Investigating the Influence of Meteorological Parameters on the Accuracy of Sea-Level Prediction Models in Sabah, Malaysia
Abstract
:1. Introduction
1.1. Background
1.2. Problem Statement
2. Literature Review
3. Study Area
4. Methods
4.1. Multilayer Perceptron Neural Network (MLP-ANN)
4.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
4.3. Development of the MLP-ANN and ANFIS Models
- Phase 1: Data review, the selection of suitable software, and splitting data into training (80%) and testing sets (20%).
- Phase 2: Applying the time series analysis and running the proposed model.
- Phase 3: Post-processing by performing a sensitivity analysis.
4.4. Selecting Appropriate Inputs
4.5. Preprocessing Technique
4.6. Model Illustration
- (a)
- Scenario 1 = MSL predicted = Wind direction (observation)) + wind speed (observation)
- (b)
- Scenario 2 = MSL predicted = Rainfall (observation) + mean cloud cover (observation)
4.7. Performance Criteria
4.8. Uncertainty Analysis
5. Result and Discussion
5.1. Hyperparameter Optimization of MLP-ANN and ANFIS
5.2. Preliminary Investigation on the MLP-ANN Model
5.3. Preliminary Investigation on ANFIS Model
5.4. Uncertainty Analysis of the ANFIS Model
5.5. SLR Prediction in Different Year Horizons
6. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Douglas, B.C. Global Sea Rise: A Redetermination. Surv. Geophys. 1997, 18, 279–292. [Google Scholar] [CrossRef]
- Douglas, B.C. An Introduction to Sea-Level. In Sea-Level Rise History and Consequences; Douglas, B.C., Kearney, M.F., Leatherman, S.P., Eds.; Academic Press: New York, NY, USA, 2000; pp. 1–11. [Google Scholar]
- Anthony, D.; Shaaban, A.; Aung, T.H.; Saleh, E.; Hamid, R.A.; Osman, A. Sea Level Changes Along the Coast of Sandakan Town, Sabah, Malaysia: Projection and Inundation Coverage. In Proceedings of the E-Proceedings of the 36th IAHR World Congress, Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar]
- Sujahangir, M.; Begum, R.; Pereira, J.; Jaafar, A.; Saari, M. Impacts of and Adaptations to Sea Level Rise in Malaysia. Asian J. Water Environ. Pollut. 2014, 11, 29–36. [Google Scholar]
- Pasquali, D.; Di Risio, M.; De Girolamo, P. A simplified real time method to forecast semi-enclosed basins storm surge. Estuar. Coast. Shelf Sci. 2015, 165, 61–69. [Google Scholar] [CrossRef]
- Franco, A. Tides—Fundamentals, Analysis and Prediction. Ocean. Eng. 1982, 9, 407–408. [Google Scholar] [CrossRef]
- Meena, B.; Agrawal, J. Tidal Level Forecasting Using ANN. Procedia Eng. 2015, 116, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Karimi, S.; Kisi, O.; Shiri, J.; Makarynskyy, O. Neuro-fuzzy and Neural Network Techniques for Forecasting Sea Level in Darwin Harbor, Australia. Comput. Geosci. 2013, 52, 50–59. [Google Scholar] [CrossRef]
