.; Zhong, W. Precipitation Reconstruction and Analysis in Guangdong Province since 1470. J. South China Norm. Univ. 2006, 38, 125–133. [Google Scholar]
- Xu, Y. Research on Land Use Ecological Security Pattern in Jiangxi Province. Master’s Thesis, Jiangxi Normal University, Nanchang, China, 2017. [Google Scholar]
- Xiong, D. Meteorological Annals of Jiangxi Province; Annals Press: Beijing, China, 1997. [Google Scholar]
- Sciences, C.A.O.M. Yearly Charts of Dryness/Wetness in China for the Last 500 Years Period; Cartographic Publishing House: Beijing, China, 1981. [Google Scholar]
- Reiss, P.T.; Ogden, R.T. Functional principal component regression and functional partial least squares. J. Am. Stat. Assoc. 2007, 102, 984–996. [Google Scholar] [CrossRef]
- Gou, X.; Deng, Y.; Chen, F.; Yang, M.; Fang, K.; Gao, L.; Yang, T.; Zhang, F. Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years. Chin. Sci. Bull. 2010, 55, 4179–4186. [Google Scholar] [CrossRef]
- Pan, W.; Fei, J.; Man, Z.; Zheng, J.; Zhuang, H. The fluctuation of the beginning time of flood season in North China during AD1766–1911. Quatern. Int. 2015, 380, 377–381. [Google Scholar] [CrossRef]
- Hu, S.; Fan, Y.; Zhang, T. Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing. Land 2020, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Xie, J. Land Annals of Jiangxi Province; China Local Records Press: Beijing, China, 2003. [Google Scholar]
- Mimides, T.; Kotsovinos, N.; Rizos, S.; Soulis, C.; Karakatsoulis, P.; Stavropoulos, D. Integrated runoff and balance analysis concerning Greek-Bulgarian transboundary hydrological basin of River Nestos/Mesta. Desalination 2007, 213, 174–181. [Google Scholar] [CrossRef]
- Poff, N.L.; Brown, C.M.; Grantham, T.E.; Matthews, J.H.; Palmer, M.A.; Spence, C.M.; Wilby, R.L.; Haasnoot, M.; Mendoza, G.F.; Dominique, K.C.; et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Chang. 2016, 6, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, D.; Carey, S.K.; McNamara, J.P.; Laudon, H.; Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef] [Green Version]
- Knight, C.G.; Staneva, M.P. The water resources of Bulgaria: An overview. GeoJournal 1996, 40, 347–362. [Google Scholar] [CrossRef]
- Hansson, D.; Eriksson, C.; Omstedt, A.; Chen, D. Reconstruction of river runoff to the Baltic Sea, AD 1500-1995. Int. J. Climatol. 2011, 31, 696–703. [Google Scholar] [CrossRef]
- Fang, K.Y.; Gou, X.H.; Chen, F.; Yang, M.X.; Li, J.B.; He, M.S.; Zhang, Y.; Tian, Q.H.; Peng, J.F. Drought variations in the eastern part of northwest China over the past two centuries: Evidence from tree rings. Clim. Res. 2009, 38, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Zhan, L.; He, J.; Ye, Y.; Zhao, H. Periodicity Analysis of Solar Activity by Wavelet Analyzing Method. Acta Astron. Sin. 2006, 47, 166–174. [Google Scholar]
- Tian, Q.; Gou, X.; Zhang, Y.; Peng, J.; Wang, J.; Chen, T. Tree-Ring Based Drought Reconstruction (A.D. 1855-2001) for the Qilian Mountains, Northwestern China. Tree-Ring Res. 2009, 63, 27–36. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.P.; Cook, E.R.; Morales, M.S. El Niño modulations over the past seven centuries. Nat. Clim. Chang. 2013, 3, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Tao, S. A Study on the Relationships between ENSO Cycle and Rainfalls during Summer and Winter in Eastern China. Chin. J. Atmos. Sci. 1999, 23, 663–672. [Google Scholar]
- Chen, W.; Feng, J.; Wu, R. Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Clim. 2013, 26, 622–635. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, W.C.; Ge, Q.; Man, Z.; Zhang, P. Precipitation Variability and Extreme Events in Eastern China during the Past 1500 Years. Terr. Atmos. Ocean. 2006, 17, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Ge, Q.; Zheng, J.; Fang, X.; Man, Z.; Zhang, X.; Zhang, P.; Wang, W. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. Holocene 2003, 13, 933–940. [Google Scholar]
