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Abstract: This paper aims to combinedly investigate the spatiotemporal trends of precipitation (Pre),
reference evapotranspiration (ET0), and aridity index (AI) by employing nonparametric methods
based on daily datasets from 137 meteorological stations during 1961–2014 in the Huai River Basin
(HRB). The dominant factors influencing ET0 and AI trends were also explored using the detrended
and differential equation methods. Results show that (1) Pre, ET0, and AI were much larger in summer
than in other seasons, and AI had a nonsignificant increasing trend in annual time scale, while Pre and
ET0 exhibited decreasing trends, but AI showed a downward trend in spring and autumn (becoming
drier) and an upward trend during summer and winter due to increased Pre (becoming wetter);
(2) lower AI values were identified in north and higher in south, and lower ET0 was identified in
south and higher in north in annual time scale, growing season and spring, while ET0 decreased from
west to east in summer and winter, the spatial distribution of Pre was similar to that of AI; (3) for ET0

trends, in general, wind speed at two-meter height (u2) was the dominant factor in spring, autumn,
winter, and annual time scale, while in other seasons, solar radiation (Rs) played a dominant role;
(4) for AI trends, AI was mostly contributed by Pre in spring, autumn, and winter, the Rs contributed
the most to AI trend in growing season and summer, then in annual time scale, u2 was the dominant
factor; (5) overall, the contribution of Pre to AI trends was much larger than that of ET0 in spring,
autumn, and winter, while AI was mostly contributed by ET0 in annual time scale, growing season
and summer. The outcomes of the study may improve our scientific understanding of recent climate
change effects on dry–wet variations in the HRB; moreover, this information may be utilized in other
climatic regions for comparison analyses.

Keywords: precipitation; reference evapotranspiration; aridity index; detrending method; Huai
River Basin

1. Introduction

Drought is one of the most serious manifestations of climate change and is of increasing concern
for agriculture and human life in China, in which the dry land area is about 3.32 × 106 km2 [1].
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Wet and dry conditions are among the determining factors of the agroecosystem and other areas
of concern such as ecology and human health. The Fourth and Fifth Assessment Reports of the
Intergovernmental Panel on Climate Change (IPCC AR4 and AR5) pointed out that global climate will
change at an unprecedented rate in the 21st century and the frequency of occurrence of extreme climatic
events—such as intense rainfall; high temperatures; and heat waves, droughts, and floods—will also
increase unprecedentedly [2,3].

In some current studies, the severity of climatic drought, namely aridity, in an area is usually
measured by the drought index (aridity index, AI), which is the ratio of total annual precipitation to
potential evapotranspiration [4]. The AI is a combination of precipitation and atmospheric evaporation
demand (AED) and is determined by the effects of multiple climatic factors (precipitation, temperature,
relative humidity, wind speed, solar radiation, etc.). Although precipitation and temperature are
the two main indicators for evaluating climatic change, the AI can better express the significance
of climate change in terms of the bioclimatic aspect [5]. Theoretically, in the context of global
warming, the corresponding global terrestrial evaporation capacity should also increase due to
rising temperatures [6]. However, an increasing number of studies have detected downward trends
in reference evapotranspiration (ET0) [7–12], potential evapotranspiration (ETp) [13–16], and pan
evaporation (Epan) [6,17–22] in many parts of the world. The opposite change trend between temperature
and evapotranspiration is the so-called evaporation paradox [23,24]. Many scholars have shown
that evaporation trends are determined not by temperature alone, but also by the combined action
of several climatic factors (such as solar radiation, relative humidity, wind speed, and so on) [12].
In addition, combined with precipitation, the aforementioned climatic factors can also determine
the rates of evapotranspiration and runoff in a particular region. Although some studies have used
extreme precipitation to show extreme drought or wetness events [25–28] and other aridity indices to
evaluate the dry–wet condition of a region [29–31], only the effects of temperature and precipitation on
dry and wet conditions were considered. At this point, the advantages of the AI for understanding
the change characteristics of dry–wet conditions can be presented to the greatest extent. Furthermore,
it also has scientific and practical applications for improving not only the comprehensive management
of regional water resources in a basin but also the management of water-related natural disasters at the
basin scale [32]. Since the AI is obtained by the precipitation divided by potential evapotranspiration,
and potential evapotranspiration is mainly influenced by four main meteorological factors (temperature,
relative humidity, wind speed, and solar radiation) [6,8,33,34]. Thus, clarifying the spatial and temporal
trends of AI and determining the contributions of the above five meteorological factors to the AI trends
are of greater importance for understanding regional scale dryness climate change features.

