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Abstract: In the paper, a proposed particle swarm optimization (PPSO) is implemented for dealing
with an economic load dispatch (ELD) problem considering the competitive electric market. The main
task of the problem is to determine optimal power generation and optimal reserve generation of
available thermal generation units so that total profit of all the units is maximized. In addition,
constraints, such as generation limit and reserve limit of each unit, power demand and reserve
demand, must be exactly satisfied. PPSO is an improved version of conventional particle swarm
optimization (PSO) by combining pseudo gradient method, constriction factor and a newly proposed
position update method. On the other hand, in order to support PPSO to reach good results for the
considered problem, a new constraint handling method (NCHM) is also proposed for determining
maximum reserve generation and correcting reserve generation. Three test systems with 3, 10 and
20 units are employed to evaluate the real performance of PPSO. In addition to the comparisons
with previous methods, salp swarm optimization (SSA), modified differential evolution (MDE) and
eight other PSO methods are also implemented for comparisons. Through the result comparisons,
two main contributions of the study are as follows: (1) NCHM is very effective for PSO methods to
reach a high success rate and higher solution quality, (2) PPSO is more effective than other methods.
Consequently, NCHM and PPSO are the useful combination for the considered problem.

Keywords: competitive electricity market; maximum total profit; particle swarm optimization; total
fuel cost; total revenue

1. Introduction

Economic load dispatch (ELD) is one of the most important problems in power systems due
to its significant contributions to economy and operation stabilization of power system. The ELD
problem is mathematically formulated by the objective of minimizing fuel cost and a set of constraints
regarding thermal generation units and power systems [1]. The earliest ELD problem did not consider
power losses in transmission lines due to effects of resistance and reactance of transmission lines and
also ignored valve effects on power increase and decrease process of thermal generation units [2].
Another more complicated ELD problem has taken into account active power loss, the valve effects
and complex constraints of thermal generating units such as prohibited working zones [3], ramp rate
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limitations [4] and generation limitations [5]. The concerned problem has been solved by applying a
huge number of methods such as maximum likelihood optima (MLO) [6], evolutionary particle swarm
optimization algorithm (EPSO) [7], improved stochastic fractal search algorithm (ISFSA) [8], improved
social spider optimization algorithm (ISSOA) [9], interior search algorithm (ISA) [10], multi-leader
comprehensive learning particle swarm optimization with adaptive mutation (MLCL-PSO) [11],
dragonfly algorithm (DA) [12] and ameliorated grey wolf optimization (AGWO) [13]. In general, these
studies focused on demonstrating constraint handling ability and high-quality solution searching ability
of original methods and improved methods rather than proposing new issues and real phenomena
regarding power systems and electric components. In fact, complicated constraints, such as generation
limits, generation increase and decrease limits, prohibited working zones and active power reserve
requirement, have been taken into account. On the other hand, discontinuous objective functions
(i.e., fuel cost functions) have been considered to be huge challenges for solution methods. Multiple
fuels and valve effects on thermal generating units were challenges. These valve effects have been
represented as the sum of sinusoidal function and quadratic function meanwhile multiple fuels have
been shown as a sum function of two or three quadratic functions. The challenges were the vast
difficulties for optimization algorithms and ineffective algorithms could not reach global optimum
solution or nearby global optimum solutions. The real effectiveness of solution methods has been
confirmed by comparing fuel cost and computation speed. Clearly, the ELD problem is considered as
a very important problem in power system operation; however, it can become more realistic if the
competitive electric market is considered for process of electric generation and purchasing [14–16].
As joining competitive electricity market, thermal power plants have to supply electricity to loads
with the cheapest prices and the purpose is that loads can consume the highest power energy from
the thermal power plants. In this case, customers can get the highest profit by selecting the most
reasonable providers among available suppliers [17]. However, thermal power plants have to cope
with several difficulties. In fact, they have to decide how much active power should be generated to
supply to loads and how much active power should be reserved for coming time periods [18]. If higher
reserved power can be sold, higher benefit can be reached. However, if customers do not use the
reserved power, thermal power plants must suffer non-benefit [19]. Optimal operation of thermal
power plants in competitive electricity market has been widely and successfully studied [20–31].
Among the studies, start-up fuel cost has been concerned in some studies [20–28] while this cost has not
been taken into account in remaining studies. Different methods have been proposed for the problem
such as Lagrange function-based evolutionary programming (LFEP) [19], Tabu search algorithm
(TSA) [20], muller approach (MA) [21], memetic optimization algorithm (MOA) [22], modified artificial
bee colony optimization algorithm (MABCOA) [23], ant colony optimization algorithm (ACOA) [24],
multi-agent model algorithm (MAMA) [25], binary fish optimization algorithm (BFOA) [26], Lagrange
function-based invasive weed optimization algorithm (LFIWOA) [27], sine function and cosine
function-based algorithm (SCBA) [28], binary whale optimization algorithm (BWOA) [29], expanded
Lagrange function-based Hopfield network method (ELF-HNM) [30] and five Lagrange function-based
Hopfield neuron network (LF-HNN) methods [31]. The main difference between studies [1–13] and
studies [20–31] is competitive electric market. For example, the same authors have published three
studies [8,9,31] in Energies journal but only the study [31] has considered competitive electricity market.
Nonconvex fuel cost functions together with complicated constraints such as prohibited operating
zones and ramp rate limits have been considered in the two studies [8,9]. Whereas, the complex level
of the study [31] is due to competitive electricity market. In addition, applied methods in the studies
are also different. Improved versions of the meta-heuristic algorithm have been applied for nonconvex
economic load dispatch problem (ISFSA [8] and ISSOA [9]) whereas five LF-HNN methods have
been proposed for dealing with competitive electricity market [31]. Basically, the two metaheuristic
algorithms can deal with the competitive electricity market successfully but the five LF-HNN methods
fail to cope with nonconvex fuel cost function. Among the studies regarding the competitive electric
market, ELF-HNM was an application of Hopfield neuron network based on expanded Lagrange
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function. The method obtained better results than PSO and DE. However, the expanded function used
one more control parameter and the determination of the parameter became a problem. Conventional
Lagrange function was used to tackle the shortcoming of ELF-HNM [30]. Five different functions
were proposed to update output neurons such as Logistic, Hyperbolic tangent, Gompertz, Error and
Gudermanian function, leading to the appearance of five methods [31]. Among five LF-HNN methods,
LF-HNN with the application of error function was the best with the most stable search ability and the
highest performance. The ELF-HNM and LF-HNN have shown better search ability than metaheuristic
algorithms such as PSO, DE and cuckoo search algorithm (CSA). However, the application of the
traditional methods larger systems will become more difficult because the number of constraints
of the problem is not small. Basically, derivative-based methods have one additional parameter
for each constraint of problem and the selection of the parameter is not easy because there is not a
predetermined range for the parameter. Furthermore, the methods for finding the most appropriate
values are mainly based on the experiment. In addition, the methods must cope with difficulties of
deterministic methods since taking partial derivative must be required. As a result, the methods could
not deal with non-differential functions-based problems. Consequently, as the nonconvex fuel cost
function is taken into account, the utilization of Hopfield neuron network-based methods is impossible.
Therefore, meta-heuristic methods can solve the problem more easily and successfully, especially for
systems with large scale and valve effects.

Based on the competitive electric market in USA [32], the study [18] has established total revenue
function, total fuel cost function and total profit function for two different cases including payment
for power delivered and payment for reserve allocated. As a result, reserve market problem has
been mathematically formulated in the study [18] and then the formulation has been applied for
unit commitment problem [19]. The unit commitment problem is also the economic load dispatch
problem with considering operation status of available thermal generating units and start-up cost of
the units. The combination of unit commitment with competitive electric market has been dealt in
the study [19]. In our work, we have reduced the complex level of the study [19] by supposing that
all available thermal generating units are working. Thus, operation status and start-up cost of the
units are neglected in the paper. As a result, the problem formulation is established in Section 2 by
using previous studies [18,19] about competitive electric market and other previous studies [1–9] about
economic load dispatch problem.

Among existing metaheuristic algorithms, particle swarm optimization is a popular and effective
method with simple characteristic and simple implementation [33]. However, PSO is not a new method
and its performance is not really effective for all optimization problems, especially for complicated
problems with complicated constraints and nondifferentiable objective function. PSO is easily fallen
into local optimal zones, and the possibility of jumping out the zones and moving to global optimal
zones is low. However, it is not denied that PSO has been widely and successfully applied for many
optimization problems, and its improved versions have increased constantly such as MLCL-PSO for
ELD problem [11], hybrid particle swarm optimization (HPSO) for power loss optimization problem
in transmission networks [34], hybrid multiagent-based particle swarm optimization (HMPSO) [35],
PG-PSO for ELD problem [36], time-varying acceleration coefficients-based particle swarm optimization
(TVAC-PSO) for combined heat and power dispatch (CHPD) problem [37], and four PSO methods
such as constriction factor-based particle swarm optimization (CF-PSO), inertia weight factor-based
particle swarm optimization (IW-PSO), CF-PSO with local best particle and IW-PSO with local
best particle for CHPD problem [38]. As shown in the studies, these PSO methods could reach
good result with higher performance than other metaheuristic methods like DE, hybrid DE (HDE),
improved DE (IDE), GA, hybrid GA (HGA), TSA, gravitational search algorithm (GSA), harmony
search algorithm (HSA), evolutionary programming algorithm (EPA), simulated annealing algorithm
(SAA) and biogeography-based optimization algorithm (BBOA). It is clear that PSO variants are highly
effective for optimization problems in the power system field and the high-performance characteristics
of these methods have high contribution to the power system. Consequently, if PSO methods continue
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to be improved and applied for optimization problems for further investigation of performance,
researchers can select the most appropriate option for their own problem in the power system or
other engineering fields. In this paper, we apply PSO variants consisting of conventional PSO [33],
CF-PSO [39], IW-PSO [40], PG-PSO [41], IW-PG-PSO, CF-PG-PSO, TVIW-PSO [42], TVAC-PSO [43],
and PPSO. In PPSO method, we have combined pseudo gradient method, constriction factor, and a
newly proposed velocity update method. Pseudo gradient method is useful in determining better
direction for moving to new positions meanwhile constriction factor can support to limit search space.
The two applications can form a high-performance method, which is CF-PG-PSO. Furthermore, we also
propose a new position update method by using the so-far best position of each particle instead of
using the previous position in PSO. In addition, we propose NCHM that can satisfy power reserve
demand easily and successfully but the effectiveness is high. For presenting the real performance of
NCHM, the survey of obtained results from PPSO and eight other PSO methods with and without
using NCHM is accomplished by using a three-unit system with convex fuel cost function, a ten-unit
system with convex fuel cost function and a twenty-unit system with nonconvex fuel cost function.
For indicating the real performance of PPSO, it is compared to these eight PSO methods, SSA, MDE and
other previous methods such as PSO, DE, CSA, ELF-HNM and five LF-HNN methods. In summary,
the novelties of the study are as follows:

(1) Propose the effective NCHM for handling constraints.
(2) Propose the high performance PPSO.
(3) Consider valve effects on thermal generation units for the considered problem.