- Ge, Q.S.; Guo, X.F.; Zheng, J.Y.; Hao, Z.X. Meiyu in the middle and lower reaches of the Yangtze River since 1736. Sci. Bull. 2008, 53, 107–114. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, P.; Liu, G. Asian-Pacific Oscillation index and variation of East Asian summer monsoon over the past millennium. Chin. Sci. Bull. 2009, 54, 3768. [Google Scholar] [CrossRef]
- Tan, L.; Cai, Y.; An, Z.; Yi, L.; Zhang, H.; Qin, S. Climate patterns in north central China during the last 1800 yr and their possible driving force. Clim. Past 2011, 7, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Maher, B.A. Holocene variability of the East Asian summer monsoon from Chinese cave records: A re-assessment. Holocene 2008, 18, 861–866. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M.; Yang, S. Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and North China: Roles of the Indian monsoon and the South Asian High. J. Clim. 2017, 30, 537–552. [Google Scholar] [CrossRef]
- Sinha, A.; Berkelhammer, M.; Stott, L.; Mudelsee, M.; Cheng, H.; Biswas, J. The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophys. Res. Lett. 2011, 38, L15703. [Google Scholar] [CrossRef] [Green Version]
- Bard, E.; Raisbeck, G.; Yiou, F.; Jouzel, J. Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus. B 2000, 52, 985–992. [Google Scholar] [CrossRef]
- Shindell, D.T.; Schmidt, G.A.; Mann, M.E.; Rind, D.; Waple, A. Solar forcing of regional climate change during the Maunder Minimum. Science 2001, 294, 2149–2152. [Google Scholar] [CrossRef] [Green Version]
- Anet, J.G.; Muthers, S.; Rozanov, E.V.; Raible, C.; Stenke, A.; Shapiro, A.I.; Brönnimann, S.; Arfeuille, F.X.; Brugnara, Y.; Beer, J. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Clim. Past 2014, 10, 921–938. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Kohara, K.; Ikehara, M.; Seto, K. The variations in the East Asian summer monsoon over the past 3 kyrs and the controlling factors. Sci. Rep. UK 2019, 9, 5036. [Google Scholar] [CrossRef]
- Liu, H.Y.; Lin, Z.S.; Qi, X.Z.; Li, Y.X.; Yu, M.T.; Yang, H.; Shen, J. Possible link between Holocene East Asian monsoon and solar activity obtained from the EMD method. Nonlinear Proc. Geoph. 2012, 19, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Wang, J. Robust response of the East Asian monsoon rainband to solar variability. J. Clim. 2014, 27, 3043–3051. [Google Scholar] [CrossRef]
- Chen, J.; Sun, B.; Chen, D.; Wu, X.; Guo, L.; Wang, G. Land Use Changes and Their Effects on the Value of Ecosystem Services in the Small Sanjiang Plain in China. Sci. World J. 2014, 2014, 7. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Gao, J.; Li, L. Modeling the hydrological effects of climate and land use/cover changes in Chinese lowland polder using an improved WALRUS model. Hydrol. Res. 2016, 47, 84–101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Water Yield of Xitiaoxi River Basin Based on InVEST Modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar]
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 1517–1551. [Google Scholar] [CrossRef] [Green Version]
- Aduah, M.S.; Jewitt, G.P.; Warburton Toucher, M.L. Assessing suitability of the ACRU hydrological model in a rainforest catchment in Ghana, West Africa. Water Sci. 2017, 31, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Karthikeyan, R.; Bai, Z.; Wang, J. Spatial and temporal variability of temperature, precipitation, and streamflow in upper Sang-kan basin, China. Hydrol. Process. 2017, 31, 279–295. [Google Scholar] [CrossRef]
- Hughes, D.A. Hydrological modelling, process understanding and uncertainty in a southern African context: Lessons from the northern hemisphere. Hydrol. Process. 2016, 30, 2419–2431. [Google Scholar] [CrossRef]
- Zhou, D.; Tian, Y.; Jiang, G. Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: Case study of the Jingjinji urban agglomeration, China. Ecol. Indic. 2018, 95, 152–164. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Wu, Z.; Li, C.; Qin, J.; Liu, T. Effects of impervious surface on the spatial distribution of urban waterlogging risk spots at multiple scales in Guangzhou, South China. Sustainability 2018, 10, 1589. [Google Scholar] [CrossRef] [Green Version]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Ge, J. Chinese Population History; Fudan University press: Shanghai, China, 2005. [Google Scholar]