- Awang, N.; Abd Hamid, M. Sea Level Rise in Malaysia. IAHR 2013, 2, 47–49. [Google Scholar]
- Mimura, N. Sea-level rise caused by climate change and its implications for society. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013, 89, 281–301. [Google Scholar] [CrossRef] [Green Version]
- Muslim, T.; Ahmed, A.N.; Malek, M.A.; El-Shafie, A.; El-Shafie, A. Investigating the Impact of Wind on Sea Level Rise Using Multilayer Perceptron Neural Network (MLP-NN) at Coastal Area, Sabah. Int. J. Civ. Eng. Technol. 2019, 6, 80–92. [Google Scholar]
- Sturges, W.; Douglas, B. Wind effects on estimates of sea level rise. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Filippo, A.; Torres, A.R.; Kjerfve, B.; Monat, A. Application of Artificial Neural Network (ANN) to Improve Forecasting of Sea Level. Ocean. Coast. Manag. 2012, 55, 101–110. [Google Scholar] [CrossRef]
- Pelikan, P.; Markova, J. Wind Effect on Water Surface of Water Reservoirs. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 1823–1828. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.A.; Makarynskyy, O.; Shiri, J.; Makarynska, D. Genetic Programming for Sea Level Predictions in an Island Environment. Int. J. Ocean. Clim. Syst. 2010, 1, 27–35. [Google Scholar] [CrossRef]
- Sztobryn, M. Application of Artificial Neural Network into the Water Level Modeling and Forecast. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2013, 7, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Ketabchi, H.; Mahmoodzadeh, D.; Ataie-Ashtiani, B.; Simmons, C. Sea-level Rise Impacts on Seawater Intrusion in Coastal Aquifers: Review and Integration. J. Hydrol. 2016, 535, 235–255. [Google Scholar] [CrossRef]
- Laura, T.; Beverly, P.; Maneja, R.; Radjawane, I. Sea Level Rise Vulnerability of Southeast Asian Coasts. Sci. Highlights 2008, 3–6. Available online: https://www.researchgate.net/publication/281267072 (accessed on 18 September 2019).
- Gutierrez, B.; Plant, N.; Thieler, E. A Bayesian Network to Predict Coastal Vulnerability to Sea Level Rise. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Peng, B. Should We Leave? Attitudes towards Relocation in Response to Sea Level Rise. Water 2017, 9, 941. [Google Scholar] [CrossRef] [Green Version]
- Makarynskyy, O.; Makarynska, D.; Kuhn, M.; Featherstone, W. Predicting Sea Level Variations with Artificial Neural Networks at Hillarys Boat Harbour, Western Australia. Estuar. Coast. Shelf Sci. 2004, 61, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Herbich, J. Handbook of Coastal and Ocean Engineering; Gulf Pub.: Houston, TX, USA, 1992. [Google Scholar]