Some recent studies have reported drying or wetting trends in various parts of the world.
For example, an increase in aridity has been observed in southwestern Spain [5], Iran [35,36],
and southwest China [37], while a decrease in aridity has been detected in northwest China [10,38]
and some areas of Iran [39]. However, the trends and causes of spatiotemporal AI variations in the
Huai River Basin (HRB) of China have not been determined yet. According to the research evidence,
it is estimated that 63 extreme floods and 46 extreme droughts occurred in the HRB during 1470–2010.
Drought in the HRB led to famine throughout the basin and locust plague in most areas; furthermore,
crops were severely destroyed, and some rivers were cut off. Some studies have also shown that
the extreme climatic trends of droughts and floods in the HRB occur alternately at random [40].
As understanding climatic trends are vital to providing a scientific basis for regional water resource
management and agricultural irrigation, especially in this warm temperate to subtropical region,
it is necessary to study the changes and mechanisms of evapotranspiration and AI trends from a
spatiotemporal perspective.

At present, the detrending [7,10,41] and differential equation [6,8] methods are widely applied for
quantitative analysis of the influences of climatic factors on ET0 and AI trends. The detrending method is
simple and effective, mainly relying on a statistical and mathematical modeling approach, and provides
the relative contributions of climatic factors on ET0 and AI changes. As applied in previous studies, the
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differential equation method is an approach to quantify the actual contribution of each meteorological
factor to the trend in ET0 based on the differential of the Penman–Monteith Food and Agriculture
Organization (FAO) 56 model. However, the comparison between these two approaches has not been
well documented in the existing literature. In addition, although the differential equation method has
been applied to the study of the leading factors of AI trends, considering the daily precipitation is
zero for much of the year, the contributions of other climatic factors to these trends might be ignored
because the partial derivative of the climatic factor on the daily mean is multiplied by zero. As a result,
the contributions of meteorological factors to the AI trends calculated by the differential equation
method may produce great errors.

These problems regarding the studies of AI in the HRB have not been well documented in the
literature. Thus, the objectives of this study are (1) to analyze the spatiotemporal variations of AI,
precipitation (Pre), and ET0 in the HRB; (2) to determine the dominant factors of ET0 trends in annual
and seasonal mean by the detrending method and discuss its applicability with the differential equation
method as a reference; (3) to quantify the contributions of Pre and four main climatic factors to AI
trends in annual and seasonal time scales in the whole HRB and its subregions; and (4) to determine
the dominance of Pre and ET0 in AI trends. It is anticipated that the outcomes of this research will
give a basis for the comprehensive understanding of aridity regarding the recent impact of climate
change and the effective management of regional water resources, thus to mitigate these adverse
impacts of climate change on the water cycle and agricultural production and enhancing the regional
ecological conservation.

2. Study Area and Data

The HRB, with a total catchment area of approximately 2.7 × 105 km2, is located between the
Yangtze River and Yellow River Basins in Eastern China (111◦55′ E–121◦25′ E and 30◦55′ N–36◦36′ N)
(Figure 1). The HRB, belongs to temperate monsoon climate zoon, is also situated in a climate-transition
zone from a warm temperate zone to a subtropical zone. The annual mean temperature varies from
13.2 ◦C to 15.7 ◦C, evaporation from 900 mm to 1500 mm, relative humidity between 66% and 81%, and
wind speed between 1.3 m·s−1 and 3.5 m·s−1, while the annual precipitation is around 850 mm, with
more than 50% occurring between June and September [42]. Due to the particular climate conditions
and geographic location, the HRB plays a crucial role in China’s agricultural sectors. During the half
past century, waterlogged areas were widespread, accompanied by a prominent conflict between
humans and water or land. Against the historical background, both the disordered Huai River water
system and the deteriorated environment have aggravated the frequent occurrence of extreme events
such as floods and droughts [33,42].

Daily climatic datasets from 137 meteorological stations in the HRB within the period 1961–2014
(Figure 1) were used in this study, provided by the National Meteorological Information Centre (NMIC)
of the China Meteorological Administration (CMA). The datasets mainly include mean air temperature
(Ta, ◦C), maximum air temperature (Tmax, ◦C), and minimum air temperature (Tmin, ◦C), relative
humidity (RH, %), wind speed at 10 m height (u10, m·s−1), sunshine duration (SD, h), precipitation (Pre,
mm), and air pressure (P, kPa). Quality control of the meteorological datasets had already been carried
out by staff at the NMIC. Moreover, we also defined five seasons according to the meteorological
definition in the HRB, namely the growing season (April-October), spring (March-May), summer
(June-August), autumn (September-November), and winter (December-February in next year).

In addition, to discuss the effects of atmospheric circulation, sea level pressure, air temperature
in summer, air temperature in winter, geopotential height, and wind speed in summer at 500 hPa
were derived from the ERA5 reanalysis data (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5).