In addition, the application of PPSO method also has some advantages as follows:

(1) PPSO method has few control parameters, population and the number of iterations. Therefore,
the setting of the two parameters is simple.

(2) The process of evaluating solution quality is easily and simply performed by calculating
fitness function.

By owning novelties and advantages above, the study can reach the following main contributions:

(1) Reach very high success rate with 100%: Implemented methods using NCHM always reaches all
successful runs but the same implemented methods without using NCHM must suffer much
lower than 100% for success rate.

(2) Converge to high quality solutions: NCHM supports implemented methods to find global
optimum solutions with fast speed and reach high stability.

(3) PPSO method always reaches better results than other PSO, SSA, MDE and previous methods.
(4) PPSO method is faster than approximately all other methods for study cases.

However, in order to reach good results and appropriate simulation time for PPSO method, some
difficulties exist as follows:

(1) The most appropriate values for the population and the number of iterations are not easy to
select. In fact, higher values can result in better results but simulation time is still increased
correspondingly. If high values are set, all methods have the same best solution and the evaluation
is not exactly performed. In this case, real performance of PPSO method cannot be shown.

(2) The procedure of applying PPSO method is a long iterative algorithm. Therefore, the implementation
procedure must be careful and verification procedure must be serious.

In addition to introduction, other main sections of the paper are as follows: Mathematical
formulation of the problem is shown in Section 2. The construction of applied PSO methods is
expressed in Section 3. The application of the PSO methods for the problem is described in detail in
Section 4. Comparison and discussion of obtained results are shown in Section 5. Finally, a summary
of the contribution and future work is included in Section 6.
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2. Problem Formulation

2.1. Objective Function

The ELD problem in the competitive electric market is established by the presence of an objective
function and a set of constraints regarding thermal generating units as well as power systems. In order
to present the considered objective function, the fuel cost function for generating electricity is first
mentioned as follows:

For the case without considering valve point loading effects on thermal generation units during
the electricity generation process, fuel cost function is approximately expressed as the second order
function below [12]:

Fn = αn + βnPGn + χnPG2
n (1)

However, it is more appropriate since the valve effects are considered for the operation process of
the units, and a more complex function is used as follows [28]:

Fn = αn + βnPGn + χnPG2
n +

∣∣∣δn × sin(εn × (LBn − PGn))
∣∣∣ (2)

In the competitive electricity market, reserve power is really necessary and thermal units must
generate power higher than predetermined demand if reserve is allocated and used by loads. So, fuel
cost for both reserve generation and power generation must be taken into account based on Formulas
(1) and (2) above. The two new fuel cost functions are as follows:

F′n = αn + βn(PGn + RGn) + χn(PGn + RGn)
2 (3)

F′n = αn + βn(PGn + RGn) + χn(PGn + RGn)
2 +

∣∣∣δn × sin[εn × [LBn − (PGn + RGn)]]
∣∣∣ (4)

In the competitive electric market, each thermal power plant concerns two cases, the payment for
power delivered and the payment for reserve power. For each case, total revenue and total cost are
calculated as follows:

(1) Payment for power delivered

In this case, reserve power is only paid if the reserve power is used by customers. Thus, the price
of reserve power (PriceRP) is higher than the price of delivered power (PriceDP). The total revenue (TR)
and total cost (TC) are calculated by [19]:

TR = PriceDP ×

N∑
n=1

PGn.Stn + PriceRP

N∑
n=1

r×RGn.Stn (5)

TC = (1− r)
N∑

n=1

Fn.Stn + r
N∑

n=1

F′n.Stn +
N∑

n=1

FSUn.Stn (6)

In the two equations above, r is the probability that reserve power is called by the requirement
from loads. Stn is on/off operation status of the nth thermal generation unit. The parameter has two
values only, 1 for on operation status and 0 for off operation status. In addition, FSUn is start-up fuel
cost of the nth thermal generation unit. The determination of the status and the start-up fuel cost are
really important for finding optimal generation and optimal reserve as unit commitment problem
is considered. However, in the study, we consider pure economic load dispatch problem and the
assumption is that all thermal generation units are working. Therefore, the start-up fuel cost and on/off

operation status can be neglected, and the result does not influence the task of determining optimal
generation and optimal reserve.
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(2) Payment for reserve power
In this case, thermal power plants receive the price of reserve power because the reserve power is

not used. As the reserve power is used by loads, thermal power plants receive the price for delivered
power that was generated. So, the price of reserve power is much less than that of delivered power.
TR and TC are obtained by [19]:

TR = PriceDP ×

N∑
n=1

PGn.Stn + [(1− r).PriceRP + r.PriceDP]
N∑

n=1

RGn.Stn (7)

TC = (1− r)
N∑

n=1

Fn.Stn + r
N∑

n=1

F′n.Stn +
N∑

n=1

PriceDP.Stn (8)

In Equations (7) and (8), PriceDP and PriceRP are not fixed values and they are different for different
time periods in a day [18,19,44]. In fact, this issue was demonstrated [18] and different values for
these prices were then applied [19]. In this paper, we consider only one period for pure economic load
dispatch problem. Therefore, we only considered one fixed value for PriceDP and one fixed value for
PriceRP for each study case.

Finally, the total profit (TP) is determined by [18]:

TP = TR− TC (9)

The objective function is to maximize the total profit or minimize the minus total profit as follows:

Maximize {TP = TR− TC} or Minimize {−TP = TC− TR } (10)

In the Equations (5) and (7), total reserve power from all units (
N∑

n=1
RGn) can be from zero to

reserve demand (RD) depending on the obtained total profit. As seen from Equation (10), total profit
can be higher than zero if the total revenue is higher than total fuel cost. It can be seen from the
total fuel cost functions (6) and (8), fuel cost of generation and reserve can be considered if reserve is
called and used. So, Equations (5) and (7) can be obtained for any values of reserve and the profit is
dependent on the revenue for selling power and total fuel cost for generating power.

2.2. The Consisdered Constraints

(1) Power demand

Basically, the ELD problem is about determining power generation of all thermal units for
minimizing total cost of these units. Power balance constraint in the problem is about active power
in which total generation, power loss and power demand must follow the equality constraint [45,46].
Frequency stability is really important in high voltage networks [47] because power system cannot
be stably working if the frequency oscillation happens. Thus, in traditional economic load dispatch
problem, active power balance is seriously constrained as the following model [45]:

TPG − Ploss −D = 0 (11)

where Ploss is the total power losses in all transmission lines; TPG is total power generation of all power
sources [46] that can supply electricity to loads. TPG can be expressed in detail as follows:

TPG =
I∑

i=1

PHi +

J∑
j=1

PP j +
K∑

k=1

PWk +
N∑

n=1

PGn (12)
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where PHi is the power generation of the ith hydropower plant; PPj is the jth power generation of
photovoltaic system; PWk is the power generation of the kth wind turbine; and PGn is the power
generation of the nth thermal generation unit; I is the number of hydropower plants; J is the number of
photovoltaic systems; and K is the number of wind turbines

However, as considering competitive electricity market for economic load dispatch problem, the
power balance constraint above is rewritten as follows [18,19]:

N∑
n=1

PGn ≤ D (13)

On the contrary to the traditional economic load dispatch problem (neglecting competitive electric
market), total power generation from N units in the problem can be lower than the forecasted power
demand as long as the total profit of N units is high. Generation companies can select to purchase
power lower than demand [19].

However, power generation of each thermal generating unit must follow the limits below [30]

LBn ≤ PGn ≤ UBn (14)

(2) Reserve power demand

In the current industry, the significance of the total mean electricity cost can be directly found in
the requirement to satisfy the (N-1) contingency [48]. However, two high changes in the competitive
industry that are taking place can lead to the high deviations from the operation concept [18]. In the
studies [32,49], the reasons for making reserve markets and reserve generation contract were presented.
First, power energy providers will sell power energy to their customers via signed contracts. In order
to avoid the service interruption and compensate customers for the interruption due to the failure of
their own generator, the power energy providers may buy reserve power energy from other providers.
Second, since industrial zones or other high-power energy customers usually move to deregulation
of use of electricity, reserve market is really necessary. Namely, the reserve demand constraint is
formulated by:

N∑
n=1

RGn ≤ RD (15)

Similar to power generation, total reserve power of all units can be lower than reserve demand as
long as total profit is high and generation companies can purchase reserve lower than the forecasted
reserve demand [19].

However, reserve capability of each thermal generating unit is not infinite and constrained
by [18,19]:

0 ≤ RGn ≤ UBn − LBn (16)

RGn + PGn ≤ UBn (17)

As showing constraints (16) and (17) above, reserve generation limits of each thermal generating
unit are not fixed for different reserve demand and power demand. The limits are dependent on power
generation, which was predetermined. This issue is totally different from power generation limits that
are shown in constraint (14). So, the study focuses on a good method to reach the most appropriate
limits for reserve generation and find the best reserve power for each unit in competitive electricity
market. In general, previous studies have ignored the major issue.
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3. Applied PSO Methods

3.1. CF-PSO and IW-PSO

In 1995, Kennedy and Eberhart [33] developed conventional PSO to solve the optimization problem
and then the method was modified to be more effective for more complicated problems [39–43]. PSO
method is represented as two typical terms including velocity and position. The two main factors are
formulated by:

Venew
p = Vep + c1.ε1.(Pobest,p − Pop) + c2.ε2.(PoGbest − Pop) (18)

Ponew
p = Pop + Venew

p (19)

The process of updating new velocity by using (18) was considered to be limited due to the
constant change of velocity [39,40]. Then, inertia weight factor [39] and constriction factor [40] were
proposed for finding out more promising velocity. The application of the two factors results in the
following model:

Venew
p = ωVep + c1.ε1.(Pobest,p − Pop) + c2.ε2.(PoGbest − Pop) (20)

Venew
p = CF.

[
Vep + c1.ε1.(Pobest,p − Pop) + c2.ε2.(PoGbest − Pop)

]
(21)

where:
ω = ωmax.

ωmax −ωmin

Gmax
.G (22)

CF =
2∣∣∣∣∣2− (c1 + c1) −

√
(c1 + c1)

2
− 4(c1 + c1)

∣∣∣∣∣ (23)

In CF-PSO and IW-PSO, position update still utilizes Formula (19).

3.2. TVIW-PSO and TVAC-PSO

The combination of inertia weight factor and constriction factor has been applied to develop
TVIW-PSO method [42]. The proposal developed the new velocity as follows:

Venew
p = CF.

