Efficiency Loss and Intensification Potential of Urban Industrial Land Use in Three Major Urban Agglomerations in China
Abstract
:1. Introduction
2. Research Methodology
2.1. Model of Efficiency Loss
2.2. Model of Intensification Potential
3. Study Area and Data
3.1. Study Area
3.2. Data
4. Results and Analysis
4.1. Model Estimations and Validation
4.2. Efficiency Loss Analysis
4.3. An analysis of Land-Saving Potential
4.4. An Analysis of Output Growth Potential
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Shu, H.; Xiong, P.P. Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Yangtze River Delta. Land Use Policy 2019, 81, 604–623. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Zhang, X.L.; Skitmore, M.; Song, Y.; Hui, E.C. Industrial land price and its impact on urban growth: A Chinese case study. Land Use Policy 2014, 36, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.J.; Zhuo, P.; Yang, J.D. Industrial land transfer and the bottom line competition to attract investment. Manag. World 2014, 30, 24–34. (In Chinese) [Google Scholar]
- Xie, H.L.; Wang, W. Spatiotemporal differences and convergence of urban industrial land use efficiency for China’s major economic zones. J. Geogr. Sci. 2015, 25, 1183–1198. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhang, L.; Huang, X.J.; Zhao, Y.T.; Zhang, Y.P. Evolution of the spatiotemporal pattern of urban industrial land use efficiency in China. Sustainability 2018, 10, 2174. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.X.; Yu, L.L.; Chen, S.X. Industrial land conveyance, the investment quality race in the bottom line and environmental pollution. China Popul. Resour. Environ. 2017, 27, 90–98. (In Chinese) [Google Scholar]
- Luo, J. Studies on the Barriers and Mechanism of Industrial Land Intensive Use: A Stakeholder-Based Analysis. Ph.D. Thesis, Zhejiang University, Zhejiang, China, 2018; pp. 1–3, 15–21. (In Chinese). [Google Scholar]
- Tian, L. Land use dynamics driven by rural industrialization and land finance in the peri-urban areas of China: “The examples of Jiangyin and Shunde”. Land Use Policy 2015, 45, 117–127. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ye, X. Urbanization, urban land expansion and environmental change in China. Stoch. Environ. Res. Risk Assess. 2014, 28, 757–765. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Shi, Z. Land and housing markets under “land finance”: An analysis of local government behavior. Guangdong Soc. Sci. 2011, 2, 6–11. (In Chinese) [Google Scholar]
- Meng, Y.; Zhang, F.R.; An, P.L.; Dong, M.L.; Wang, Z.Y.; Zhao, T. Industrial land-use efficiency and planning in Shunyi, Beijing. Landsc. Urban Plan. 2008, 85, 40–48. [Google Scholar] [CrossRef]
- Tu, F.; Yu, X.; Ruan, J. Industrial land use efficiency under government intervention: Evidence from Hangzhou, China. Habitat Int. 2014, 43, 1–10. [Google Scholar] [CrossRef]
- Guo, G.; Wen, Q. Industrial land productivity research under the environmental restriction based on unexpected outputs of 33 typical cities in China. China Popul. Resour. Environ. 2014, 24, 121–127. (In Chinese) [Google Scholar]
- Zhang, L.; Wang, Y.H.; Li, Y. Research on industrial land production efficiency from a TFP perspective: Based on Malmquist index method. J. Dalian Univ. Technol. (Soc. Sci.) 2015, 36, 57–62. (In Chinese) [Google Scholar]
- Chen, W.; Chen, W.J.; Ning, S.Y.; Liu, E.; Zhou, X.; Wang, Y.N.; Zhao, M.J. Exploring the industrial land use efficiency of China’s resource-based cities. Cities 2019, 93, 215–223. [Google Scholar] [CrossRef]