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Figure 1. General situation and geographical location of Huai River Basin (HRB) in Eastern China. I, 
II, III, and IV are upper HRB, middle HRB, Yi-Shu-Si basin, and lower HRB, respectively. Digital 
elevation model (DEM) datasets of 90 m spatial resolution are available online 
(http://srtm.csi.cgiar.org/). The unit “m a.s.l.” denotes the “meters above sea level”. 
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In this study, the Penman–Monteith FAO 56 model was adopted to calculate the reference 
evapotranspiration (ET0) 
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where ET0 is the reference evapotranspiration (mm·d–1); ∆ is the slope of the vapor pressure curve 
(kPa·°C–1); Rn is the net solar radiation at crop surface (MJ·m–2·d–1); G is the soil heat flux density 
(MJ·m–2·d–1); γ refers to the psychrometric constant (kPa·°C–1); u2 is the wind speed at 2 m height 
(m·s–1), which can be converted from wind speed at 10 m height by the formula calculation [43]; and 
es and ea are saturation and actual vapor pressure, respectively (kPa). The detailed calculation 
formula can be found in the below and the literatures [8,41,43]. uଶ = u୸ ସ.଼଻୪୬ሺ଺଻.଼୸ିହ.ସଶሻ, where z = 10 (2) 
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3.2. Aridity Index 

The aridity index (AI) is calculated by the ratio of Pre to ET0 (First calculate the daily ET0 and 
Pre, and then add them to the annual or seasonal time scale to calculate the corresponding AI) as 
follows [36,44,45]: AI = PreET଴ (5) 

Figure 1. General situation and geographical location of Huai River Basin (HRB) in Eastern China. I, II,
III, and IV are upper HRB, middle HRB, Yi-Shu-Si basin, and lower HRB, respectively. Digital elevation
model (DEM) datasets of 90 m spatial resolution are available online (http://srtm.csi.cgiar.org/). The unit
“m a.s.l.” denotes the “meters above sea level”.

3. Methods

3.1. Reference Evapotranspiration

In this study, the Penman–Monteith FAO 56 model was adopted to calculate the reference
evapotranspiration (ET0)

ET0 =
0.408∆(Rn −G) + γ

(
900

Ta+273

)
u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ET0 is the reference evapotranspiration (mm·d−1); ∆ is the slope of the vapor pressure curve
(kPa·◦C−1); Rn is the net solar radiation at crop surface (MJ·m−2

·d−1); G is the soil heat flux density
(MJ·m−2

·d−1); γ refers to the psychrometric constant (kPa·◦C−1); u2 is the wind speed at 2 m height
(m·s−1), which can be converted from wind speed at 10 m height by the formula calculation [43]; and es

and ea are saturation and actual vapor pressure, respectively (kPa). The detailed calculation formula
can be found in the below and the literatures [8,41,43].

u2 = uz
4.87

ln(67.8z− 5.42)
, where z = 10 (2)

ea = es ×RH (3)

es = 0.6108 exp
( 17.27Ta

Ta + 237.3

)
(4)

3.2. Aridity Index

The aridity index (AI) is calculated by the ratio of Pre to ET0 (First calculate the daily ET0 and
Pre, and then add them to the annual or seasonal time scale to calculate the corresponding AI) as
follows [36,44,45]:

AI =
Pre
ET0

(5)

http://srtm.csi.cgiar.org/
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where AI greater than 0.5 denotes humid conditions and lower than 0.5 indicates arid conditions.
Smaller AI indicates drier conditions, and vice versa.

3.3. Trend Analysis

In this research, the Theil–Sen’s slope estimator [46,47] was used to estimate the magnitude of
the variables’ trends. In addition, the nonparametric Mann–Kendall (M-K) test [48], which has been
widely used in hydrological trend detection studies, was also applied to determine the significance of
the variables’ trends. Detailed descriptions of these methods can be found in Li et al. [6].

3.4. Detrending Method

To analyze the contributions of climatic factors to ET0 and AI trends, the detrending method first
proposed by Xu et al. [7] was employed in this study. The specific calculation steps are as follows [41]:

(1) Remove the change trends of Pre, ET0, and climatic factors and convert them to fixed time series.
First, put the daily value data of a certain variable year by year into the column matrix one by one,

generating a matrix with 366 rows and 54 columns, then establish a simple linear regression between
the values of each row and the corresponding year (t) as follows:

zt = bt + a (6)

where zt is the value of a fitted trend line, and a and b are fitting parameters.
Then remove the trend of variables by subtracting the zt value from the original dataset. In

order to avoid negative values of this subtraction operation, the first value z1 is finally added, and the
detailed formula is

yt = xt − zt + z1 (7)

where xt is the original time series of the certain variable, z1 is the first value of zt, and yt is the final
detrended data series. Finally, all detrended datasets are restored to the original data sequence. By the
way, to maintain data consistency, only 365 days of data were selected here.

(2) Recalculate the certain variables using the detrended datasets.
After removing the change trends of certain variables, recalculate the daily ET0 or AI during the past

54 years by using the detrended dataset of one variable and the original datasets of remaining variables.
(3) Compare the recalculated ET0 or AI with the original one.
The difference between the recalculated ET0 or AI and the original value is regarded as the

contribution of that detrended variable to the ET0 or AI trend. To better quantify this contribution,
the evaluation index R is employed as follows:

R =
n∑

i=1

V0(i) −VR(i)

V0(i)
(8)

where V0 and VR denote the original and recalculated annual (seasonal) ET0 and AI, respectively, and
n represents the length of the time series in years (here n = 54). The larger the absolute R value, the
greater the contribution of the corresponding variable to the annual (seasonal) ET0 or AI trend. R > 0,
R < 0, and R = 0 denote positive, negative, and no contribution of the certain variable to ET0 or AI
trend, respectively.