[
ωVep + c1.ε1.(Pobest,p − Pop) + c2.ε2.(PoGbest − Pop)

]
(24)

On the contrary, the study [43] has proposed the change for two acceleration coefficients c1 and c2,
and the new velocity of TVAC-PSO is determined by:

Venew
p = Vep + c′1.ε1.(Pobest,p − Pop) + c′2.ε2.(PoGbest − Pop) (25)

where
c′1 = (c1End − c1initial)

G
Gmax

+ c1initial (26)

c′2 = (c2End − c2initial)
G

Gmax
+ c2initial (27)

In the two equations above, c1initial and c1End are initial and final cognitive acceleration factors,
respectively. c2initial and c2End are initial and final social acceleration factors, respectively. The factors
are predetermined and fixed during the application of TVAC-PSO for a typical optimization problem.

3.3. PG-PSO

The pseudo-gradient based search algorithm (PGBSA) [41] has been proposed with intent to
select a more appropriate velocity direction for each considered particle. PGBSA could enable PSO to
determine the best direction in a large search space without requesting any complicated computation
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process. The application of PGBSA for PSO has developed PG-PSO and it has been implemented
for nonconvex economic load dispatch problem with complicated constraints and non-differentiable
objective function [41]. The method for updating new velocity in PG-PSO still applied formula of PSO
meanwhile the method for updating new position is determined by:

Ponew
p =

 Pop + α
(
Ponew

p

)
.
∣∣∣Venew

p

∣∣∣ i f Fp < FPre
p

Pop + Venew
p else

(28)

where α
(
Ponew

p

)
is direction determination factor and calculated by using the equation below.

α
(
Ponew

p

)
=


−1 i f Pop < PoPre

p
0 i f Pop = PoPre

p
1 else

(29)

3.4. The Proposed PSO Method

In this paper, we suggest applying the combination of PG-PSO with inertia weight factor to form
IW-PG-PSO and the combination of PG-PSO with constriction factor to form FC-PG-PSO. In addition,
we suggest one more modification for updating new positions as follows:

Ponew
p =

 Pobest,p + α.
∣∣∣Venew

p

∣∣∣ i f Fp < FPre
p

Pobest,p + Venew
p else

(30)

By applying the combination of FC-PG-PSO and the newly updated position model, PPSO is first
introduced in the paper. In summary, PPSO method applies Formulas (21) and (23) to update new
velocity and then applies Formulas (29) and (30) to update new position.

4. Implementation of PPSO Method for the Considered Problem

4.1. The New Constriaint Handling Method for Reseve Power

As shown in Equation (14), reserve power of each thermal generating unit n can be from 0 MW to
(UBn-LBn) but it is totally different if Equation (17) is considered as another main constraint. In fact,
Equation (17) indicates that the reserve must not be higher than (UBn-PGn) while PGn can be higher
than LBn. So, we suggest that upper bound of reserve should be determined first and then real reserve
can be constrained by the upper bound. Namely, the two formulas below should be used.

RGmax
n ≤ UBn − PGn (31)

0 ≤ RGn ≤ RGmax
n (32)

Therefore, in order to sure reserve power always satisfy constraints (16) and (17), the upper bound
of reserve should be determined first by using Equation (31) and then its value is checked and corrected
by the following model:

RGn =


0 i f RGn ≤ 0
RGmax

n i f RGn ≥ RGmax
n

RGn else
(33)
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4.2. Main Steps of the Proposed Method for the Implementation

4.2.1. Selection of Control Variables and Population Initialization

Basically, each solution p contains a set of control variables corresponding to considered problems.
In the paper, power generation and reserve generation are selected to be control variables and included
in each solution p (Pop) as the following expression:

Pop =
[
PGn,p, RGn,p

]
; n = 2, . . . , N (34)

The solution Pop is not infinite and seriously constrained by the upper bound PoUB and lower
bound PoLB, which are, respectively, determined by:

PoUB = [UBn, (UBn − LBn) ]; n = 2, . . . , N (35)

PoLB =
[
LBn, RGmin

n

]
; n = 2, . . . , N (36)

where RGmin
n is the minimum reserve generation of the nth thermal generating unit and is equal to 0,

as shown in Equation (32).
After determining control variables and their limitations, solution Pop (where p = 1, . . . , Nop) in

the population is randomly produced by:

Pop = PoLB + ε3.
(
PoUB

− PoLB
)
; p = 1, . . . , Nop (37)

4.2.2. Calculation of Dependent Variables

After having power generation and reserve generation from unit 2 to unit N, the power generation
and the reserve generation of the first thermal generating unit is determined by

PG1 ≤ D−
N∑

n=2

PGn (38)

RG1 ≤ RD−
N∑

n=2

RGn (39)

4.2.3. Correction for Produced Control Variables

After initializing solutions by using Equation (37), reserve generation must be checked and
corrected if it is outside the range between lower bound and upper bound. The correction for reserve
can be accomplished by using Section 4.1.

In addition, after updating new solutions by using Equation (30), power generation must be also
corrected by using Equation (40) below:

PGn =


LBn i f PGn ≤ LBn
UBn i f PGn ≥ UBn
PGn else

; n = 2, . . . , N (40)

Finally, reserve generation continues to be corrected by using Section 4.1.
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4.2.4. Handling Violation of Power Demand and Reserve Demand

After determining power generation and reserve generation by using Section 4.2.2, power demand
and reserve demand are checked and penalized if violations happen. Two penalty terms corresponding
to the violation of power demand and reserve demand are calculated by using the following models:

∆Dp =


0 i f

N∑
n=1

PGn,p ≤ D(
N∑

n=1
PGn,p −D

)2

else
(41)

∆RDp =


0 i f

N∑
n=1

RGn,p ≤ RD(
N∑

n=1
RGn,p −RD

)2

else
(42)

4.2.5. Handling Violation of the First Thermal Generating Unit

Power generation and reserve generation of the first thermal generating unit cannot be corrected
because they have a huge contribution to exactly met power demand and reserve demand. Thus,
penalty terms for the violations of the first thermal generating unit must be taken into account and
determined by:

∆PG1,p =



(
PG1,p − PGmin

1

)2
i f PG1,p < PGmin

1(
PG1,p − PGmax

1

)2
i f PG1,p > PGmax

1

0 else

(43)

∆RG1,p =



(
RG1,p −RGmin

1

)2
i f RG1,p < RGmin

1(
RG1,p −RGmax

1

)2
i f RG1,p > RGmax

1

0 else

(44)

4.2.6. Fitness Function

Fitness function must be calculated to evaluate the quality of solutions. Hence, the fitness function
has to point out the quality of objective function and the violation level of constraints and dependent
variables. In an ELD problem with the competitive electric market, the fitness function is the sum of
minus total profit and penalty terms for the violations of power demand, reserve demand and the first
thermal generation unit. In case of finding a valid solution, fitness function and the minus total profit
are the same meanwhile penalty terms are zero. Nevertheless, there is no warrantee that the valid
solution is the global optimum or close to the global optimum. In the study, the fitness function is
expressed as follows:

Fnew
p = (TC− TR) + K1.∆Dp + K2.∆RDp + K3.∆PG1,p + K4.∆RG1,p (45)

where K1, K2, K3 and K4 are penalty factors and determined by experiment.

4.3. Establishing Limits of Velocity and Producing Initial Velocity

The upper limit and lower limit of velocity are respectively determined by:

VeUB = Lim.
(
PoUB

− PoLB
)

(46)

VeLB = −Lim.
(
PoUB

− PoLB
)

(47)
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where Lim is the velocity limit factor and can be selected from 15% to 20% [36].
Similar to initial solutions, initial velocity has to be determined by:

Vep = VeLB + ε4.
(
VeUB

−VeLB
)
; p = 1, . . . , Nop (48)

4.4. Termination Criterion for Iterative Algorithm

Generally, termination criteria for an iterative algorithm in solving optimization problems can
be maximum mismatch of considered constraints, error tolerance of two consecutive iterations or
the number of iterations dependent on characteristic of implemented methods and characteristic of
considered problems. In the study, PPSO is a population-based method and heavily influenced by
random factors. Consequently, the number of iterations is used for the stopping criterion and collecting
results. A high possibility is that the high number of iterations can result in better optimal solutions
and more stable search ability. Thus, the search process is carried out until the last iteration is reached.
The most appropriate selection of the iteration is reached by experiment. However, the performance of
a run is heavily influenced by iterations and population. PPSO handles constraints (13) and (15) by
selecting reasonable control variables shown in (34) and other constraints (14), (16)–(17) by correcting
and using other penalty methods in Equations (31)–(44) so that considered constraints are exactly met.
One solution is considered as a valid one if there is no violation of the considered constraints. Normally,
one solution found by using the optimization algorithm, which is called the optimal solution, does not
necessarily have good quality. For an implemented run, if the total profit is equal to fitness function at
the last iteration (i.e., G = Gmax), it is a successful run. On the contrary, if fitness function is higher
than total profit (corresponding to penalty terms in (41)–(44) are higher than zero), there is at least one
violated constraint and this is an unsuccessful run.

4.5. The Entire Search Process of PPSO for the Considered Problem

The whole search process of PPSO can be summarized in Figure 1 and described in the following
computation steps.

Step 1: Set value to Nop and Gmax for the proposed method.
Step 2: Produce initial solutions and initial velocities by using (37) and (48), respectively.
Step 3: Calculate PG1 and RG1 by using (38) and (39), respectively.
Step 4: Determine RGmax

n (n = 1, . . . , N) by using Equation (31).
Step 5: Check and correct RGn (n = 1, . . . , N) by using (33).
Step 6: Determine penalty terms for the violation of power demand, reserve demand, power

generation of the first thermal generating unit and reserve generation of the first generating unit by
using Equations (41)–(44).

Step 7: Determine fitness function for each solution by using (45).
Step 8: Among current solutions, determine the best solution with the lowest fitness function and

set to PoGbest.
Step 9: Set current solutions to PoGbest and current iteration G to 1.
Step 10: Calculate Venew

p by using (21) and correct Venew
p if it is oust side limits. Namely, Venew

p is
set to VeLB if Venew

p < VeLB and Venew
p is set to VeUB if Venew

p > VeUB.
Step 11: Calculate Ponew

p by using (21) and (30) and correct PGn (n = 2, . . . , N) by using (40).
Step 12: Calculate PG1 and RG1 by using (38) and (39), respectively.
Step 13: Determine RGmax

n (n = 1, . . . , N) by using Equation (31).
Step 14: Check and correct RGn (n = 1, . . . , N) by using (33).
Step 15: Determine penalty terms for the violation of power demand, reserve demand, power

generation of the first thermal generating unit and reserve generation of the first generating unit by
using (41)–(44).

Step 16: Determine fitness function for each solution by using (45).
Step 17: Compare Pobest,p and Ponew

p (p = 1, . . . , Nop) to keep better one, and set kept one to Pobest,p.
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Step 18: Among current solutions Pobest,p, determine the best solution with the lowest and set
to PoGbest.