- Xie, H.L.; Chen, Q.R.; Lu, F.C.; Wu, Q.; Wang, W. Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River. Land Use Policy 2018, 75, 518–529. [Google Scholar] [CrossRef]
- Xie, H.L.; Chen, Q.R.; Lu, F.C.; Wang, W.; Yao, G.R.; Yu, J.L. Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China. J. Clean. Prod. 2019, 207, 1047–1058. [Google Scholar] [CrossRef]
- Zhen, J.H.; Cheng, S.; Guo, Y.C.; Zhang, M. Studies on the assessment for land use intensification potentiality of industrial field in Baotou city. Econ. Geogr. 2004, 24, 250–253. (In Chinese) [Google Scholar]
- Tan, D.; Huang, X.J. Influencing factors of the levels of intensive use of typical industrial land. China Popul. Resour. Environ. 2008, 18, 54–57. [Google Scholar]
- Guo, G.C.; Ren, B.L.; Wu, Q. Study on assessment on intensive use of industrial land based on ArcGIS in Jintan City, Jiangsu Province. China Land Sci. 2009, 23, 250–253. (In Chinese) [Google Scholar]
- Chen, Y.; Chen, Y.R.; Ma, W.B. Colligation evaluation of industrial land intensive use in Hubei Province based on 365 valid questionnaires of typical industrial enterprises. J. Nat. Resour. 2013, 28, 73–80. (In Chinese) [Google Scholar]
- Meng, P.; Hao, J.M.; Zhou, N.; Shuang, W.Y.; Hong, S.M. Research on evaluation of industrial land intensive use in the context of new urbanization: A case study in Yizhuang New Town. China Land Sci. 2014, 28, 250–253. (In Chinese) [Google Scholar]
- Huang, D.Q.; Hong, L.X.; Liang, J.S. Analysis and evaluation of industrial land efficiency and intensive use in Fujian Province. Acta Geogr. Sin. 2009, 64, 479–486. (In Chinese) [Google Scholar]
- Wang, X.D.; Liu, X.Q.; Pei, T.; Wang, Z.B. Potential evaluation of urban land intensive use in the Beijing-Tianjin-Hebei region based on measurement of technical efficiency. Acta Geogr. Sin. 2019, 74, 1853–1865. (In Chinese) [Google Scholar]
- Wang, L.J.; Li, H.; Shi, C. Urban land-use efficiency, spatial spillover, and determinants in China. Acta Geogr. Sin. 2015, 70, 1788–1799. (In Chinese) [Google Scholar]
- Jin, G.; Deng, X.Z.; Zhao, X.D.; Guo, B.S.; Yang, J. Spatio-temporal patterns of urban land use efficiency in the Yangtze River Economic Zone during 2005–2014. Acta Geogr. Sin. 2018, 73, 1242–1252. (In Chinese) [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Kopp, R.J. The measurement of productive efficiency: A reconsideration. Quart. J. Econ. 1981, 96, 477–503. [Google Scholar] [CrossRef]
- Christenson, A.L. Maximizing clarity in economic terminology. Am. Antiq. 1982, 47, 419–426. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Prod. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Iglesias, G.; Castellanos, P.; Seijas, A. Measurement of productive efficiency with frontier methods: A case study for wind farms. Energy Econ. 2010, 32, 1199–1208. [Google Scholar] [CrossRef]
- Xie, Y. Regression Analysis; Social Science Academic Press: Beijing, China, 2013; pp. 217–221. (In Chinese) [Google Scholar]
- Kornai, J. The Socialist System: The Political Economy of Socialism; Oxford University Press: Oxford, UK, 1992; pp. 180–186. [Google Scholar]
- Chen, X.Z.; Li, B.T. Quantitative analysis of economic intensive development. Technol. Econ. 1995, 12, 46–48. (In Chinese) [Google Scholar]
- Wu, J.L. How to achieve the change of economic growth pattern: For the 40th anniversary of Economic Research. Econ. Res. 1995, 4, 8–12. (In Chinese) [Google Scholar]
- Wu, J.Q. Extensification, intensification and their measurement—For accurate understanding of the transformation of economic growth mode. Hebei Acad. J. 1996, 4, 7–11. (In Chinese) [Google Scholar]
