Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data
2.3. Integrated Model Framework
2.3.1. Spatial Variation Distribution
2.3.2. Spatial Autocorrelation Analysis
2.3.3. Spatial Econometrics Analysis
2.4. Measures of Fit in Spatial Models
3. Result
3.1. Spatial Variation of Food Consumption Expenditure and Socio-Economic Indicators by Provinces
3.2. Global and Local Spatial Autocorrelation
3.3. Evidence from Spatial Econometrics Modeling
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Rome Declaration on World Food Security and World Food Summit Plan of Action: World Food Summit 13–17 November 1996, Rome, Italy; FAO: Rome, Italy, 1996; ISBN 9251039399. [Google Scholar]
- Abu Hatab, A.; Cavinato, M.E.R.; Lagerkvist, C.J. Urbanization, livestock systems and food security in developing countries: A systematic review of the literature. Food Secur. 2019, 11, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Abu Hatab, A.; Cavinato, M.E.R.; Lindemer, A.; Lagerkvist, C.J. Urban sprawl, food security and agricultural systems in developing countries: A systematic review of the literature. Cities 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Haysom, G.; Tawodzera, G. Measurement drives diagnosis and response: Gaps in transferring food security assessment to the urban scale. Food Policy 2018, 74, 117–125. [Google Scholar] [CrossRef]
- Regmi, A.; Meade, B. Demand side drivers of global food security. Glob. Food Secur. 2013, 2, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2809–2820. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Huang, X.; Sloan, M.; Skitmore, M. Spatial-temporal evolution and classification of marginalization of cultivated land in the process of urbanization. Habitat Int. 2017, 61, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Van Vliet, J.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [Google Scholar] [CrossRef]
- Sklenicka, P.; Janovska, V.; Salek, M.; Vlasak, J.; Molnarova, K. The Farmland Rental Paradox: Extreme land ownership fragmentation as a new form of land degradation. Land Use Policy 2014, 38, 587–593. [Google Scholar] [CrossRef]
- Sklenicka, P. Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology, consequences, and remedies. Land Use Policy 2016, 57, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yamauchi, F. Population density, migration, and the returns to human capital and land: Insights from Indonesia. Food Policy 2014, 48, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Masters, W.A.; Djurfeldt, A.A.; De Haan, C.; Hazell, P.; Jayne, T.; Jirström, M.; Reardon, T. Urbanization and farm size in Asia and Africa: Implications for food security and agricultural research. Glob. Food Secur. 2013, 2, 156–165. [Google Scholar] [CrossRef]
- Rudiarto, I.; Hidayani, R.; Fisher, M. The bilocal migrant: Economic drivers of mobility across the rural-urban interface in Central Java, Indonesia. J. Rural Stud. 2019. [Google Scholar] [CrossRef]
- Yin, X.; Chen, J.; Li, J. Rural innovation system: Revitalize the countryside for a sustainable development. J. Rural Stud. 2019. [Google Scholar] [CrossRef]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G.W. Methodologies for simulating impacts of climate change on crop production. Field Crop Res. 2011, 124, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Ludwig, F.; Asseng, S. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agric. Syst. 2006, 90, 159–179. [Google Scholar] [CrossRef]
- FAO. Food security. Policy Brief. 2006, 2, 1–4. [Google Scholar]
- Lusk, J.L. Income and (Ir) rational food choice. J. Econ. Behav. Organ. 2019, 166, 630–645. [Google Scholar] [CrossRef]
- Diehl, J.A.; Oviatt, K.; Chandra, A.J.; Kaur, H. Household food consumption patterns and food security among low-income migrant urban farmers in Delhi, Jakarta, and Quito. Sustainability 2019, 11, 1378. [Google Scholar] [CrossRef] [Green Version]
- Gerbens-Leenes, P.W.; Nonhebel, S.; Krol, M.S. Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite 2010, 55, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Fuinhas, J.A.; Pais, D.F. Economic growth, sustainable development and food consumption: Evidence across different income groups of countries. J. Clean. Prod. 2018, 196, 245–258. [Google Scholar] [CrossRef]