Step 19: If G = Gmax, stop search process. Otherwise, set G = G + 1 and back to Step 10.
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5. Numerical Results

In this section, we have implemented nine methods including PSO, CF-PSO, IW-PSO, PG-PSO,
IW-PG-PSO, CF-PG-PSO, TVIW-PSO, TVAC-PSO and PPSO for three test systems with two different
cases. The summary of the test systems and the two considered cases is as follows:

Test system 1: Three units with convex fuel cost function shown in Equation (1)
Test system 2: Ten units with convex fuel cost function shown in Equation (1)
Test system 3: Twenty units with nonconvex fuel cost shown in Equation (2)
Case 1: Total revenue and total fuel cost are obtained by using Equations (5) and (6)
Case 2: Total revenue and total fuel cost are obtained by using Equations (7) and (8)

The whole data of the tests and parameters corresponding to the two cases are given in Tables A1–A4
in the Appendix A. All implemented methods are coded on Matlab program language-version R2016a
and run on a personal computer with configuration as follows: CPU: Intel Core i7 with 2.4 GHz
processor and 4 GB of RAM 4 GB, GPU: Intel HD Graphics 5500, and system version: Windows 8.1
Pro-64-bit. For each study case, 50 successful runs are obtained. Basic parameters of PSO methods are
selected as follows:

(1) Nop = 5 and Gmax = 5 for test system 1
(2) Nop = 20 and Gmax = 100 for test system 2
(3) Nop = 30 and Gmax = 500 for test systems 3

5.1. The Impact of the Proposed NCHM on Results

In this section, we have run nine methods with and without using NCHM. Obtained results that
are used for comparison are success rate (SR) of reaching 50 successful runs, the maximum total profit
(MTP) and the average total profit (ATP). MTP is the best profit over 50 successful runs meanwhile ATP
is the average profit of 50 successful runs. MTP is used to evaluate the ability of finding the best optimal
solution meanwhile ATP is used to reflect the stability of the method over 50 successful runs. SR is
compared to reflect the ability of dealing with all constraints of applied methods. Normally, methods
with higher MTP are more effective because it can find better solutions; however, real improvement of
the methods can be further investigated as considering ATP for comparison. In fact, ATP is the average
value of 50 successful runs and higher ATP is corresponding to higher quality of 50 successful runs.
ATP is more valuable for a small-scale system like the three-unit system since MTP of methods with
and without CHM is not highly different, it is even considered approximately the same. However,
ATP of methods with and without CHM is much different. In this case, methods with higher ATP is
more effective and more stable for finding optimal solutions over a number of successful runs. So, ATP
is really necessary for comparison and evaluation. Furthermore, for a more exact comparison, we also
calculate higher MTP and higher ATP that methods using NCHM can reach as compared to the same
methods without using NCHM. Then, the values are converted to percent, which is similar to the
improvement level of NCHM.

As a result, all methods with using NCHM can reach 100% for success rate, but the success rate
from these methods without using NCHM is only from 83.3% to 92.5%. Figures 2 and 3 show MTP
and ATP for case 1 and case 2 of system 1. Similarly, Figures 4 and 5 show MTP and ATP for the two
cases of system 2, and Figures 6 and 7 show MTP and ATP of the two cases of system 3. In these
figures, the bars in blue and red are MTP values with and without using NCHM, while the bars in
grey and yellow are ATP values with and without using NCHM. It is seen that MTP with and without
using NCHM is approximately equal for system 1, while MTP with using NCHM is higher than MTP
without using NCHM for system 2 and system 3. On the contrary, ATP with using NCHM is always
much higher than ATP without using NCHM for two cases of three systems. The comment is the same
for MTP and ATP of nine implemented methods.
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Tables 1–3 report better MTP and ATP (in $/h and in %) of methods using NCHM as compared
to the same methods without NCHM. Table 1 sees that using NCHM can reach higher MTP from
$0.015 to $1.450 for case 1, and from $69.056 to $179.722 for case 2 of system 1. The higher value is
similar to the improvement level from 0.001% to 0.132% for case 1 and from 0.037% to 0.133% for
case 2. It is clear the MTP is not much improved by using NCHM, but the improvement of ATP is
much more significant. In fact, better value of ATP is from $69.056 to $179.722 for case 1 and from
$142.252 to $314.008 for case 2. The values are equivalent to the high improvement from 7.347% to
22.305% for case 1 and from 15.825% to 42.9% for case 2. Table 2 shows that MTP can be higher
from $39.15 to $938.57 corresponding to the improvement level from 0.27% to 6.89%, and ATP can be
higher by from $1741.05 to $4117.138 corresponding to the improvement level from 13.98% to 41.75%
for case 1 of system 2. For case 2, MTP can be higher by from $109.84 to $531.67 corresponding to
the improvement level from 0.81% to 4.06%, and ATP can be higher by from $9357.84 to $13,026.5
corresponding to the improvement level from 1544.92% to 11,313.34%. Table 3 shows that MTP can be
higher up to $425.54 corresponding to the improvement level of 2.09% and ATP can be higher up to
$2263.72 corresponding to the improvement level of 12.55% for case 1. For case 2, MTP can be higher
up to $286.23 corresponding to the improvement level of 1.97% and ATP can be higher up to $2376.208
corresponding to the improvement level of 20.24%.

In summary, the application of NCHM can support methods to reach significant achievements
as follows:

(1) Methods using NCHM can reach the highest SR with 100% but SR of the methods without using
NCHM is much lower, only from 83.3% to 92.5%.

(2) NCHM can support methods to find the global optimum solutions, high search stability and low
possibility to low quality solutions.
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Figure 2. Maximum total profit (MTP) and average total profit (ATP) obtained by particle swarm
optimization (PSO) methods with and without using NCHM for case 1 of system 1.



Sustainability 2020, 12, 1265 16 of 35

Sustainability 2020, 12, x FOR PEER REVIEW 16 of 36 

 

 

Figure 3. MTP and ATP obtained by PSO methods with and without using NCHM for case 2 of system 1. 

 

Figure 4. MTP and ATP obtained by PSO methods with and without using NCHM for case 1 of system 2. 

0

200

400

600

800

1000

1200

PSO IW-PSO CF-PSO PG-PSO IW-PG-PSO CF-PG-PSO TVIW-PSO TVAC-PSO PPSO

T
o

ta
l 

p
ro

fi
t 

($
/h

)

Applied methods

MTP with NCHM MTP without NCHM ATP with NCHM ATP without NCHM

Figure 3. MTP and ATP obtained by PSO methods with and without using NCHM for case 2 of
system 1.

Sustainability 2020, 12, x FOR PEER REVIEW 16 of 36 

 

 

Figure 3. MTP and ATP obtained by PSO methods with and without using NCHM for case 2 of system 1. 

 

Figure 4. MTP and ATP obtained by PSO methods with and without using NCHM for case 1 of system 2. 

0

200

400

600

800

1000

1200

PSO IW-PSO CF-PSO PG-PSO IW-PG-PSO CF-PG-PSO TVIW-PSO TVAC-PSO PPSO

T
o

ta
l 

p
ro

fi
t 

($
/h

)

Applied methods

MTP with NCHM MTP without NCHM ATP with NCHM ATP without NCHM

Figure 4. MTP and ATP obtained by PSO methods with and without using NCHM for case 1 of
system 2.



Sustainability 2020, 12, 1265 17 of 35

Sustainability 2020, 12, x FOR PEER REVIEW 17 of 36 

 

 

Figure 5. MTP and ATP obtained by PSO methods with and without using NCHM for case 2 of system 2. 

 

Figure 6. MTP and ATP obtained by PSO methods with and without using NCHM for case 1 of system 3. 

Figure 5. MTP and ATP obtained by PSO methods with and without using NCHM for case 2 of
system 2.

Sustainability 2020, 12, x FOR PEER REVIEW 17 of 36 

 

 

Figure 5. MTP and ATP obtained by PSO methods with and without using NCHM for case 2 of system 2. 

 

Figure 6. MTP and ATP obtained by PSO methods with and without using NCHM for case 1 of system 3. 
Figure 6. MTP and ATP obtained by PSO methods with and without using NCHM for case 1 of
system 3.



Sustainability 2020, 12, 1265 18 of 35

Sustainability 2020, 12, x FOR PEER REVIEW 18 of 36 

 

 

Figure 7. MTP and ATP obtained by PSO methods with and without using NCHM for case 2 of system 3. 

Table 1. Better maximum total profit (MTP) and average total profit (ATP) in $/h and % by using 

NCHM for test system 1. 

Method 

Case 1 Case 2 

Higher MTP Higher ATP Higher MTP Higher ATP 

In $/h In % In $/h In % In $/h In % In $/h In % 

PSO 1.45 0.13 130.40 15.85 1.23 0.11 236.62 30.86 

IW-PSO 0.23 0.02 146.86 18.49 0.60 0.05 193.05 22.92 

CF-PSO 0.33 0.03 114.68 13.76 0.65 0.06 151.21 17.39 

PG-PSO 0.10 0.01 125.65 14.67 1.45 0.13 194.86 23.19 

IW-PG-PSO 0.23 0.02 76.28 8.38 0.40 0.04 178.47 20.32 

CF-PG-PSO 0.75 0.07 88.61 9.66 0.54 0.05 142.25 15.82 

TVIW-PSO 0.13 0.01 168.25 21.31 1.02 0.09 314.01 42.90 

TVAC-PSO 0.37 0.03 179.72 22.30 0.90 0.08 261.25 33.78 

PPSO 0.02 0.00 69.06 7.35 0.45 0.04 199.24 23.04 

Table 2. Better MTP and ATP in $/h and % by using NCHM for test system 2. 

Method 

Case 1 Case 2 

Higher MTP Higher ATP Higher MTP Higher ATP 

In $/h In % In $/h In % In $/h In % In $/h In % 

PSO 391.03 2.76 3580.52 34.21 196.80 1.46 4146.69 45.99 

IW-PSO 787.98 5.72 3300.27 31.08 115.63 0.86 4766.99 52.09 

CF-PSO 938.57 6.89 4026.77 40.35 114.78 0.85 4932.34 54.35 

PG-PSO 53.79 0.37 2694.35 23.64 75.03 0.55 2667.70 23.35 

IW-PG-PSO 275.97 1.93 2893.48 25.89 160.95 1.19 3027.44 27.41 

CF-PG-PSO 178.00 1.24 3533.46 33.79 79.73 0.59 3137.16 28.90 

TVIW-PSO 331.59 2.33 4117.14 41.75 124.70 0.92 4838.27 52.94 

TVAC-PSO 414.13 2.93 3291.83 30.42 114.91 0.85 3335.88 30.96 

PPSO 39.15 0.27 1741.05 13.98 11.13 0.08 1343.79 10.46 

Table 3. Better MTP and ATP in $/h and % by using NCHM for test system 3. 

Figure 7. MTP and ATP obtained by PSO methods with and without using NCHM for case 2 of
system 3.