- Wang, X.D.; Gong, J. The empirical research on process evaluation of land intensive use in China. Econ. Geogr. 2016, 36, 17–25. (In Chinese) [Google Scholar]
- Wang, X.D.; Shen, X.Q.; Wang, Z.B.; Liu, X.Q. Dynamic evaluation of farmland intensive use in 2010–2016 in China. China Popul. Resour. Environ. 2019, 29, 58–67. (In Chinese) [Google Scholar]
- Guo, G.C.; Xiong, Q. Study on the urban industrial land use efficiency and its influencing factors in China. China Land Sci. 2014, 28, 45–52. (In Chinese) [Google Scholar]
- Luo, N.S.; Peng, Y. The Space-time analysis of urban industrial land use and the effects of the local government competition in China. China Land Sci. 2016, 30, 62–71. (In Chinese) [Google Scholar]
- Xiong, Q.; Guo, G.C. Productive efficiency of regional urban industrial land in China. Resour. Sci. 2013, 35, 910–917. (In Chinese) [Google Scholar]
- Irmen, A. Extensive and intensive growth in a neoclassical framework. J. Econ. Dyn. Contr. 2005, 29, 1427–1448. [Google Scholar] [CrossRef]
- Young, A. The tyranny of numbers: Confronting the statistical realities of the East Asian growth experience. Quart. J. Econ. 1995, 110, 641–680. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Bigsten, A.; Hu, A. Can China’s growth be sustained? A productivity perspective. World Dev. 2009, 37, 874–888. [Google Scholar] [CrossRef] [Green Version]
- Senhadji, A. Sources of economic growth: An extensive growth accounting exercise. IMF Staff Pap. 2000, 47, 129–157. [Google Scholar] [CrossRef]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling sprawl to the ground: Defining and measuring an elusive concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Nechyba, T.J.; Walsh, R.P. Urban sprawl. J. Econ. Pers. 2004, 18, 177–200. [Google Scholar] [CrossRef] [Green Version]
- Jaeger, J.A.; Bertiller, R.; Schwick, C.; Kienast, F. Suitability criteria for measures of urban sprawl. Ecol. Indic. 2010, 10, 397–406. [Google Scholar] [CrossRef]
- Tregoning, H.; Agyeman, J.; Shenot, C. Sprawl, smart growth and sustainability. Local Environ. 2002, 7, 341–347. [Google Scholar] [CrossRef]
- Anthony, J. Do state growth management regulations reduce sprawl? Urban Aff. Rev. 2004, 39, 376–397. [Google Scholar] [CrossRef]
- Moreau, P.; Ruiz, L.; Mabon, F.; Raimbault, T.; Durand, P.; Delaby, L.; Devienne, S.; Vertès, F. Reconciling technical, economic and environmental efficiency of farming systems in vulnerable areas. Agric. Ecosyst. Environ. 2012, 147, 89–99. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.K.; Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Region | Land Area (in 10,000 km2) | Population (in 10,000s) | Population Density (people/km2) | Urbanization Rate (%) | GDP (108 Yuan) | Industrial Added Value (108 Yuan) | |
---|---|---|---|---|---|---|---|
Nationwide | 960 | 138,271 | 144 | 57.35 | 744,127.20 | 247,860.10 | |
Beijing-Tianjin-Hebei | Number | 21.60 | 11,205.07 | 519 | 63.88 | 75,624.94 | 24,219.29 |
Proportion (%) | 2.25 | 8.10 | 10.16 | 9.77 | |||
The Yangtze River Delta | Number | 11.30 | 11,085.02 | 981 | 74.15 | 124,369.43 | 46,734.02 |
Proportion (%) | 1.18 | 8.02 | 16.71 | 18.85 | |||
The Pearl River Delta | Number | 5.48 | 5998.49 | 1095 | 84.85 | 67,841.85 | 26,870.03 |
Proportion (%) | 0.57 | 4.34 | 9.12 | 10.84 | |||
Total | Number | 38.37 | 28,288.58 | 737 | 72.35 | 267,836.22 | 97,823.34 |
Proportion (%) | 4 | 20.46 | 35.99 | 39.47 |