- Chen, S.; Jakeman, A.; Norton, J. Artificial Intelligence Techniques: An Introduction to their Use for Modelling Environmental Systems. Math. Comput. Simul. 2008, 78, 379–400. [Google Scholar] [CrossRef]
- Alvisi, S.; Mascellani, G.; Franchini, M.; Bardossy, A. Water Level Forecasting through Fuzzy Logic and Artificial Neural Network Approaches. Hydrol. Earth Syst. Sci. 2006, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Nitsure, S.; Londhe, S.; Khare, K. Prediction of Sea Water Levels using Wind Information and Soft Computing Techniques. Appl. Ocean. Res. 2014, 47, 344–351. [Google Scholar] [CrossRef]
- Piri, J.; Kahkha, M. Prediction of Water Level Fluctuations of Chahnimeh Reservoirs in Zabol Using ANN, ANFIS and Cuckoo Optimization Algorithm. Iran. J. Health Saf. Environ. 2017, 4, 706–715. [Google Scholar]
- Kaloop, M.; El-Diasty, M.; Hu, J. Real-time Prediction of Water Level Change using Adaptive Neuro-Fuzzy Inference System. Geomat. Nat. Hazards Risk 2017, 8, 1320–1332. [Google Scholar] [CrossRef]
- Chang, F.; Chang, Y. Adaptive Neuro-Fuzzy Inference System for Prediction of Water Level in Reservoir. Adv. Water Resour. 2006, 29, 1–10. [Google Scholar] [CrossRef]
- Chang, F.; Lai, H. Adaptive Neuro-Fuzzy Inference System for the Prediction of Monthly Shoreline Changes in Northeastern Taiwan. Ocean. Eng. 2014, 84, 145–156. [Google Scholar] [CrossRef]
- Pashova, L.; Popova, S. Daily Sea Level Forecast at Tide Gauge Burgas, Bulgaria using Artificial Neural Networks. J. Sea Res. 2011, 66, 154–161. [Google Scholar] [CrossRef]
- Moon, J.; Kim, K.; Min, H. ANN-Based Prediction and Optimization of Cooling System in Hotel Rooms. Energies 2015, 8, 10775–10795. [Google Scholar] [CrossRef] [Green Version]
- Alam Mia, M.; Biswas, S.; Urmi, M.; Siddique, A. An Algorithm for Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network without Overfitting. Int. J. Sci. Technol. Res. 2015, 2, 271–275. [Google Scholar]
- Buragohan, M. Adaptive Network Based Fuzzy Inference System (ANFIS) as a Tool for System Identification with Special Emphasis on Training Data Minimization. Ph.D. Thesis, Institute of Tech Guwathi, Guwathi, India, 2008. [Google Scholar]
- Yahya, A.S.A.; Ahmed, A.N.; Othman, F.B.; Ibrahim, R.K.; Afan, H.A.; El-Shafie, A.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Water Quality Prediction Model Based Support Vector Machine Model for Ungauged River Catchment under Dual Scenarios. Water 2019, 11, 1231. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Keskin, M.; Terzi, O.; Taylan, D. Fuzzy Logic Model Approaches to Daily Pan Evaporation Estimation in Western Turkey. Hydrol. Sci. J. 2004, 49. [Google Scholar] [CrossRef]
- Chun, J.; Lim, C.; Kim, D.; Kim, J. Assessing Impacts of Climate Change and Sea-Level Rise on Seawater Intrusion in a Coastal Aquifer. Water 2018, 10, 357. [Google Scholar] [CrossRef] [Green Version]