Table 1. Better maximum total profit (MTP) and average total profit (ATP) in $/h and % by using
NCHM for test system 1.

Method
Case 1 Case 2

Higher MTP Higher ATP Higher MTP Higher ATP
In $/h In % In $/h In % In $/h In % In $/h In %

PSO 1.45 0.13 130.40 15.85 1.23 0.11 236.62 30.86
IW-PSO 0.23 0.02 146.86 18.49 0.60 0.05 193.05 22.92
CF-PSO 0.33 0.03 114.68 13.76 0.65 0.06 151.21 17.39
PG-PSO 0.10 0.01 125.65 14.67 1.45 0.13 194.86 23.19

IW-PG-PSO 0.23 0.02 76.28 8.38 0.40 0.04 178.47 20.32
CF-PG-PSO 0.75 0.07 88.61 9.66 0.54 0.05 142.25 15.82
TVIW-PSO 0.13 0.01 168.25 21.31 1.02 0.09 314.01 42.90
TVAC-PSO 0.37 0.03 179.72 22.30 0.90 0.08 261.25 33.78

PPSO 0.02 0.00 69.06 7.35 0.45 0.04 199.24 23.04

Table 2. Better MTP and ATP in $/h and % by using NCHM for test system 2.

Method
Case 1 Case 2

Higher MTP Higher ATP Higher MTP Higher ATP
In $/h In % In $/h In % In $/h In % In $/h In %

PSO 391.03 2.76 3580.52 34.21 196.80 1.46 4146.69 45.99
IW-PSO 787.98 5.72 3300.27 31.08 115.63 0.86 4766.99 52.09
CF-PSO 938.57 6.89 4026.77 40.35 114.78 0.85 4932.34 54.35
PG-PSO 53.79 0.37 2694.35 23.64 75.03 0.55 2667.70 23.35

IW-PG-PSO 275.97 1.93 2893.48 25.89 160.95 1.19 3027.44 27.41
CF-PG-PSO 178.00 1.24 3533.46 33.79 79.73 0.59 3137.16 28.90
TVIW-PSO 331.59 2.33 4117.14 41.75 124.70 0.92 4838.27 52.94
TVAC-PSO 414.13 2.93 3291.83 30.42 114.91 0.85 3335.88 30.96
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Table 3. Better MTP and ATP in $/h and % by using NCHM for test system 3.

Method
Case 1 Case 2

Higher MTP Higher ATP Higher MTP Higher ATP
In $/h In % In $/h In % In $/h In % In $/h In %

PSO 20.24 0.10 2263.72 12.56 281.76 1.95 2277.23 19.11
IW-PSO 28.26 0.14 2173.71 12.07 146.23 1.01 2376.21 20.24
CF-PSO 425.54 2.09 2155.86 11.89 174.51 1.21 1852.81 14.95
PG-PSO 241.38 1.17 1302.57 6.84 146.42 1.01 919.01 6.87

IW-PG-PSO 296.20 1.44 1070.75 5.62 286.23 1.97 612.94 4.47
CF-PG-PSO 30.34 0.15 834.64 4.29 124.28 0.85 850.62 6.40
TVIW-PSO 357.07 1.75 2101.92 11.59 73.69 0.51 628.74 4.68
TVAC-PSO 315.84 1.54 2078.20 11.34 209.16 1.44 1286.83 9.85

PPSO 83.30 0.40 611.88 3.07 83.32 0.57 670.91 4.81

5.2. Comparison for Test System 1

In this section, we compare the real performance of the proposed PSO method with other PSO and
previous methods as testing on three-unit system. In addition, we have also implemented salp swarm
algorithm (SSA) [50] and modified differential evolution (MDE) [51] by setting the same population
and the number of iterations as PSO methods.

Tables 4 and 5 show the result comparison for case 1 and case 2, respectively. The comparisons
indicate that PPSO can reach better MTP and ATP values than other implemented PSO methods, SSA
and MDE for the two cases. MTP and ATP of PPSO are respectively $1102.451 and $1008.9942 for case
1, and $1095.648 and $1063.955 for case 2 but those of others are lower. For instance, MTP of others is
from $1102.024 to $1102.4502 and ATP of others is from $935.3537 to $1006.0338 for case 1. Similarly,
MTP of others is from $1094.993 to $1095.648 and ATP of others is from $872.2816 to $1056.866 for case
2. Clearly, PPSO can find the best optimal solution with the highest profit and all runs of PPSO reach
higher performance than other PSO methods, SSA and MDE. Furthermore, PPSO is a more stable
method in the searching process since its standard deviation (STD) is much lower than these methods.
Namely, it is 96.4 for case 1 and 97.3 for case 2 whereas that of other ones is increased from 101.6 to
196.7 for case 1 and from 110.1 and 212.5 for case 1.

As compared to other remaining methods such as ELF-HNM [30], PSO [31], CSA [31], DE [31]
and five Hopfield Lagrange network-based methods [31], PPSO can reach the same best solutions as
approximately all these methods excluding LF-HLN-GdF [31], LF-HLN-GF [31] and LF-HLN-LF [31]
for case 2 with worse solutions than PPSO. In connection with the comparison of ATP, PPSO is more
effective than other metaheuristic algorithms like PSO and DE but the achievement is not reached again
as comparing to CSA and five Hopfield Lagrange network-based methods. However, PPSO is still
superior to these methods since it has been run by setting 5 to population and 5 to iterations and spent
less computation time. In fact, DE, PSO and CSA have been implemented by using 5 for population
and 500 for the number of iterations meanwhile these five Hopfield Lagrange network-based methods
are deterministic algorithms with very small change among different runs.

Figures 8 and 9 show the best convergence characteristics corresponding to the best run over 50
successful runs while Figures 10 and 11 illustrate the mean solution searching characteristic of the 50
successful runs for case 1 and case 2, respectively. The four figures have the same manner that PPSO is
slower than other ones at the first iterations but PPSO converges to better solutions at final iterations.
Figures 8 and 9 are about the maximum total profit, so all methods have the same final point. On the
contrary, Figures 10 and 11 are about the average total profit, so the final point of PPSO is much higher
than that of other ones. It is clear that PPSO has better ability of jumping out local zones and converge
to more promising zones.

In summary, PPSO can improve result more effectively than other PSO methods and it can
reach approximately equal or better results than other ones, however, it is always faster than other
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ones. Therefore, PPSO is really a highly efficient method for the system with 3 units and convex fuel
cost function.

Table 4. Comparison of results obtained for case 1 of system 1.

Method MTP ($/h) ATP ($/h) STD Gmax Nop Cpu Time (s)

LF-HLN-EF [31] 1102.45 1102.45 - - - 0.017
LF-HLN-THF [31] 1102.45 1102.45 - - - 0.02
LF-HLN-GdF [31] 1102.45 1102.45 - - - 0.06
LF-HLN-GF [31] 1102.45 1102.449 - - - 0.062
LF-HLN-LF [31] 1102.45 1102.45 - - - 0.069

PSO [31] 1102.45 938.8674 - 500 5 0.383
CSA [31] 1102.45 1099.229 - 500 5 0.765
DE [31] 1102.45 635.3542 - 500 5 0.808

ELF-HNM [30] 1102.45 - - - - 0.16
SSA 1102.45 935.3537 193.9 5 5 0.0055

MDE 1102.45 1001.462 108.5 5 5 0.0235
PSO 1102.024 953.201 186.4 5 5 0.0027

IW-PSO 1102.45 941.067 183.6 5 5 0.0027
CF-PSO 1102.45 948.201 176.9 5 5 0.0023
PG-PSO 1102.444 981.901 190.7 5 5 0.0052

IW-PG-PSO 1102.367 986.454 101.6 5 5 0.0051
CF-PG-PSO 1102.442 1006.033 195.4 5 5 0.0054
TVIW-PSO 1102.449 957.905 196.7 5 5 0.0028
TVAC-PSO 1102.45 985.487 185.1 5 5 0.0026

PPSO 1102.451 1008.994 96.4 5 5 0.0051

Table 5. Comparison of results obtained for case 2 of system 1.

Method MTP ($/h) ATP ($/h) STD Gmax Nop Cpu Time (s)

LF-HLN-EF [31] 1095.648 1095.648 - - - 0.07
LF-HLN-THF [31] 1095.647 1095.647 - - - 0.1
LF-HLN-GdF [31] 1095.61 1095.61 - - - 0.18
LF-HLN-GF [31] 1095.589 1095.589 - - - 0.185
LF-HLN-LF [31] 1095.59 1095.59 - - - 0.32

PSO [31] 1095.648 943.7049 - 500 5 0.77
CSA [31] 1095.648 1088.329 - 500 5 0.82
DE [31] 1095.648 745.1618 - 500 5 0.95

ELF-HNM [30] 1095.648 - - - - 0.16
SSA 1094.993 950.3221 190.3 5 5 0.0043

MDE 1095.412 872.2816 212.5 5 5 0.0238
PSO 1095.624 1003.32 185.1 5 5 0.0022

IW-PSO 1095.648 1035.424 115 5 5 0.0053
CF-PSO 1095.648 1020.58 170.1 5 5 0.0029
PG-PSO 1095.648 1035.26 141.9 5 5 0.0045

IW-PG-PSO 1095.648 1056.866 123.1 5 5 0.0043
CF-PG-PSO 1095.647 1041.161 142.2 5 5 0.0058
TVIW-PSO 1095.648 1045.962 110.1 5 5 0.0025
TVAC-PSO 1095.648 1034.671 120.3 5 5 0.0025

PPSO 1095.648 1063.955 97.3 5 5 0.0049
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5.3. Comparison for Test System 2

In this section, we compare the real performance of the proposed PSO method with other PSO,
SSA and MDE and previous methods by using the ten-unit system without valve effects of thermal
units. Tables 6 and 7 show result comparison for case 1 and case 2 of the system. From the tables,
it is seen that PPSO can reach better MTP and ATP than other implemented PSO, SSA and MDE
methods for the two cases. MTP and ATP from PPSO are respectively $14,564.74 and $14,193.08 for
case 1 and $13,635.12 and $13,525.28 for case 2 whereas those from other implemented methods are
much worse. In fact, SSA must suffer the worst MTP with the lowest values of $14,370.95 for case 1
and $13,597.06 for case 2 whereas the second-best methods consisting of CF-PSO and TVIW-PSO can
reach $14,563.77 for case 1 and the second-best method, IW-PG-PSO, can reach $13,635.04 for case
2. Similarly, ATP of the worst method and the second-best method is $13,918.55 and $14,128.56 for
case 1 and is $13,086.99 and $13,454.77 for case 2. Clearly, all methods cannot reach the highest profit
and find the global optimal solution that PPSO can. Furthermore, the stability of PPSO is always
better since the standard deviation is also much lower than other ones. The standard deviation of
PPSO is 236.9 for case 1 and 105.1 for case 2 whereas that of others is from 237.1 to 617.6 for case 1
and from 109.8 to 605.7 for case 2. The convergence characteristic for the best run and mean solution
searching characteristic for 50 successful runs are respectively plotted in Figures 12–15 for the two
cases. As seen in Figures 12 and 13, PPSO cannot reach better solutions than other ones at the first
20 iterations, however, PPSO can find better solutions. Moreover, the superiority of PPSO over other
ones can be clearly seen through Figures 14 and 15. Mean convergence curves of PPSO have much
higher profit than those of other ones for both case 1 and case 2 from the first iteration to the last one.
This means that PPSO has stronger search ability than other ones.