3.5. Differential Equation Method

In order to compare with the detrending method, the differential equation method is also employed
in this study. The principle of the differential equation method is to regard the ET0 in Equation (1) as
the combination of climatic factors. Thus, in our previous study, we improved the differential equation
and selected four new climatic variables, namely mean temperature (Ta), relative humidity (RH), wind
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speed at 2 m height (u2), and solar radiation (Rs), as the main contributing factors [8]. The specific
calculation formula is as below:

dET0

dt
=
∂ET0

∂Ta

dTa

dt
+
∂ET0

∂RH
dRH

dt
+
∂ET0

∂u2

du2

dt
+
∂ET0

∂Rs

dRs

dt
+ ε (9)

Each term on the right side of the formula represents the contribution of Ta, RH, u2 and Rs to
ET0, respectively. ε represents the error term between the calculated ET0 trends and the ET0 trends
estimated by Theil-Sen’s estimator.

The detailed calculation of Rn in Equation (1) and Rs in Equation (9) are shown as follows:

Rs =
(
as + bs

SD
N

)
Ra (10)

Rn = Rns −Rnl (11)

Rns = (1−α)Rs (12)

Rnl = σ

T4
max, K + T4

min, K

2

(0.34− 0.14
√

ea
)(

1.35
Rs

Rs0
− 0.35

)
(13)

where as and bs are regression coefficients, N refers to maximum possible sunshine hours (h),
Ra refers to extraterrestrial radiation (MJ·m−2

·day−1), Rns refers to incoming net shortwave radiation
(MJ·m−2

·day−1), Rnl refers to net outgoing longwave radiation (MJ·m−2
·day−1), α refers to the albedo

of reference crop (value of 0.23), Tmax,K and Tmin,K refer to the maximum and minimum absolute
temperature during 24 h (K = ◦C + 273.16), Rs0 refers to clear-sky radiation. More detailed calculation
process can be referred to Allen et al. [43] and Li et al. [8].

4. Results

4.1. Temporal Variations of AI, ET0, and Pre

Figure 2 presents the monthly variation characteristics of Pre, ET0, and AI in the HRB. All three
were much larger in summer than in other seasons. In April and May, the minimum value of AI was
about 0.6 because the difference between ET0 and Pre reached the peak. In July, the difference between
Pre and ET0 also reached the peak, which generated the sharp increase and maximum AI.
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Table 1 lists annual, growing season, and seasonal trends of AI, Pre, and ET0 in each subregion
of the HRB. At annual time scale, AI increased throughout the region, while Pre and ET0 decreased.
The specific change trends of AI, Pre, and ET0 can be seen in Supplementary Figure S1. Similar results
can also be detected in the growing season. Generally speaking, the changing trends of AI and Pre were
not significant in each region and time scale. ET0 exhibited much more significance than Pre. Moreover,
AI and Pre show consistent increasing trends in summer and winter and decreasing trends in spring
and autumn in the whole region and in all subregions. To facilitate the reader’s understanding and
save space, the temporal trends of other climate factors can be found in Supplementary Table S1.
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Table 1. Temporal trends of AI, Pre, and ET0 in each subregion and each time scale of the HRB.

Region Variable
Annual Growing Season Spring Summer Autumn Winter

Z β Z β Z β Z β Z β Z β

Upper AI 0.13 0.0003 0.12 0.0004 −0.84 −0.0031 1.30 0.0063 −1.31 −0.0058 0.58 0.0025
Pre −0.58 −1.269 −0.48 −1.158 −0.78 −0.753 0.58 0.725 −1.85 −1.257 0.55 0.170
ET0 −3.49 −1.787 *** −3.55 −1.578 *** 0.69 0.197 −4.97 −1.567 *** −1.76 −0.253 −1.12 −0.138

Middle AI 1.19 0.0019 1.19 0.0016 −0.15 −0.0005 1.81 0.0055 −0.67 −0.0024 0.88 0.0025
Pre −0.28 −0.365 −0.42 −0.470 −0.42 −0.207 0.45 0.407 −0.95 −0.711 0.75 0.158
ET0 −4.74 −2.561 *** −4.92 −2.287 *** −1.06 −0.331 −5.43 −1.596*** −2.73 −0.400 ** −1.82 −0.235

Yi-Shu-Si AI −0.09 −0.0002 −0.22 −0.0006 −0.01 −0.0001 0.57 0.0018 −0.12 −0.0008 0.24 0.0005
Pre −0.98 −1.498 −1.15 −1.618 0.00 −0.015 −0.37 −0.426 −0.49 −0.328 0.27 0.049
ET0 −3.88 −1.556 *** −3.83 −1.446 *** −0.60 −0.153 −4.43 −1.094 *** −2.25 −0.276 * −0.39 −0.044