- Ge, Q.; Dai, J.; He, F.; Zheng, J.; Man, Z.; Zhao, Y. Spatiotemporal dynamics of reclamation and cultivation and its driving factors in parts of China during the last three centuries. Prog. Nat. Sci. 2004, 14, 605–613. [Google Scholar] [CrossRef]
- He, F.; Ge, Q.; Dai, J.; Lin, S. Quantitative Analysis on Forest Dynamics of China in Recent 300 Years. Acta Geogr. Sin. 2007, 62, 30–40. [Google Scholar] [CrossRef]
- Statistics Bureau of Jiangxi Province. Jiangxi Statistical Yearbook; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Wan, A.; Wang, J.; Wu, K. Temporal and Spatial Characteristics and Driving Factors of Forest Land Change in Jiangxi. J. Anhui Agric. Sci. 2019, 47, 128–131. [Google Scholar]
- Chu, X. Analysis of environmental status and construction trend of ecological civilization in the pioneer demonstration zone of ecological civilization in Jiangxi Province. Environ. Dev. 2019, 31, 195–196. [Google Scholar]
- Zhao, S.; Lu, J.; Zhang, H.; Zeng, Y.; Qi, W.; Liang, Z.; Zhang, T.; Liu, G.; Qin, M.; Jiang, L. Population, consumption, and land use in the Jitai basin region, Jiangxi Province. In Growing Populations, Changing Landscapes: Studies from India, China, and the United States; Gordon, W., Ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
Grade | Standard | Text Description Classification | |
---|---|---|---|
1 (drought) | time | long duration | drought that usually lasts for several months; lake dries up because of drought; extensive plant death because of drought; people starve to death; locust disaster; no grain harvest. |
space | large range | ||
phenomenon | severe disaster | ||
2 (slight drought) | time | short duration | single season or single month drought; land rent exemption because of drought; general drought; people are hungry, but remained in their hometown. |
space | small range | ||
phenomenon | less severe | ||
3 (normal) | - | - | no record of droughts or floods this year; grain harvest; good weather for the crops; favorable weather. |
4 (slight flood) | time | short duration | less severe flooding in a single month; general flood; no description of waterlogging and only recorded dry in a certain month; exemption of land rent exemption because of flood. |
space | small range | ||
phenomenon | less severe | ||
5 (flood) | time | long duration | long and intense precipitation; deep water on the ground; serious damage to crops, animals, and dams caused by floods; floods did not occur in many years. |
space | large range | ||
phenomenon | severe disaster |
Station | Model * | r | r2 | F-Statistics | Sig. | |
---|---|---|---|---|---|---|
1 | Ganzhou | y = 211.227x + 788.260 | 0.792 | 0.627 | 97.379 | 0.000 |
2 | Jian | y = 202.327x + 888.053 | 0.863 | 0.746 | 169.946 | 0.000 |
3 | Nanchang | y = 246.008x + 851.014 | 0.876 | 0.767 | 190.778 | 0.000 |
4 | Gaoan | y = 150.896x + 1113.205 | 0.723 | 0.522 | 63.360 | 0.000 |
5 | Yichun | y = 173.246x + 1086.455 | 0.844 | 0.712 | 143.650 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Z.; Chen, X.; Ju, M.; Ling, C.; Liu, G.; Lin, S.; Liu, H.; Jia, Y.; Jiang, M.; Liao, F. Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years. Sustainability 2020, 12, 1168. https://doi.org/10.3390/su12031168
Wan Z, Chen X, Ju M, Ling C, Liu G, Lin S, Liu H, Jia Y, Jiang M, Liao F. Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years. Sustainability. 2020; 12(3):1168. https://doi.org/10.3390/su12031168
Chicago/Turabian StyleWan, Zhiwei, Xi Chen, Min Ju, Chaohao Ling, Guangxu Liu, Siping Lin, Huihua Liu, Yulian Jia, Meixin Jiang, and Fuqiang Liao. 2020. "Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years" Sustainability 12, no. 3: 1168. https://doi.org/10.3390/su12031168
APA StyleWan, Z., Chen, X., Ju, M., Ling, C., Liu, G., Lin, S., Liu, H., Jia, Y., Jiang, M., & Liao, F. (2020). Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years. Sustainability, 12(3), 1168. https://doi.org/10.3390/su12031168