As compared to other remaining methods [30,31], PPSO can reach better MTP than approximately
all methods for the two cases excluding LF-HLN-EF, LF-HLN-THF and ELF-HNM for case 1. Especially,
as comparing to PSO [31], DE [31] and CSA [31], PPSO can reach much higher MTP and ATP. PPSO can
reach higher MTP than PSO, CSA and DE by $382.55, $0.69 and $511.71 for case 1, and $1406.67, $929.64
and $1471.55 for case 2. Similarly, PPSO can also reach much higher ATP than PSO, DE and CSA for the
two cases. Clearly, the improvement of PPSO over PSO, DE and CSA is significant. Although PPSO can
reach higher ATP than all methods, PPSO has implemented only 100 iterations with population of 20,
whereas, PSO, DE and CSA have used 500 iterations and population of 5. Furthermore, computation
time of the proposed method is still much faster than these methods.

In summary, PPSO can find better or the same solutions with other compared methods but
it outperforms these methods in terms of convergence speed and stability of searching ability.
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Consequently, PPSO is really effective for the system with ten units and without valve effects of
thermal units.

Table 6. Comparison of results obtained for case 1 of system 2.

Method MTP ($/h) ATP ($/h) STD Gmax Nop Cpu Time (s)

LF-HLN-EF [31] 14,564.73 14,564.73 - 194 - 0.08
LF-HLN-THF [31] 14,564.73 14,564.73 - 225.6 - 0.1
LF-HLN-GdF [31] 14,564.72 14,564.72 - 256.81 - 0.11
LF-HLN-GF [31] 14,564.71 14,564.71 - 195 - 0.08
LF-HLN-LF [31] 14,564.71 14,564.71 - 279.57 - 0.22

PSO [31] 14,182.19 9771.186 - 500 5 1.5
CSA [31] 14,564.05 14,101.86 - 500 5 1.7
DE [31] 14,053.03 8416.163 - 500 5 1.9

ELF-HNM [30] 14,564.73 - 5000 - 0.18
SSA 14,370.95 14,128.56 237.1 100 20 0.1537

MDE 14,527.64 14,041.82 240.4 100 20 0.8143
PSO 14,563.76 14,046.23 411.4 100 20 0.0224

IW-PSO 14,563.73 13,918.55 417.3 100 20 0.0119
CF-PSO 14,563.77 14,007.25 381.5 100 20 0.0124
PG-PSO 14,563.74 14,091.15 416.1 100 20 0.019

IW-PG-PSO 14,563.74 14,071.23 398.1 100 20 0.0189
CF-PG-PSO 14,563.76 13,992.12 617.6 100 20 0.0207
TVIW-PSO 14,563.77 13,977.68 299.4 100 20 0.0133
TVAC-PSO 14,563.41 14,111.44 357.5 100 20 0.0122

PPSO 14,564.74 14,193.08 236.9 100 20 0.0148

Table 7. Comparison of results obtained for case 2 of system 2.

Method MTP ($/h) ATP ($/h) STD Gmax Nop Cpu Time (s)

LF-HLN-EF [31] 13,635.11 13,635.11 - 187 - 0.08
LF-HLN-THF [31] 13,635.11 13,635.11 - 227.56 - 0.1
LF-HLN-GdF [31] 13,635.11 13,635.11 - 270.48 - 0.12
LF-HLN-GF [31] 13,635.11 13,635.11 - 195 - 0.09
LF-HLN-LF [31] 13,635.11 13,635.11 - 278.86 - 0.22

PSO [31] 13,158.07 9824.841 - 500 5 1.6
CSA [31] 13,635.11 13,448.05 - 500 5 1.7
DE [31] 13,093.19 8346.24 - 500 5 2

ELF-HNM [30] 13,635.11 - - 5000 - 0.18
SSA 13,597.06 13,454.77 109.8 100 20 0.1535

MDE 13,626.02 13,353.64 515.4 100 20 0.84575
PSO 13,634.83 13,163.26 528 100 20 0.0138

IW-PSO 13,603.95 13,138.09 605.7 100 20 0.0172
CF-PSO 13,635.02 13,303.35 359.9 100 20 0.0119
PG-PSO 13,635.00 13,319.49 351.4 100 20 0.021

IW-PG-PSO 13,635.04 13,306.97 386.6 100 20 0.0251
CF-PG-PSO 13,635.02 13,321.75 348.8 100 20 0.0292
TVIW-PSO 13,618.66 13,086.99 591.6 100 20 0.0141
TVAC-PSO 13,634.92 13,326.12 315.9 100 20 0.0146

PPSO 13,635.12 13,525.28 105.1 100 20 0.0206
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5.4. Comparison for Test System 3

In this section, PPSO is compared to eight other PSO methods, SSA and MDE by employing
a 20-unit system with valve effects on thermal generation units. MTP and ATP obtained by all
implemented methods are respectively plotted in Figures 16 and 17. As shown in the two figures,
PPSO is the best method with the highest bars of MTP and ATP for both case 1 and case 2. Higher ATP
values of PPSO as comparing to other ones are significant for the two cases. For better view of the
superiority, Figures 18 and 19 are plotted to report higher MTP and ATP values obtained by PPSO as
compared to other methods. As observing from the figures, PPSO can reach higher MTP values than
other method by from $86.32 to $252.61 for case 1, and from $43.61 to $246.26 for case 2. Similarly,
PPSO can reach higher ATP values than others by from $170.18 to $451.23 for case 1, and from $261.82
to $551.12 for case 2. The results are corresponding to the improvement level from 0.63% to 1.22% for
MTP and from 1.2% to 2.24% for ATP of case 1. For case 2, the improvement is from 0.29% to 1.69% for
MTP and from 1.82% to 3.92% for ATP. Figure 20 showing standard deviation of 50 successful runs is
also a good evidence for confirming the strong search of PPSO since two bars of PPSO for the two
cases are the lowest among eleven implemented ones.

As seen from the computation time shown in Figure 21, all applied methods have approximately
equal time because we have set the same population and the same number of iterations for them.
So, simulation time is approximately the same. However, the convergence characteristics of the best
run and the mean solution searching characteristics in Figures 22–25 for case 1 and case 2 can indicate
that PPSO is faster and more stable than other ones. PPSO can find much better solutions than others
after the 100th iteration and even solution of other methods at the 500th iteration is much worse than
that of PPSO at the 100th iteration. Clearly, PPSO is significantly faster than these compared methods.

In summary, as implementing PPSO and other meta-heuristic algorithms for the largest system
with 20 units considering valve effects, PPSO can show outstanding performance, since it can reach
much better solutions, more stable searching ability and faster search process. Hence, PPSO is a
promising method for dealing with ELD problem considering competitive electric market and valve
effects on thermal generation units.



Sustainability 2020, 12, 1265 26 of 35

Sustainability 2020, 12, x FOR PEER REVIEW 26 of 36 

 

 

Figure 16. MTP and ATP obtained by implemented methods for case 1 of system 3. 

 

Figure 17. MTP and ATP obtained by implemented methods for case 2 of system 3. 

  

2
0

7
0

9
.7

8

2
0

3
6

2
.0

9

2
0

7
2

1
.9

6

2
0

1
3

7
.7

2

2
0

7
8

9
.5

8

2
0

2
9

0
.3

0

2
0

7
1

9
.2

3

2
0

1
8

1
.3

1

2
0

7
5

6
.8

7

2
0

2
9

2
.1

2

2
0

8
1

0
.5

7

2
0

3
3

3
.9

1

2
0

8
3

6
.4

9

2
0

1
2

2
.6

7

2
0

8
3

9
.1

0

2
0

2
7

3
.5

6

2
0

7
2

7
.2

5

2
0

2
3

3
.3

5

2
0

8
8

5
.5

2

2
0

4
0

3
.7

2

2
0

9
7

1
.8

4

2
0

5
7

3
.9

0

M T P ( $ / h ) A T P ( $ / h )

T
o

ta
l 

p
ro

fi
t 

($
/h

)

Applied Methods

SSA MDE PSO IW-PSO CF-PSO PG-PSO

IW-PG-PSO CF-PG-PSO TVIW-PSO TVAC-PSO PPSO

1
4

6
1

0
.0

5

1
4

3
4

9
.3

6

1
4

3
1

0
.5

7
4

6
9

1
3

9
3

5
.2

6
8

9
6

1
4

6
9

6
.9

9

1
4

1
9

4
.5

4

1
4

6
8

0
.3

2

1
4

1
1

5
.3

1

1
4

6
1

9
.7

4

1
4

2
5

0
.1

9

1
4

6
6

2
.9

8

1
4

2
9

3
.7

7

1
4

7
8

5
.9

4

1
4

3
2

7
.4

9

1
4

7
3

3
.7

0

1
4

1
4

8
.2

3

1
4

5
8

3
.2

9

1
4

0
5

7
.8

4

1
4

7
1

3
.4

1

1
4

3
4

7
.1

4

1
4

8
2

9
.5

5

1
4

6
0

8
.9

6

M T P ( $ / h ) A T P ( $ / h )

T
o

ta
l 

p
ro

fi
t 

($
/h

)

Applied Methods

SSA MDE PSO IW-PSO CF-PSO PG-PSO

IW-PG-PSO CF-PG-PSO TVIW-PSO TVAC-PSO PPSO

Figure 16. MTP and ATP obtained by implemented methods for case 1 of system 3.
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Figure 18. Higher MTP and ATP obtained by PPSO as comparing to other methods for case 1 of
system 3.
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Figure 19. Higher MTP and ATP obtained by PPSO as comparing to other methods for case 2 of
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Figure 20. Standard deviation of implemented methods for two cases of system 3.
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Figure 21. Average computation time for each run of implemented methods for system 3.
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Figure 22. Convergence characteristic of implemented methods corresponding to the best run for case
1 of system 3.

Sustainability 2020, 12, x FOR PEER REVIEW 29 of 36 

 

 

Figure 23. Convergence characteristic of implemented methods corresponding to the best run for case 

2 of system 3. 

 

Figure 24. Mean solution convergence characteristic of implemented methods for case 1 of system 3. 

 

Figure 25. Mean solution convergence characteristic of implemented methods for case 2 of system 3. 

Power generation and reserve power of each thermal generation unit are reported in Table A5, 

Tables A6 and A7 in Appendix for the three studied systems. As calculated from the tables, total 

power generation and reserve are, respectively, 924.5042 MW and 100 MW for the three-unit system, 

Figure 23. Convergence characteristic of implemented methods corresponding to the best run for case
2 of system 3.