- Gandhi, V.P.; Zhou, Z. Food demand and the food security challenge with rapid economic growth in the emerging economies of India and China. Food Res. Int. 2014, 63, 108–124. [Google Scholar] [CrossRef]
- Burggraf, C.; Kuhn, L.; Zhao, Q.; Teuber, R.; Glauben, T. Economic growth and nutrition transition: An empirical analysis comparing demand elasticities for foods in China and Russia. J. Integr. Agric. 2015, 14, 1008–1022. [Google Scholar] [CrossRef]
- Pingali, P. Westernization of Asian diets and the transformation of food systems: Implications for research and policy. Food Policy 2007, 32, 281–298. [Google Scholar] [CrossRef]
- Huang, J.; Bouis, H. Structural Changes in the Demand for Food in Asia; Int. Food Policy Res. Inst.: Washington, DC, USA, 1996. [Google Scholar]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef]
- Stage, J.; Stage, J.; Mcgranahan, G. Is urbanization contributing to higher food prices? Environ. Urban. 2010, 22, 199–215. [Google Scholar] [CrossRef]
- Szabo, S. Urbanisation and Food Insecurity Risks: Assessing the Role of Human Development. Oxf. Dev. Stud. 2016, 44, 28–48. [Google Scholar] [CrossRef] [Green Version]
- Dávila, O.G. Food security and poverty in Mexico: The impact of higher global food prices. Food Secur. 2010, 2, 383–393. [Google Scholar] [CrossRef]
- Kam, S.P.; Hossain, M.; Bose, M.L.; Villano, L.S. Spatial patterns of rural poverty and their relationship with welfare-influencing factors in Bangladesh. Food Policy 2005, 30, 551–567. [Google Scholar] [CrossRef]
- Maitra, C.; Rao, D.S.P. Poverty-Food Security Nexus: Evidence from a Survey of Urban Slum Dwellers in Kolkata. World Dev. 2015, 72, 308–325. [Google Scholar] [CrossRef]
- Gibney, M.J.; Lee, P. Patterns of food and nutrient intake in a suburb of Dublin with chronically high unemployment. J. Hum. Nutr. Diet. 1993, 6, 13–22. [Google Scholar] [CrossRef]
- Carroll, C.D.; Dynan, K.E.; Krane, S.D. Unemployment risk and precautionary wealth: Evidence from households’ balance sheets. Rev. Econ. Stat. 2003, 85, 586–604. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, M.; Hurst, E. Consumption versus expenditure. J. Political Econ. 2005, 113, 919–948. [Google Scholar] [CrossRef] [Green Version]
- Etana, D.; Tolossa, D. Unemployment and Food Insecurity in Urban Ethiopia. Afr. Dev. Rev. 2017, 29, 56–68. [Google Scholar] [CrossRef]
- Antelo, M.; Magdalena, P.; Reboredo, J.C. Economic crisis and the unemployment effect on household food expenditure: The case of Spain. Food Policy 2017, 69, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Leonard, T.; McKillop, C.; Carson, J.A.; Shuval, K. Neighborhood effects on food consumption. J. Behav. Exp. Econ. 2014, 51, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Farrow, A.; Larrea, C.; Hyman, G.; Lema, G. Exploring the spatial variation of food poverty in Ecuador. Food Policy 2005, 30, 510–531. [Google Scholar] [CrossRef] [Green Version]
- Morrison, K.T.; Nelson, T.A.; Ostry, A.S. Mapping spatial variation in food consumption. Appl. Geogr. 2011, 31, 1262–1267. [Google Scholar] [CrossRef]
- Cerciello, M.; Garofalo, A. Estimating urban food waste at the local level: Are good practices in food consumption persistent? Econ. Politica 2018, 36, 863–886. [Google Scholar] [CrossRef]
- Case, A.C. Spatial patterns in household demand. Econom. J. Econom. Soc. 1991, 59, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Aten, B.H. Does space matter? International comparisons of the prices of tradables and nontradables. Int. Reg. Sci. Rev. 1997, 20, 35–52. [Google Scholar] [CrossRef]
- Murdoch, J.C.; Rahmatian, M.; Thayer, M.A. A spatially autoregressive median voter model of recreation expenditures. Public Financ. Q. 1993, 21, 334–350. [Google Scholar] [CrossRef]
- Bell, K.P.; Bockstael, N.E. Applying the generalized-moments estimation approach to spatial problems involving micro-level data. Rev. Econ. Stat. 2000, 82, 72–82. [Google Scholar] [CrossRef]
- Pinkse, J.; Slade, M.E. Contracting in space: An application of spatial statistics to discrete-choice models. J. Econom. 1998, 85, 125–154. [Google Scholar] [CrossRef]