Statistic | Industrial Land Area (km2) | Industrial Output Value (10 billion Yuan) | Industrial Assets Balance (10 billion Yuan) | Industrial Employees (in 10,000s) | Industrial Electricity Consumption (108 kw/h) | Industrial Water Consumption (106 /m3) | ||
---|---|---|---|---|---|---|---|---|
Current Price | Constant Price | Current Price | Constant Price | |||||
Average | 78.40 | 47.07 | 42.80 | 12.78 | 8.95 | 60.57 | 147.95 | 153.23 |
Standard Error | 5.20 | 2.72 | 2.60 | 0.73 | 0.51 | 3.23 | 7.03 | 8.73 |
Median | 32.76 | 18.37 | 16.69 | 5.56 | 4.05 | 27.14 | 72.91 | 68.38 |
Standard Deviation | 119.88 | 62.73 | 59.96 | 16.94 | 11.87 | 74.59 | 162.10 | 201.28 |
Kurtosis | 11.99 | 5.05 | 6.12 | 6.31 | 7.00 | 3.82 | 3.01 | 7.84 |
Skewness | 3.19 | 2.21 | 2.39 | 2.45 | 2.52 | 1.99 | 1.74 | 2.54 |
Minimum | 2.07 | 0.80 | 0.80 | 0.32 | 0.18 | 2.12 | 3.59 | 2.24 |
Maximum | 744.60 | 320.14 | 316.81 | 91.92 | 69.13 | 376.18 | 805.76 | 1267.66 |
Confidence (95%) | 10.21 | 5.34 | 5.11 | 1.44 | 1.01 | 6.35 | 13.81 | 17.14 |
Parameters | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
0.7130 *** | −0.0004 | 2.6864 *** | −2.3944 *** | −2.4713(−3.9809) *** | |
0.2710 *** | 0.2486 *** | 0.5591 ** | 1.3403 *** | 1.2392(5.7556) *** | |
0.6548 *** | 0.6477 *** | 0.1319 | −0.9629 *** | −0.7053(−3.2617) *** | |
0.1155 *** | 0.0906 *** | 0.3299 | 0.9786 *** | 0.9227(6.6637) *** | |
−0.0716 ** | −0.0246 | −0.9607 *** | −0.0927 | −0.0170(−0.1430) | |
0.0780*** | 0.1975 *** | 0.1777(10.4372) *** | |||
0.3535 *** | 0.2521 *** | 0.1445(2.9507) *** | |||
0.4435 *** | 0.3211 ** | 0.2245(3.1770) * | |||
0.0683 | 0.0082 | ||||
0.2533 *** | 0.0636 | ||||
−0.0059 *** | −0.0056(−4.8972) *** | ||||
−0.0994 | −0.1000 | ||||
−0.1043 * | −0.1711 *** | −0.1985(−6.1097) *** | |||
−0.1554 *** | −0.1390 *** | −0.0806(−2.4103) *** | |||
−0.1255 * | −0.0066 | ||||
−0.0033 | 0.2005 *** | 0.1186(3.3217) *** | |||
0.0507 | −0.0396 | ||||
0.0076 | |||||
−0.0250 * | −0.0172(−3.0789) *** | ||||
0.0032 | |||||
−0.0078 | |||||
−0.1853 *** | −0.2251 *** | −0.1357 ** | −0.1829 *** | −0.2532(−5.7133) *** | |
0.0071 | 0.0417 | 0.1070 ** | 0.0584 | ||
0.0413 *** | 0.0800 ** | 0.0377 *** | 0.0765 *** | 0.0819(8.9905) *** | |
0.3452 *** | 0.6791 *** | 0.3988 *** | 0.7828 *** | 0.7990(24.6018) *** | |
0.2388 *** | 0.4662 *** | 0.2452 *** | 0.4893 *** | 0.5115(8.0532) *** | |
0.0767 *** | −0.1382 *** | 0.0917 *** | −0.0496 *** | −0.0529(−5.2929) *** | |
Log Likelihood Function | 130.7573 | 182.2384 | 165.2274 | 271.5682 | 267.5424 |
Likelihood Ratio Test of the One-Sided Error | 200.8346 *** | 250.7603 *** | 237.9046 *** | 342.1148 *** | 350.1584 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Shen, X.; Pei, T. Efficiency Loss and Intensification Potential of Urban Industrial Land Use in Three Major Urban Agglomerations in China. Sustainability 2020, 12, 1645. https://doi.org/10.3390/su12041645
Wang X, Shen X, Pei T. Efficiency Loss and Intensification Potential of Urban Industrial Land Use in Three Major Urban Agglomerations in China. Sustainability. 2020; 12(4):1645. https://doi.org/10.3390/su12041645
Chicago/Turabian StyleWang, Xiangdong, Xiaoqiang Shen, and Tao Pei. 2020. "Efficiency Loss and Intensification Potential of Urban Industrial Land Use in Three Major Urban Agglomerations in China" Sustainability 12, no. 4: 1645. https://doi.org/10.3390/su12041645
APA StyleWang, X., Shen, X., & Pei, T. (2020). Efficiency Loss and Intensification Potential of Urban Industrial Land Use in Three Major Urban Agglomerations in China. Sustainability, 12(4), 1645. https://doi.org/10.3390/su12041645