Sustainability 2020, 12, x FOR PEER REVIEW 29 of 36 

 

 

Figure 23. Convergence characteristic of implemented methods corresponding to the best run for case 

2 of system 3. 

 

Figure 24. Mean solution convergence characteristic of implemented methods for case 1 of system 3. 

 

Figure 25. Mean solution convergence characteristic of implemented methods for case 2 of system 3. 

Power generation and reserve power of each thermal generation unit are reported in Table A5, 

Tables A6 and A7 in Appendix for the three studied systems. As calculated from the tables, total 

power generation and reserve are, respectively, 924.5042 MW and 100 MW for the three-unit system, 

Figure 24. Mean solution convergence characteristic of implemented methods for case 1 of system 3.



Sustainability 2020, 12, 1265 29 of 35

Sustainability 2020, 12, x FOR PEER REVIEW 29 of 36 

 

 

Figure 23. Convergence characteristic of implemented methods corresponding to the best run for case 

2 of system 3. 

 

Figure 24. Mean solution convergence characteristic of implemented methods for case 1 of system 3. 

 

Figure 25. Mean solution convergence characteristic of implemented methods for case 2 of system 3. 

Power generation and reserve power of each thermal generation unit are reported in Table A5, 

Tables A6 and A7 in Appendix for the three studied systems. As calculated from the tables, total 

power generation and reserve are, respectively, 924.5042 MW and 100 MW for the three-unit system, 

Figure 25. Mean solution convergence characteristic of implemented methods for case 2 of system 3.

Power generation and reserve power of each thermal generation unit are reported in Tables A5–A7
in Appendix A for the three studied systems. As calculated from the tables, total power generation and
reserve are, respectively, 924.5042 MW and 100 MW for the three-unit system, 1500 MW and 150 MW
for the ten-unit system, and 2463.39 MW and 241.2707 (for case 1) and 2469.973 MW and 20.1596 MW
(for case 2) for the twenty-unit system. As compared to power demand and reserve demand shown in
Table A4, balance of generation and reserve for ten-unit system is satisfied, while the balance of the
three-unit system and the twenty-unit system is not met. The same results can be seen as referring to
three-unit system and twenty-unit system of unit commitment problem [19], and three-unit system
of economic load dispatch problem [30]. In competitive electric market, generation companies can
provide power and reserve lower than forecasted power and reserve demand as long as they reach
high profit [19].

6. Conclusions and Future Work

In the paper, a proposed particle swarm optimization has been compared to SSA, MDE and eight
other PSO methods in finding optimal solutions of ELD problem taking into account competitive
electric market. Study cases were three different systems with 3, 10 and 20 units in which the 20-unit
system has considered valve point effects on thermal generation units. In addition, a new constraint
handling method has been also applied for all methods. As a result, the proposed constraint handling
method was very useful in reaching the highest success rate of 100% and finding much better optimal
solutions for all cases. As compared with SSA, MDE and eight other PSO methods, the proposed
method was the best because it could find the same or better solutions than these methods but it was
faster than the methods for approximately all study cases. Furthermore, the proposed method was also
compared to other previous methods for evaluating clear improvement level. The proposed method
could find either equal or better solution quality than others meanwhile the proposed method has
used smaller number of iterations. As a result, it is recommended that the new constraint handling
method should be used for the problem as applying metaheuristic methods and the proposed method
should be used for ELD problem considering competitive electric market.

In this paper, we have considered only thermal power plants in competitive electric market,
namely thermal generation units in a thermal power plant. It is obvious that all types of power plants
can supply electricity in a competitive electric market; however, their optimization operation strategies
can be different from thermal power plants. In fact, hydropower plants can store water by using
pumped storage system and reaching the best operation strategy. Wind turbine can adjust power
output by changing bitch angle. Operating power plants in competitive electric market is separated
and different power plants have different prices depending on type of power plants and different
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fuel characteristics. In the future, we will consider only wind turbines or photovoltaic systems in the
electric market. The proposed PSO method will be successfully applied for the renewable energies in
electric market. As shown in Section 4, the proposed PSO method can be successfully implemented for
the problem as long as fitness function is correctly established. In the fitness function of the considered
problem, objective function is total profit meanwhile penalty terms are to avoid the violations of power
generation and reserve power of the first thermal generation unit, the violation of power demand and
the violation of reserve demand. For the case that wind turbines together with photovoltaic systems
are considered and mathematical formulation is successfully developed, the proposed PSO and other
meta-heuristic algorithms are capable of solving the new problem.
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Abbreviations

IW-PG-PSO Inertia weight factor and pseudo gradient -based particle swarm optimization
CF-PG-PSO Constriction factor and Pseudo gradient-based particle swarm optimization
TVIW-PSO Time varying inertia weight factor-based particle swarm optimization
LF-HLN-EF Lagrange function-based Hopfield neuron network method with Error function
LF-HLN-THF Lagrange function-based Hopfield neuron network method with hyperbolic tangent function
LF-HLN-GdF Lagrange function-based Hopfield neuron network method with Gudermanian function
LF-HLN-GF Lagrange function-based Hopfield neuron network method with Gompertz function
LF-HLN-LF Lagrange function-based Hopfield neuron network method with Logistic function

Nomenclature

αn, βn, χn, δn, εn Known coefficients of fuel cost function of the nth unit
c1, c2 Acceleration constants
D Forecasted power demand
∆Dp Penalty term for the violation of power demand corresponding to the pth solution
∆RDp Penalty term for the violation of reserve demand corresponding to the pth solution

∆PG1,p
Penalty term for the violation of power generation of the first thermal generation unit
corresponding to the pth solution

∆RG1,p
Penalty term for the violation of reserve of the first thermal generation unit
corresponding to the pth solution

ε1, ε2, ε3 Random numbers generated in range of [0,1]
Fp Fitness function of old position Pop

Fnew
p Fitness function of new position

Fn Fuel cost function of the nth thermal generation unit as producing power only
F′n Fuel cost function of the nth thermal generation unit as producing power and reserve
G Current iteration
Gmax Maximum iteration
LBn Lower bound of generation of the nth thermal generating unit
N Number of thermal generating units
n Unit index
Nop Population size
Ponew

p , Venew
p New position and new velocity of the pth particle

PoPre
p The previous position of old position

PGn Power generation of the nth thermal generating unit
PG1 Power generation of the first thermal generation unit
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Pobest,p The so-far best position of the pth particle
PoGbest The so-far best position of all particles
RD Forecasted reserve power demand
RGn Reserve generation of the nth thermal generating unit
RG1 Reserve of the first thermal generation unit
TC Total cost
TP Total profit
TR Total revenue
UBn Upper bound of generation of the nth thermal generating unit
VeLB, VeUB Lower bound and upper bound of velocity
Vep, Pop Old velocity and position of the pth particle
ω Inertia weigh factor
ωmin,ωmax Minimum and maximum value of inertia weigh factor

Appendix A

Table A1. Data of the first system.

n χn βn αn LBn (MW) UBn (MW)

1 0.002 10 500 100 600
2 0.0025 8 300 100 400
3 0.005 6 100 50 200

Table A2. Data of the second system.

n χn βn αn LBn (MW) UBn (MW)

1 0.0004800 16.19 1000 150 455
2 0.0003100 17.26 970 150 455
3 0.00200 16.60 700 20 130
4 0.0021100 16.50 680 20 130
5 0.0039800 19.70 450 25 162
6 0.0071200 22.26 370 20 80
7 0.0007900 27.74 480 25 85
8 0.0041300 25.92 660 10 55
9 0.0022200 27.27 665 10 55

10 0.0017300 27.79 670 10 55

Table A3. Data of the third system

n χn βn αn δn εn LBn (MW) UBn (MW)

1 1000 18.19 0.00068 100 0.0840 150 600
2 970 19.26 0.00071 100 0.0840 50 200
3 600 19.8 0.00650 150 0.0630 50 200
4 700 19.1 0.00500 120 0.0770 50 200
5 420 18.1 0.00738 100 0.0840 50 160
6 360 19.26 0.00612 0 0 20 100
7 490 17.14 0.00790 0 0 25 125
8 660 18.92 0.00813 0 0 50 150
9 765 18.27 0.00522 0 0 50 200

10 770 18.92 0.00573 0 0 30 150
11 800 16.69 0.00480 0 0 100 300
12 970 16.76 0.00310 0 0 150 500
13 900 17.36 0.00850 0 0 40 160
14 700 18.7 0.00511 0 0 20 130
15 450 18.7 0.00398 0 0 25 185
16 370 14.26 0.07120 0 0 20 80
17 480 19.14 0.00890 0 0 30 85
18 680 18.92 0.00713 0 0 30 120
19 700 18.47 0.00622 0 0 40 120
20 850 19.79 0.00773 0 0 30 100
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Table A4. Other data of system 1, system 2 and system 3

Parameters System 1 System 2 System 3

D (MW) 1100 1100 1500 1500 2500 2500
RD (MW) 100 100 150 150 300 300

PriceDP ($/MWh) 11.3 11.3 31.65 31.65 31.6 30
PriceRP ($/MWh) 33.9 0.0452 158.25 0.3165 158.25 0.12

r 0.005 0.005 0.05 0.005 0.05 0.005

Table A5. Optimal solutions for the three-unit system obtained by PPSO.

n Case 1 Case 2
PGn (MW) RGn (MW) PGn (MW) RGn (MW)

1 324.5042 100 324.5076 100
2 400 0 400 0
3 200 0 200 0

Table A6. Optimal solutions for the 10-unit system obtained by PPSO.

n Case 1 Case 2
PGn (MW) RGn (MW) PGn (MW) RGn (MW)

1 455 0 455 0
2 455 0 455 0
3 130 0 130 0
4 130 0 130 0
5 162 0 162 0
6 80 0 80 0
7 25 60 25 60
8 42.9997 12.0003 43 12
9 10 45 10 45

10 10 32.9997 10 33

Table A7. Optimal solutions for the 20-unit system obtained by PPSO.

n Case 1 Case 2
PGn (MW) RGn (MW) PGn (MW) RGn (MW)

1 599.5146 0 600 0
2 50.1367 148.7997 199.2433 0
3 50.0686 3.7282 50 0.0056
4 50 0 50.6444 0
5 92.4212 0 90.7484 13.0514
6 27.7061 3.4081 20.0254 5.194
7 123.4713 0 125 0
8 51.7433 29.7412 50.5536 0
9 140.986 0 107.5 0

10 30 0.249 50.4308 0
12 278.2058 0 300 0
13 463.971 0 401.3243 0
14 139.3174 0 110.9913 0
15 20 36.7794 67.3715 0.0325
16 185 0 57.1231 0
17 40.4855 0 35.2791 0.0142
18 35.6628 18.5147 30 0.2627
19 30 0 44.9579 0.7649
20 54.6993 0.0504 78.7799 0.8343