- Kelejian, H.H.; Prucha, I.R. A generalized moments estimator for the autoregressive parameter in a spatial model. Int. Econ. Rev. 1999, 40, 509–533. [Google Scholar] [CrossRef] [Green Version]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Boston, MA, USA, 1988. [Google Scholar]
- Tobler, W. On the First Law of Geography: A Reply. Ann. Assoc. Am. Geogr. 2004, 94, 304–310. [Google Scholar] [CrossRef]
- Bappenas. Rencana Pembangunan Jangka Menengah Nasional (RPJMN) 2015–2019; Bappenas: Jakarta, Indonesia, 2015. [Google Scholar]
- Pribadi, D.O.; Putra, A.S.; Rustiadi, E. Determining optimal location of new growth centers based on LGP–IRIO model to reduce regional disparity in Indonesia. Ann. Reg. Sci. 2015, 54, 89–115. [Google Scholar] [CrossRef]
- Houthakker, H.S. An international comparison of household expenditure patterns, commemorating the centenary of Engel’s law. Econom. J. Econom. Soc. 1957, 59, 532–551. [Google Scholar] [CrossRef]
- Seale, J.L., Jr.; Regmi, A. Modeling international consumption patterns. Rev. Income Wealth 2006, 52, 603–624. [Google Scholar] [CrossRef]
- John Baffes, B.; Etienne, X.L. Analysing food price trends in the context of Engel’s Law and the Prebisch-Singer hypothesis. Oxf. Econ. Pap. 2016, 68, 688–713. [Google Scholar] [CrossRef]
- Hamilton, B.W. Using Engel’s Law to estimate CPI bias. Am. Econ. Rev. 2001, 91, 619–630. [Google Scholar] [CrossRef]
- Kaus, W. Beyond Engel’s law-A cross-country analysis. J. Socio-Econ. 2013, 47, 118–134. [Google Scholar] [CrossRef]
- Grigg, D. Food Expenditure and Economic Development. GeoJournal 1994, 33, 377–382. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- GeoDa Center. Available online: https://geodacenter.github.io/ (accessed on 3 June 2019).
- Getis, A. Spatial weights matrices. Geogr. Anal. 2009, 41, 404–410. [Google Scholar] [CrossRef]
- Haining, R.P. Spatial autocorrelation and the quantitative revolution. Geogr. Anal. 2009, 41, 364–374. [Google Scholar] [CrossRef]
- Xu, C.; Pribadi, D.O.; Haase, D.; Pauleit, S. Incorporating spatial autocorrelation and settlement type segregation to improve the performance of an urban growth model. Environ. Plan. B Urban Anal. City Sci. 2018. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, Y.; Huang, X.; Kwan, M.P.; Zhao, Y. The effect of urbanization and farmland transfer on the spatial patterns of non-grain farmland in China. Sustainability 2017, 9, 1438. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Tian, Y.; Lei, A.; Boadu, F.; Ren, Z. The effect of local government debt on regional economic growth in China: A nonlinear relationship approach. Sustainability 2019, 11, 3065. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, J.; Geng, Y.; Xiao, L.; Xu, Z. Differential Spatial-Temporal Responses of Carbon Dioxide Emissions to Economic Development: Empirical Evidence Based on Spatial Analysis. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 1–24. [Google Scholar] [CrossRef]
- Moran, P.A.P. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B (Methodol.) 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Geary, R.C. The contiguity ratio and statistical mapping. Inc. Stat. 1954, 5, 115–146. [Google Scholar] [CrossRef]
- Anselin, L. The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association; Regional Research Institute, West Virginia University Morgantown: Morgantown, WV, USA, 1993. [Google Scholar]
- Glazier, R.H.; Creatore, M.I.; Gozdyra, P.; Matheson, F.I.; Steele, L.S.; Boyle, E.; Moineddin, R. Geographic methods for understanding and responding to disparities in mammography use in Toronto, Canada. J. Gen. Intern. Med. 2004, 19, 952–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Griffith, D.A. Advanced spatial statistics for analysing and visualizing geo-referenced data. Int. J. Geogr. Inf. Sci. 1993, 7, 107–123. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Anselin, L.; Rey, J.S. Modern Spatial Econometrics in Practice; GeoDa Press LLC: Chicago, IL, USA, 2014. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Pion: London, UK, 1981. [Google Scholar]