Location | Statistical | Mean Sea Level (MSL) (mm) | Wind Direction (WD) (°) | Wind Speed (WS) (m/s) | Rainfall (mm) | Mean Cloud Cover (MCC) (octas) | MONTHLY INTERVAL | |
Kudat | 6° 55′ N, 16° 50′ E | Min | 6867 | 10.00 | 9.10 | 4.40 | 6.48 | |
Max | 7239 | 360 | 23.10 | 942.40 | 7.37 | |||
Average | 7042.88 | 189.92 | 14.43 | 218.00 | 7.01 | |||
SD | 76.21 | 91.03 | 2.89 | 189.84 | 0.15 | |||
CV | 1.08 | 47.93 | 20.08 | 87.08 | 2.17 | |||
Sandakan | 5° 54′ N, 118° 04′ E | Min | 6.48 | 10 | 8.4 | 100.4 | 6.1 | |
Max | 7278 | 370 | 23.4 | 1054.6 | 7.9 | |||
Average | 7097.83 | 176.41 | 13.86 | 290.11 | 6.96 | |||
SD | 70.60 | 111.03 | 3.08 | 183.01 | 0.25 | |||
CV | 0.99 | 62.93 | 22.24 | 63.08 | 3.63 | |||
Kota Kinabalu | 5° 55′ 57″ N, 116° 02′ 51″ E | Min | 6933 | 10 | 8.8 | 103.8 | 6.75 | |
Max | 7306 | 360 | 24.5 | 593.2 | 7.28 | |||
Average | 7099.64 | 190.33 | 14.51 | 267.95 | 7.07 | |||
SD | 75.49 | 73.67 | 3.00 | 109.40 | 0.10 | |||
CV | 1.06 | 38.70 | 20.70 | 40.83 | 1.45 |
MF Shape | MF No. | Root Mean Square Error (RMSE) (mm) | |
---|---|---|---|
Scenario1 (SC1) | Scenario2 (SC2) | ||
Triangular | 2 2 | 0.008964 | 0.010092 |
3 3 | 0.008084 | 0.009761 | |
Trapezoidal | 2 2 | 0.008024 | 0.009999 |
3 3 | 0.007988 | 0.009763 | |
Gaussian | 2 2 | 0.008132 | 0.009782 |
3 3 | 0.008061 | 0.009816 | |
G bell | 2 2 | 0.007892 | 0.008175 |
3 3 | 0.007502 | 0.007788 |
Scenario | TFHL | AFOL | Algo | Training | Testing | ||||
---|---|---|---|---|---|---|---|---|---|
R | RMSE (mm) | SI | R | RMSE (mm) | SI | ||||
Kudat | |||||||||
SC1 (2-4-1) | Exp | Exp | BFGS | 0.6218 | 0.0084 | 0.0087 | 0.7904 | 0.0066 | 0.0068 |
GD | 0.6735 | 0.0078 | 0.0080 | 0.7166 | 0.0067 | 0.0069 | |||
CGF | 0.6673 | 0.0080 | 0.0080 | 0.7821 | 0.0066 | 0.0068 | |||
SC2 (2-8-1) | tanh | Log | BFGS | 0.3373 | 0.0096 | 0.0099 | 0.6314 | 0.0047 | 0.0048 |
GD | 0.2757 | 0.0103 | 0.0106 | 0.5623 | 0.0103 | 0.0107 | |||
CGF | 0.4298 | 0.0093 | 0.0095 | 0.6222 | 0.0106 | 0.0109 | |||
Sandakan | |||||||||
SC1 (2-13-1) | Log | Ident | BFGS | 0.5751 | 0.0079 | 0.0081 | 0.6773 | 0.0084 | 0.0086 |
GD | 0.5005 | 0.0103 | 0.0106 | 0.6250 | 0.0088 | 0.0091 | |||
CGF | 0.6356 | 0.0074 | 0.0076 | 0.6530 | 0.0083 | 0.0086 | |||
SC2 (2-14-1) | tanh | Exp | BFGS | 0.4370 | 0.0083 | 0.0085 | 0.5539 | 0.0102 | 0.0105 |
GD | 0.1973 | 0.0090 | 0.0093 | 0.2786 | 0.0114 | 0.0118 | |||
CGF | 0.2649 | 0.0089 | 0.0091 | 0.3848 | 0.0111 | 0.0114 | |||
KK | |||||||||
SC1 (2-11-1) | tanh | Log | BFGS | 0.3874 | 0.0095 | 0.0098 | 0.4380 | 0.0100 | 0.0104 |
GD | 0.3858 | 0.0096 | 0.0099 | 0.4145 | 0.0098 | 0.0101 | |||
CGF | 0.3856 | 0.0095 | 0.0098 | 0.4336 | 0.0100 | 0.0103 | |||