Sustainability 2020, 12, 1265 33 of 35

References

1. Nguyen, T.T. Solving economic dispatch problem with piecewise quadratic cost functions using lagrange
multiplier theory. In International Conference on Computer Technology and Development, 3rd ed.; ASME Press:
New York, NY, USA, 2011; pp. 359–363. [CrossRef]

2. Xu, J.; Yan, F.; Yun, K.; Su, L.; Li, F.; Guan, J. Noninferior Solution Grey Wolf Optimizer with an Independent
Local Search Mechanism for Solving Economic Load Dispatch Problems. Energies 2019, 12, 2274. [CrossRef]

3. Su, C.T.; Chiang, C.L. Nonconvex power economic dispatch by improved genetic algorithm with multiplier
updating method. Electr. Power Compon. Syst. 2004, 32, 257–273. [CrossRef]

4. Nguyen, T.T.; Quynh, N.V.; Van Dai, L. Improved firefly algorithm: A novel method for optimal operation of
thermal generating units. Complexity 2018. [CrossRef]

5. Raja, M.A.Z.; Ahmed, U.; Zameer, A.; Kiani, A.K.; Chaudhary, N.I. Bio-inspired heuristics hybrid with
sequential quadratic programming and interior-point methods for reliable treatment of economic load
dispatch problem. Neural Comput. Appl. 2019, 31, 447–475. [CrossRef]

6. Roy, S. The maximum likelihood optima for an economic load dispatch in presence of demand and generation
variability. Energy 2018, 147, 915–923. [CrossRef]

7. Xiong, G.; Shi, D. Hybrid biogeography-based optimization with brain storm optimization for non-convex
dynamic economic dispatch with valve-point effects. Energy 2018, 157, 424–435. [CrossRef]

8. Pham, L.H.; Duong, M.Q.; Phan, V.D.; Nguyen, T.T.; Nguyen, H.N.A. High-Performance Stochastic Fractal
Search Algorithm for Optimal Generation Dispatch Problem. Energies 2019, 12, 1796. [CrossRef]

9. Kien, L.C.; Nguyen, T.T.; Hien, C.T.; Duong, M.Q. A Novel Social Spider Optimization Algorithm for
Large-Scale Economic Load Dispatch Problem. Energies 2019, 12, 1075. [CrossRef]

10. Khan, K.; Kamal, A.; Basit, A.; Ahmad, T.; Ali, H.; Ali, A. Economic Load Dispatch of a Grid-Tied DC
Microgrid Using the Interior Search Algorithm. Energies 2019, 12, 634. [CrossRef]

11. Lin, A.; Sun, W. Multi-Leader Comprehensive Learning Particle Swarm Optimization with Adaptive Mutation
for Economic Load Dispatch Problems. Energies 2019, 12, 116. [CrossRef]

12. Das, D.; Bhattacharya, A.; Ray, R.N. Dragonfly Algorithm for solving probabilistic Economic Load Dispatch
problems. Neural Comput. Appl. 2019, 1–17. [CrossRef]

13. Singh, D.; Dhillon, J.S. Ameliorated grey wolf optimization for economic load dispatch problem. Energy
2019, 169, 398–419. [CrossRef]

14. Richter, C.W.; Sheble, G.B. A profit-based unit commitment GA for the competitive environment. IEEE Trans.
Power Syst. 2000, 15, 715–721. [CrossRef]

15. Kong, X.Y.; Chung, T.S.; Fang, D.Z.; Chung, C.Y. An power market economic dispatch approach in considering
network losses. In Proceedings of the IEEE Power Engineering Society General Meeting, San Francisco, CA,
USA, 16 June 2005; pp. 208–214. [CrossRef]

16. Shahidehpour, M.; Marwali, M. Maintenance Scheduling in Restructured Power Systems; Springer Science
Business Media: New York, NY, USA, 2012. [CrossRef]

17. Hermans, M.; Bruninx, K.; Vitiello, S.; Spisto, A.; Delarue, E. Analysis on the interaction between short-term
operating reserves and adequacy. Energy Policy 2018, 121, 112–123. [CrossRef]

18. Allen, E.H.; Ilic, M.D. Reserve markets for power systems reliability. IEEE Trans. Power Syst. 2000, 15,
228–233. [CrossRef]

19. Attaviriyanupap, P.; Kita, H.; Tanaka, E.; Hasegawa, J. A hybrid LR-EP for solving new profit-based UC
problem under competitive environment. IEEE Trans. Power Syst. 2003, 18, 229–237. [CrossRef]

20. Ictoire, T.A.A.; Jeyakumar, A.E. Unit commitment by a tabu-search-based hybrid-optimisation technique.
IEE Proc. Gener. Transm. Distrib. 2005, 152, 563–574. [CrossRef]

21. Chandram, K.; Subrahmanyam, N.; Sydulu, M. New approach with muller method for profit based unit
commitment. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and
Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 1–8 July 2008. [CrossRef]

22. Dimitroulas, D.K.; Georgilakis, P.S. A new memetic algorithm approach for the price based unit commitment
problem. Appl. Energy 2011, 88, 4687–4699. [CrossRef]

23. Columbus, C.C.; Simon, S.P. Profit based unit commitment: A parallel ABC approach using a workstation
cluster. Comput. Electr. Eng. 2012, 38, 724–745. [CrossRef]

http://dx.doi.org/10.1115/1.859919.paper62
http://dx.doi.org/10.3390/en12122274
http://dx.doi.org/10.1080/15325000490208236
http://dx.doi.org/10.1155/2018/7267593
http://dx.doi.org/10.1007/s00521-017-3019-3
http://dx.doi.org/10.1016/j.energy.2018.01.044
http://dx.doi.org/10.1016/j.energy.2018.05.180
http://dx.doi.org/10.3390/en12091796
http://dx.doi.org/10.3390/en12061075
http://dx.doi.org/10.3390/en12040634
http://dx.doi.org/10.3390/en12010116
http://dx.doi.org/10.1007/s00521-019-04268-9
http://dx.doi.org/10.1016/j.energy.2018.11.034
http://dx.doi.org/10.1109/59.867164
http://dx.doi.org/10.1109/PES.2005.1489105
http://dx.doi.org/10.1007/978-1-4615-4473-9
http://dx.doi.org/10.1016/j.enpol.2018.06.012
http://dx.doi.org/10.1109/59.852126
http://dx.doi.org/10.1109/TPWRS.2002.807080
http://dx.doi.org/10.1049/ip-gtd:20045190
http://dx.doi.org/10.1109/PES.2008.4596653
http://dx.doi.org/10.1016/j.apenergy.2011.06.009
http://dx.doi.org/10.1016/j.compeleceng.2011.09.002


Sustainability 2020, 12, 1265 34 of 35

24. Columbus, C.C.; Chandrasekaran, K.; Simon, S.P. Nodal ant colony optimization for solving profit based
unit commitment problem for GENCOs. Appl. Soft Comput. 2012, 12, 145–160. [CrossRef]

25. Sharma, D.; Trivedi, A.; Srinivasan, D.; Thillainathan, L. Multi-agent modeling for solving profit based unit
commitment problem. Appl. Soft Comput. 2013, 13, 3751–3761. [CrossRef]

26. Singhal, P.K.; Naresh, R.; Sharma, V. Binary fish swarm algorithm for profit-based unit commitment problem
in competitive electricity market with ramp rate constraints. IET Gener. Trans. Distrib. 2015, 9, 1697–1707.
[CrossRef]

27. Sudhakar, A.V.V.; Karri, C.; Laxmi, A.J. A hybrid LR-secant method-invasive weed optimisation for
profit-based unit commitment. Int. J. Power Energy Convers. 2018, 9, 1–24. [CrossRef]

28. Reddy, K.S.; Panwar, L.K.; Panigrahi, B.K.; Kumar, R. A New Binary Variant of Sine–Cosine Algorithm:
Development and Application to Solve Profit-Based Unit Commitment Problem. Arab. J. Sci. Eng. 2018, 43,
4041–4056. [CrossRef]

29. Reddy, K.S.; Panwar, L.; Panigrahi, B.K.; Kumar, R. Binary whale optimization algorithm: A new metaheuristic
approach for profit-based unit commitment problems in competitive electricity markets. Eng. Optim. 2019,
51, 369–389. [CrossRef]

30. Vo, D.N.; Ongsakul, W.; Nguyen, K.P. Augmented Lagrange Hopfield network for solving economic dispatch
problem in competitive environment. AIP Conf. Proc. 2012, 1499, 46–53. [CrossRef]

31. Duong, T.L.; Nguyen, P.D.; Phan, V.D.; Vo, D.N.; Nguyen, T.T. Optimal Load Dispatch in Competitive
Electricity Market by Using Different Models of Hopfield Lagrange Network. Energies 2019, 12, 2932.
[CrossRef]

32. Citizens Power. The USPower Markel: Restrucluring and Risk Manage-Metit; Risk Publications: London, UK,
1997.

33. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]

34. Esmin, A.A.A.; Lambert-Torres, G.; Zambroni de Souza, A.C. A hybrid particle swarm optimization applied
to loss power optimization. IEEE Trans. Power Syst. 2005, 2, 866–895. [CrossRef]

35. Shunmugalatha, A.; Slochanal, M.R.S. Application of hybrid multiagent-based particle swarm optimization
to optimal reactive power dispatch. Electr. Power Compon. Syst. 2008, 36, 788–800. [CrossRef]

36. Polprasert, J.; Ongsakul, W.; Dieu, V.N. Optimal reactive power dispatch using improved pseudo-gradient
search particle swarm optimization. Electr. Power Compon. Syst. 2016, 44, 518–532. [CrossRef]

37. Mohammadi-Ivatloo, B.; Moradi-Dalvand, M.; Rabiee, A. Combined heat and power economic dispatch
problem solution using particle swarm optimization with time varying acceleration coefficients. Electr. Power
Syst. Res. 2013, 95, 9–18. [CrossRef]

38. Nguyen, T.T.; Vo, D.N. Improved particle swarm optimization for combined heat and power economic
dispatch. Sci. Iran. 2016, 23, 1318–1334. [CrossRef]

39. Clerc, M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization.
In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington,
DC, USA, 6–9 Juny 1999; pp. 1951–1957. [CrossRef]

40. Eberhart, R.C.; Shi, Y.H. Comparing inertia weights and constriction factors in particle swarm optimization.
In Proceedings of the IEEE Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 Juny 2000;
pp. 84–88. [CrossRef]

41. Vo, D.N.; Schegner, P.; Ongsakul, W. A newly improved particle swarm optimization for economic dispatch
with valve point loading effects. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting,
Detroit, MI, USA, 1–8 July 2011. [CrossRef]

42. Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress
on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 Juny 1999; pp. 1945–1950. [CrossRef]

43. Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with
time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]
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