- BPS (Indonesia Statistical Office). Statistical Yearbook of Indonesia 2018; BPS: Jakarta, Indonesia, 2018. [Google Scholar]
- Gallup, J.L.; Sachs, J.D.; Mellinger, A.D. Geography and economic development. Int. Reg. Sci. Rev. 1999, 22, 179–232. [Google Scholar] [CrossRef]
- Frenken, K.; Van Oort, F.; Verburg, T. Related variety, unrelated variety and regional economic growth. Reg. Stud. 2007, 41, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Turok, I.; McGranahan, G. Urbanization and economic growth: The arguments and evidence for Africa and Asia. Environ. Urban. 2013, 25, 465–482. [Google Scholar] [CrossRef]
- Haughton, J.; Khandker, S.R. Handbook on Poverty+ Inequality; World Bank Publications: Washington, DC, USA, 2009; ISBN 0821376144. [Google Scholar]
- Zezza, A.; Carletto, C.; Fiedler, J.L.; Gennari, P.; Jolliffe, D. Food counts. Measuring food consumption and expenditures in household consumption and expenditure surveys (HCES). Introduction to the special issue. Food Policy 2017, 72, 1–6. [Google Scholar] [CrossRef]
- Borlizzi, A.; Delgrossi, M.E.; Cafiero, C. National food security assessment through the analysis of food consumption data from Household Consumption and Expenditure Surveys: The case of Brazil’s Pesquisa de Orçamento Familiares 2008/09. Food Policy 2017, 72, 20–26. [Google Scholar] [CrossRef]
- Brzozowski, M.; Crossley, T.F.; Winter, J.K. A comparison of recall and diary food expenditure data. Food Policy 2017, 72, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Ansah, I.G.K.; Gardebroek, C.; Ihle, R. Resilience and household food security: A review of concepts, methodological approaches and empirical evidence. Food Secur. 2019, 11, 1187–1203. [Google Scholar] [CrossRef] [Green Version]
Variables | Coefficient | Std. Error | t-Statistic | p-Value |
---|---|---|---|---|
Constant | 63.6507305 | 3.1308798 | 20.3299824 | 0.000 |
Economic Growth | −0.8429851 | 0.3422346 | −2.4631789 | 0.020 |
GDRP per Capita | −0.0385459 | 0.0204640 | −1.8835937 | 0.070 |
Poverty Severity Index | −0.7334743 | 0.9625873 | −0.7619821 | 0.452 |
Unemployment Rate | 0.6577112 | 0.2963428 | 2.2194270 | 0.035 |
Urbanization | −0.1806617 | 0.0380845 | −4.7437041 | 0.000 |
R2 | 0.6688 | |||
Maximized log-likelihood (LIK) | −80.354 | |||
Akaike information criterion (AIC) | 172.708 | |||
Schwartz criterion (SC) | 181.866 |
DF | Value | p-Value | |
---|---|---|---|
Multicollinearity condition number: 16.933 | |||
Normality of errors (Jarque–Bera test) | 2 | 0.008 | 0.996 |
Heteroskedasticity random (Breusch–Pagan test) coefficients | 5 | 18.819 | 0.002 |
Test | MI/DF | Value | p-Value |
---|---|---|---|
Lagrange multiplier (LM)-lag | 1 | 7.572 | 0.006 |
Robust LM-lag | 1 | 9.682 | 0.002 |
LM-error (ERR) | 1 | 1.726 | 0.189 |
Robust LM-ERR | 1 | 3.836 | 0.050 |
LM-Sarma | 2 | 11.408 | 0.003 |
Variables | Coefficient | Std. Error | t-Statistic | p-Value |
---|---|---|---|---|
Constant | 76.2077449 | 4.1161841 | 18.5141730 | 0.000 |
Economic Growth | −0.9640638 | 0.2675532 | −3.6032599 | 0.000 |
GDRP per Capita | −0.0399612 | 0.0159744 | −2.5015734 | 0.012 |
Poverty Severity Index | −3.2315750 | 0.9829683 | −3.2875678 | 0.001 |
Unemployment Rate | 0.9117649 | 0.2409207 | 3.7845024 | 0.000 |
Urbanization | −0.2066033 | 0.0303278 | −6.8123335 | 0.000 |
W_Food Expenditure | −0.2079829 | 0.0567949 | −3.6620000 | 0.000 |
pseudo-R2 | 0.7555 | |||
LIK | −75.306 | |||
AIC | 164.611 | |||
SC | 175.296 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putra, A.S.; Tong, G.; Pribadi, D.O. Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia. Sustainability 2020, 12, 1638. https://doi.org/10.3390/su12041638
Putra AS, Tong G, Pribadi DO. Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia. Sustainability. 2020; 12(4):1638. https://doi.org/10.3390/su12041638
Chicago/Turabian StylePutra, Andi Syah, Guangji Tong, and Didit Okta Pribadi. 2020. "Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia" Sustainability 12, no. 4: 1638. https://doi.org/10.3390/su12041638
APA StylePutra, A. S., Tong, G., & Pribadi, D. O. (2020). Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia. Sustainability, 12(4), 1638. https://doi.org/10.3390/su12041638