SC2 (2-13-1) | Log | Ident | BFGS | 0.6933 | 0.0074 | 0.0076 | 0.7497 | 0.0080 | 0.0082 |
GD | 0.6276 | 0.0102 | 0.0105 | 0.6945 | 0.0098 | 0.0101 | |||
CGF | 0.6394 | 0.0078 | 0.0080 | 0.7283 | 0.0080 | 0.0082 |
Scenario | MF | Training | Testing | |||||
---|---|---|---|---|---|---|---|---|
Type | No | R | RMSE (mm) | SI | R | RMSE (mm) | SI | |
Kudat | ||||||||
SC 1 | G bell | 2 2 | 0.7248 | 0.0078 | 0.0081 | 0.6645 | 0.0059 | 0.0061 |
3 3 | 0.8267 | 0.0075 | 0.0077 | 0.7963 | 0.0060 | 0.0062 | ||
SC 2 | G bell | 2 2 | 0.7031 | 0.0081 | 0.0083 | 0.7456 | 0.0089 | 0.0091 |
3 3 | 0.7078 | 0.0077 | 0.0079 | 0.7534 | 0.0087 | 0.0090 | ||
Sandakan | ||||||||
SC 1 | G bell | 2 2 | 0.5000 | 0.0078 | 0.0080 | 0.4254 | 0.0086 | 0.0088 |
3 3 | 0.7725 | 0.0070 | 0.0072 | 0.7223 | 0.0078 | 0.0080 | ||
SC 2 | G bell | 2 2 | 0.5888 | 0.0074 | 0.0076 | 0.5672 | 0.0081 | 0.0083 |
3 3 | 0.6615 | 0.0067 | 0.0069 | 0.6940 | 0.0074 | 0.0076 | ||
KK | ||||||||
SC 1 | G bell | 2 2 | 0.5434 | 0.0086 | 0.0089 | 0.4164 | 0.0095 | 0.0098 |
3 3 | 0.6347 | 0.0078 | 0.0080 | 0.7686 | 0.0068 | 0.0070 | ||
SC 2 | G bell | 2 2 | 0.7172 | 0.0072 | 0.0074 | 0.7223 | 0.0065 | 0.0067 |
3 3 | 0.7375 | 0.0069 | 0.0071 | 0.8274 | 0.0060 | 0.0062 |
Station | Best Scenario | Statistic | ANFIS |
---|---|---|---|
Kudat | SC1 | 95PPU | 75.2 |
d-factor | 0.27 | ||
Sandakan | SC1 | 95PPU | 77.4 |
d-factor | 0.21 | ||
Kota Kinabalu | SC2 | 95PPU | 76.8 |
d-factor | 0.23 |
Year Horizon | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observed Year | 2019 | 2023 | 2028 | 2048 | 2068 | ||||||
SC1 | SC2 | SC1 | SC2 | SC1 | SC2 | SC1 | SC2 | SC1 | SC2 | ||
Kudat | |||||||||||
LL | 6867 | 6924 | 6908 | 6938 | 6906 | 6955 | 6895 | 6951 | 6886 | 6955 | 6899 |
UL | 7039 | 7118 | 7063 | 7078 | 7106 | 7096 | 7106 | 7177 | 7079 | 7179 | 7137 |
Mean | 7043 | 7037 | 7023 | 7042 | 7050 | 7045 | 7043 | 7043 | 7042 | 7045 | 7042 |
AV | 13.6 | 18.0 | 4.0 | 25.3 | 6.7 | 17.3 | 6.0 | 18.8 | 11.2 | 17.5 | 19.4 |
Sandakan | |||||||||||
LL | 6954 | 7028 | 7009 | 7031 | 6993 | 6995 | 7010 | 7004 | 6989 | 7001 | 6968 |
UL | 7178 | 7153 | 7174 | 7201 | 7186 | 7278 | 7219 | 7209 | 7223 | 7226 | 7201 |
Mean | 7098 | 7094 | 7088 | 7108 | 7107 | 7101 | 7100 | 7098 | 7098 | 7098 | 7097 |
AV | 16.9 | 19.0 | 13.0 | 25.5 | 27.5 | 15.0 | 13.0 | 15.0 | 18.0 | 17.0 | 15.0 |
Kota Kinabalu | |||||||||||
LL | 6933 | 6978 | 7003 | 6982 | 6967 | 6859 | 7002 | 6926 | 7007 | 6932 | 6992 |
UL | 7106 | 7121 | 7183 | 7150 | 7151 | 7104 | 7180 | 7139 | 7220 | 7148 | 7251 |
Mean | 7099 | 7098 | 7105 | 7107 | 7108 | 7103 | 7101 | 7100 | 7100 | 7099 | 7100 |
AV | 22.0 | 17.0 | 10.0 | 26.0 | 16.3 | 0.12 | 14.7 | 8.8 | 20.2 | 13.0 | 24.8 |