Lower AI −0.28 −0.0008 −0.93 −0.0025 −1.30 −0.0042 0.81 0.0049 −1.15 −0.0039 1.00 0.0048
Pre −0.16 −0.328 −0.85 −1.787 −0.75 −0.461 0.70 0.929 −1.37 −0.795 1.49 0.562
ET0 0.45 0.177 0.15 0.062 3.04 0.660 ** −1.97 −0.498 * 0.91 0.100 0.93 0.075

Whole AI 0.57 0.0009 0.22 0.0004 −0.51 −0.0010 1.31 0.0042 −0.61 −0.0022 0.82 0.0022
Pre −0.75 −0.942 −1.06 −1.343 −0.33 −0.182 0.21 0.299 −1.04 −0.654 0.75 0.194
ET0 −4.09 −1.894 *** −4.25 −1.772 *** −0.39 −0.122 −4.64 −1.307 *** −2.40 −0.308 * −1.24 −0.143

Note: *, **, and *** denote significance levels of 0.05, 0.01, and 0.001, respectively. β is the estimated slope trend of AI, Pre, and ET0. β > 0 and β < 0 signify upward and downward trend,
respectively. Z is the Mann–Kendall test statistic.
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4.2. Spatial Variations of AI, ET0, and Pre

The spatial distribution of the AI is shown in Figure 3. Overall, lower AI values were identified in
the north and higher in the south. The AI at 69.3% of stations exhibited an upward trend in the HRB at
an annual time scale. Moreover, significant increasing AI trends were identified in the northern part of
the middle HRB. Similar spatial patterns can also be found during the growing season. In summer,
AI was higher than in other seasons and about 89.7% of stations exhibited an upward trend. During
winter, the spatial distribution of AI value was similar to that in spring, with 89.1% of stations showed
an increasing trend.
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Spatial variation characteristics of ET0 in different time scales are shown in Figure 4. Overall,
lower ET0 was identified in the south and higher in the north annually and in growing season and
spring, while ET0 decreased from west to east in summer and winter. In the annual time scale, low ET0

values were found in the southern upper and middle HRB and high values in the northern middle
HRB and Yi-Shu-Si basin. Similar spatial patterns could be found in the growing season. In spring,
stations showing a significant downward trend were mainly distributed in the northern part of the
middle HRB and Yi-Shu-Si basin, and a significant upward trend in the southwest upper and middle
and most of the lower HRB. During summer, ET0 was higher than in other seasons, and almost all
the stations exhibited a significant downward trend. During autumn, ET0 also exhibited an overall
downward trend. The stations with significant trends were less than those in summer. Moreover,
stations with significantly decreasing and increasing ET0 were concentrated in the northern and lower
HRB, respectively. During winter, ET0 was the lowest of the four seasons. Stations with significantly
decreasing ET0 were mainly located in the northwest of middle HRB.
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The spatial distribution of Pre is shown in Figure 5. Similar to the distribution of AI, lower Pre
values were also found in the north and higher in the south. A similar spatial pattern of Pre trends can
be detected during the growing season. In summer, Pre was evidently higher than in other seasons.
In autumn, the number of stations with a decreasing Pre trend increased significantly, accounting
for approximately 89.8% of all stations. During winter, the Pre value was the smallest in the four
seasons. The spatial pattern of Pre was similar to that in spring. However, about 83.2% of stations
showed an increasing trend, and those with a significantly increasing trend were mainly identified in
the southeastern middle and lower HRB.
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4.3. Original and Detrended Trends of AI, ET0, Pre, and Other Climatic Factors

The original and detrended AI, ET0, Pre, and climatic parameters for annual time scale in the HRB
during 1961–2014 are shown in Figure 6. The original ET0 indicated a significant decreasing trend,
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thus the detrended ET0 was larger than the original one (Figure 6b). The detrended AI and Pre were
not distinguished from the original, as they did not change obviously during 1961–2014 (Figure 6a,c).
With the proportional relationship between AI and Pre, the significant decreasing ET0 trend cannot be
recognized in the AI trend. This phenomenon was caused by the decreasing ET0 trend was too small
to change the AI trend in their inverse proportional relationship (Table 1). The original Ta showed an
upward changing trend, which resulted lower detrended data (Figure 6d). Moreover, the original RH,
u2, and Rs showed a downward changing trend, which caused larger detrended data (Figure 6e–g).
The biggest difference between the original and detrended data was observed in u2 (Figure 6f).
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For the present study, the main reason for the declining u2 can be explained by the following: (1)
large-scale atmospheric circulation patterns caused by climate warming [49], (2) reduced temperature
and pressure gradients [50], (3) gradually weakening Siberian high and East Asian monsoon systems [7],
(4) enhancement of the Asian zonal circulation pattern [51], and (5) acceleration of urbanization
and associated changes in aerosol/dust concentrations caused by the specific characteristics and
socioeconomic conditions of different geographical locations [52–54]. In addition, the reasons for the
decreasing Rs trend during the past 54 years mainly include (1) aggravating air pollution and increasing
aerosol loading due to anthropogenic effluent pollutants [55], (2) increasing energy consumption
and regional cloud cover [56–58], and (3) the significant decreasing u2 also inhibited the diffusion
of pollutants and aerosols [59]. Although we have listed the possible reasons for the decrease in u2

and Rs, the main reasons for the decrease in u2 and Rs in the HRB are still uncertain and need to be
further investigated.
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4.4. Contributions of Four Main Climatic Factors to ET0 Trends