Year Horizon | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observed Year | 2019 | 2023 | 2028 | 2048 | 2068 | ||||||
SC1 | SC2 | SC1 | SC2 | SC1 | SC2 | SC1 | SC2 | SC1 | SC2 | ||
Kudat | |||||||||||
LL | 6867 | 6941 | 6888 | 6902 | 6898 | 6902 | 6897 | 6924 | 6892 | 6942 | 6893 |
UL | 7039 | 7111 | 7074 | 7171 | 7093 | 7161 | 7138 | 7178 | 7114 | 7165 | 7140 |
Mean | 7043 | 7039 | 7027 | 7044 | 7051 | 7046 | 7046 | 7047 | 7043 | 7048 | 7044 |
AV | 13.6 | 14.0 | 7.0 | 28.0 | 13.8 | 18.0 | 7.4 | 16.0 | 8.4 | 18.0 | 10.0 |
Sandakan | |||||||||||
LL | 6954 | 7045 | 7030 | 7033 | 7032 | 7031 | 7002 | 7028 | 6982 | 7029 | 6991 |
UL | 7178 | 7191 | 7156 | 7223 | 7212 | 7283 | 7174 | 7229 | 7210 | 7234 | 7213 |
Mean | 7098 | 7097 | 7095 | 7110 | 7111 | 7113 | 7112 | 7099 | 7110 | 7099 | 7099 |
AV | 16.9 | 20.0 | 22.0 | 17.3 | 15.8 | 17.7 | 15.0 | 22.0 | 14.2 | 13.5 | 12.3 |
Kota Kinabalu | |||||||||||
LL | 6933 | 6987 | 7028 | 6942 | 6995 | 6907 | 7007 | 6917 | 7011 | 6928 | 6994 |
UL | 7106 | 7137 | 7192 | 7201 | 7209 | 7203 | 7224 | 7215 | 7230 | 7215 | 7289 |
Mean | 7099 | 7103 | 7107 | 7108 | 7110 | 7109 | 7108 | 7118 | 7118 | 7100 | 7119 |
AV | 22.0 | 12.0 | 8.0 | 25.0 | 18.8 | 21.2 | 14.1 | 18.1 | 18.3 | 18.3 | 27.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muslim, T.O.; Ahmed, A.N.; Malek, M.A.; Abdulmohsin Afan, H.; Khaleel Ibrahim, R.; El-Shafie, A.; Sapitang, M.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Investigating the Influence of Meteorological Parameters on the Accuracy of Sea-Level Prediction Models in Sabah, Malaysia. Sustainability 2020, 12, 1193. https://doi.org/10.3390/su12031193
Muslim TO, Ahmed AN, Malek MA, Abdulmohsin Afan H, Khaleel Ibrahim R, El-Shafie A, Sapitang M, Sherif M, Sefelnasr A, El-Shafie A. Investigating the Influence of Meteorological Parameters on the Accuracy of Sea-Level Prediction Models in Sabah, Malaysia. Sustainability. 2020; 12(3):1193. https://doi.org/10.3390/su12031193
Chicago/Turabian StyleMuslim, T. Olivia, Ali Najah Ahmed, M. A. Malek, Haitham Abdulmohsin Afan, Rusul Khaleel Ibrahim, Amr El-Shafie, Michelle Sapitang, Mohsen Sherif, Ahmed Sefelnasr, and Ahmed El-Shafie. 2020. "Investigating the Influence of Meteorological Parameters on the Accuracy of Sea-Level Prediction Models in Sabah, Malaysia" Sustainability 12, no. 3: 1193. https://doi.org/10.3390/su12031193
APA StyleMuslim, T. O., Ahmed, A. N., Malek, M. A., Abdulmohsin Afan, H., Khaleel Ibrahim, R., El-Shafie, A., Sapitang, M., Sherif, M., Sefelnasr, A., & El-Shafie, A. (2020). Investigating the Influence of Meteorological Parameters on the Accuracy of Sea-Level Prediction Models in Sabah, Malaysia. Sustainability, 12(3), 1193. https://doi.org/10.3390/su12031193