The RET0 index was calculated to evaluate the effects of four main climatic factors on ET0 trends
in this study. In order to verify the effectiveness of the detrending method, the differential equation
method was also adopted here (Figure 7). Specific values of RET0 and the contributions calculated
by the differential equation method (CET0) in each subregion and time scale can also be found in
Supplementary Table S2. From Figure 7 and Table S2, we found the dominant factors and the order of
influence factors of ET0 trends calculated by these two methods are highly consistent. Thus, we believe
the results calculated by the detrending method in this study is reasonable and reliable.

Sustainability 2020, 12, 1743 12 of 25 

the possible reasons for the decrease in u2 and Rs, the main reasons for the decrease in u2 and Rs in 
the HRB are still uncertain and need to be further investigated. 

4.4. Contributions of Four Main Climatic Factors to ET0 Trends 

The RET0 index was calculated to evaluate the effects of four main climatic factors on ET0 trends 
in this study. In order to verify the effectiveness of the detrending method, the differential equation 
method was also adopted here (Figure 7). Specific values of RET0 and the contributions calculated by 
the differential equation method (CET0) in each subregion and time scale can also be found in 
Supplementary Table S2. From Figure 7 and Table S2, we found the dominant factors and the order 
of influence factors of ET0 trends calculated by these two methods are highly consistent. Thus, we 
believe the results calculated by the detrending method in this study is reasonable and reliable. 

 
Figure 7. Contributions of climatic factors to ET0 trends in each time scale and subregion of the HRB 
when using the detrending method (RET0, where RET0 is dimensionless) and the differential equation 

Figure 7. Contributions of climatic factors to ET0 trends in each time scale and subregion of the HRB
when using the detrending method (RET0, where RET0 is dimensionless) and the differential equation
method (CET0, mm·a−2). Note: The bar graph with pure color and shadow indicated the RET0 and CET0

respectively. Ann, GS, Spr, Sum, Aut, and Win are the abbreviations for annual, growing season, spring,
summer, autumn, and winter, respectively.



Sustainability 2020, 12, 1743 13 of 25

For the whole HRB, u2 was the dominant factor of ET0 trends in spring, autumn, winter, and annual
time scale, while in other seasons (growing season and summer), Rs played a dominant role. Similar
findings can also be found in the upper middle HRB and Yi-Shu-Si basin. In the lower HRB in spring,
growing season, and annual time scale, the dominating factor of ET0 trends shifted to RH. In addition,
RH shared the dominant position with u2 in the upper HRB in spring.

Furthermore, Ta and RH made positive contributions to ET0 trends in all time scales except for
summer in the whole HRB and all subregions. In summer, positive contributions of Ta and RH were
only found in Yi-Shu-Si basin and lower HRB. Moreover, u2 and Rs made negative contributions in
each time scale and each region, but positive contributions in the lower HRB in spring. Generally
speaking, for most regions (upper, middle, and the whole HRB as well as the Yi-Shu-Si basin) in all
time scales, the positive contributions of Ta and RH were not able to offset the negative ones of u2

and Rs, which ultimately led to the overall downward trend in ET0. Nevertheless, in the upper HRB
in spring, the increased contributions of Ta and RH and the decreased contribution of Rs eventually
led to an upward ET0 trend. A similar phenomenon could also be found in the lower HRB except
in the summer season. All the results in Figure 7 can provide reasonable explanations for the ET0

trends in Table 1. In addition, right behind u2, Ta was the second dominant factor affecting ET0 trends,
especially in spring and winter.

For better understanding, the contribution characteristics of four main climatic factors to ET0

trends, the spatial distribution characteristics of dominant factors influencing ET0 variation trends are
shown in Figure 8. In the annual time scale, ET0 variation trends at most stations were dominated by
u2. The ET0 trends in the upper and middle HRB and Yi-Shu-Si basin were mainly dominated by u2

and Rs, and by RH in the lower HRB. In the growing season, Rs dominated the ET0 trends in most of
the HRB and the spatial distribution of dominant factors was similar to that in the annual time scale.
In spring, u2 dominated the ET0 variation trends at most stations, and RH also played a dominant role
in ET0 trends in some stations of lower HRB and southern parts of the upper and middle HRB, while
the rest of the subregions were mainly dominated by Ta. In summer, Rs played an absolute leading
role in almost the whole region. In autumn, u2 also dominated the ET0 trends at most stations, and
RH also played dominant roles in some stations of lower HRB. In winter, the spatial distribution of
dominant factors was similar to that in autumn.
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4.5. Contributions of Pre and Four Main Climatic Factors to AI Trends

To evaluate the effects of Pre and four main climatic factors on AI, the RAI index was employed in
this research (Figure 9). Specific values of the RAI index for each time scale in the whole HRB and each
subregion in different time scales can be found in Supplementary Table S3.
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Generally, AI was mostly contributed by Pre in spring, autumn, and winter. The Rs contributed
the most to AI trend in growing season and summer. Then in annual time scale, u2 was the dominant
factor. However, in the Yi-Shu-Si basin, the dominant factor of AI trends in the growing season shifted
to Pre. Moreover, in the lower HRB, the dominant factor of AI trends in annual time scale was RH and
then shifted to Pre in the growing season and spring.

Mostly, the positive/negative contribution of the dominant factor led to the increase/decrease
trend of AI combined with the AI trends shown in Table 1. Specifically, Pre generally made a negative
contribution to AI trends in the growing season, spring, autumn, and annual time scale, and a positive
contribution in summer and winter. The contributions of Ta and RH were negative and those of u2 and
Rs were positive in general. However, in summer, Pre and other climatic factors contributed positively
to AI trends in the upper, middle, and whole HRB. In the growing season and annual time scale, the
positive contributions of u2 and Rs offset the negative ones of Pre, Ta, and RH, which ultimately led to
positive AI trends in the upper, middle, and whole HRB. Nevertheless, the negative contributions of
Pre, Ta, and RH were greater than the positive ones of u2 and Rs, which eventually led to negative AI
trends in the Yi-Shu-Si basin and lower HRB during the same period. The AI trends in spring and
autumn can be interpreted similarly. Different from other seasons, although Pre, Ta, and RH had
negative contributions in the Yi-Shu-Si basin, they could not offset the positive contributions from
u2 and Rs. Similarly, negative contributions from Ta and RH in the lower HRB could not offset the
positive contributions from Pre, u2, and Rs. These eventually led to the increasing AI trend during the
summer. Similarly, the upward trend of AI in winter can also be well explained. Due to the smaller AI
trend in the Yi-Shu-Si basin during spring and annual time scale, the results in Figure 9 differ from
those in Table 1.

The spatial distribution characteristics of dominant factors influencing AI trends are shown in
Figure 10. In the annual time scale, the dominant factors in AI variation trends were u2, followed
by Pre, Rs, RH, and Ta, while the AI trends in the lower HRB were mainly dominated by RH and
Pre. In the growing season, Pre dominated the AI trends in most areas of the HRB and the proportion
of Rs dominated stations increased, accounting for about 32.1%. This phenomenon was inconsistent
with the result in Figure 9, which indicated that the Rs was the dominant factor in the whole HRB in
the corresponding period. The specific reasons for this phenomenon are the positive and negative
contributions of Pre to the AI trends offset each other in stations. Meanwhile, the contributions of
Rs and u2 are basically positive, which ultimately led to the smaller contribution of Pre and larger
contribution of Rs and u2 on the average in the whole region. In addition, the spatial distribution of
dominant factors was similar to that in the annual time scale. In spring, Pre still dominated the AI
variation trends in 77.4% of stations, while u2 dominated stations mainly distributed in the Yi-Shu-Si
basin. In summer, Rs and Pre were both dominant factors in almost the whole region. In autumn, Pre
also dominated the AI variation trends in most stations, while u2 and Pre were the dominant factors in
the Yi-Shu-Si basin and northeast middle HRB. In winter, Ta and u2 dominated the AI trends in the
northern Yi-Shu-Si basin, and u2 and Pre were the dominant factors in the western middle HRB, and
other subregions were mainly dominated by Pre.
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4.6. Contributions of Pre and ET0 to AI Trends

The contributions of Pre and ET0 to AI trends in each time scale and subregion during 1961–2014
are shown in Figure 11. Specific values can be found in Supplementary Table S4. Overall, echoed with
the result in Section 3.5, the contribution of Pre was much larger than ET0 in spring, summer and
winter, in which only showed positive contribution in winter. Moreover, AI was mostly contributed
by ET0 in summer. Thus, AI was dominated by ET0 in annual time scale and growing season, which
was the result of the positive and negative contributions of Pre in different seasons offset each other.
As shown, for the whole HRB, ET0 contributed positively to the AI trend in all time scales except for
spring, and Pre made a positive contribution to the AI trend in summer and winter and a negative
contribution in other time scales. Moreover, AI was affected more by ET0 in the growing season,
summer, and annual time scale, and by Pre in other seasons. Similar findings can also be detected in
the upper and middle HRB and Yi-Shu-Si basin. However, in the lower HRB, Pre played a dominant
role in the AI trend except for annual time scale. As shown in Table 1, in the upper, middle, and whole
HRB and the Yi-Shu-Si basin, ET0 exhibited a significant decreasing trend, especially in the growing
season, summer, and annual time scale, when the dominant factor of AI trend was ET0. Here, the
significance of ET0 was significantly related to its dominance in AI trends. However, in the lower HRB,
ET0 exhibited a significant decreasing trend only in spring and summer, its significance was evidently
weaker than in other subregions, and the dominant factor was Pre. Considering the particularity of the
lower HRB, the relationship between the significance of Pre and ET0 and their dominance in AI trends
is not obvious. Similar specificity of the lower HRB can also be found in our previous studies [6,8].
The specific reasons for this phenomenon remain to be further investigated.
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5. Discussion

In this study, we compared the differential method with the detrending method to determine
the leading factors of ET0 trends, and found that the results with the detrending method were pretty
much the same as those in our previous research of the HRB with the differential equation method
(Supplementary Table S2) [8]. This further proves the effectiveness and reliability of the detrending
method when quantitatively analyzing the causes of ET0 and AI trends in the HRB and other regions.

In previous studies, many scholars explored AI trends in China. Huo et al. [10] investigated the
effects of climate change on AI in arid northwest China and stated that increasing Pre was the most
sensitive climatic factor and made a much greater contribution than decreasing ET0 to the downward
AI trend (calculated by (ET0–Pre)/ET0). A similar area of northwest China showed similar findings [38].
In addition, the AI calculated with the same formula in the Loess Plateau [60], Tibetan Plateau [61],
Yellow River Basin [32], and southwest China [62] and with the ratio between ET0 and Pre in Northwest
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China [38] showed a declining trend, which indicated that these regions became wetter in the past
50 years. Considering the correlation coefficient between AI and climate factors, the dominant factor
of the AI trend in the Yellow River basin was determined to be RH, followed by Pre [32]. In order to
understand the variation of AI more concretely in northern China, Zhang et al. [63] used 283 standard
meteorological stations to analyze the spatiotemporal variations of AI and its influencing factors.
It was found that the AI decreased significantly and the dry and wet areas increased and decreased,
respectively, on the east and west sides of 100◦ E, and the duration of sunshine and Pre were the main
dominant factors in the declining AI trend [33]. Unlike in the study of Zhao et al. [60], the AI calculated
by the ratio of Pre to ET0 exhibited a downward trend in the Loess Plateau and the boundary of dry
land region was expanded there [64], and Pre was the main cause of AI variations. Although southwest
China became wetter during the past 54 years, Li et al. [37] demonstrated that the region was getting
drier over the past 20 years, and decreasing Pre and increasing maximum air temperature were the
main factors of the upward AI trend.

In this study, during the growing season and annual time scale, the AI (Pre/ET0) in the entire,
upper, and middle HRB presented an upward trend, which manifested in the HRB becoming wetter in
the past 54 years in these regions. However, the Yi-Shu-Si basin and lower HRB became drier with
decreasing AI trends. Different from the above studies, this research further analyzed the seasonal
variation trends of AI, and the results showed that the AI in the whole HRB and all subregions exhibited
a decreasing trend in spring and autumn (becoming drier) and an increasing trend in summer and
winter (becoming wetter). From Figure 9 and Supplementary Table S3, we can see that u2 and Rs

were the main dominant factors in annual time scale and growing season, respectively, and these
results were echoed in the findings of Wu et al. [65], who reported that wind speed and sunshine hours
contributed more to AI trends. In addition, Pre was the main dominant factor in the AI trends in all
seasons except for summer, when Rs had a greater effect. Furthermore, we also quantified the effects of
Pre and ET0 on AI trends and found that the contribution of ET0 was higher than that of Pre in the
growing season and annual time scale, while the phenomenon was reversed in all seasons except for
summer. Yin et al. [66] also reported that, due to the greater impact of climate change on increasing
atmospheric moisture demand (ET0), most areas of Eastern China are likely to face an increased risk of
drought despite the positive Pre anomalies. This further stresses the importance of evapotranspiration
demand in drought variation research in the context of future climate warming. All of the above
findings are in good agreement with those in a recent study of Liu et al. [45].

In general, extreme droughts related to ENSO (El Niño-Southern Oscillation) events that have
greatly affected the vegetation and ecosystem in China [67]. Long-term high-resolution grids of climatic
dataset (1950–2000) in southwest China reveals that annual precipitation during May and October is
decreasing with fluctuation, whereas at the same time, the mean annual air temperature is increasing
in southwest China [68]. Tan et al. [69] stated that the trend of drying is in phase with the enhancing
El Niño activities and warming which increased drought episodes in southwest China in the last
several decades and consequently the potential water resource crisis and ecological risk may occur
under the background of well-known global warming scenarios. In the interannual timescale, the
warm-dry climatic trend is associated to the tropical Pacific warming that enhanced ENSO and the
weakening of the summer monsoon related to an overall ITCZ (Intertropical Convergence Zone) shift
in the Indo-Pacific region [67–69]. Gu et al. [68] reported that aridity index is strongly associated with
ENSO events in southwest China. Our study can be inferred that aridity index may be linked to ENSO
activities in Eastern China which deserves further investigation.

There have been significant abrupt variations in AI values in the HRB, Eastern China. The basic
features of atmospheric circulation (e.g., sea level pressure, wind, temperature) over the study region
were analyzed, which was impacted on the AI. The difference between high and low AI years was taken
into consideration in this study, and the large-scale atmospheric oscillation indices have substantially
impacted on the extreme climatic events. Thus, to compute the variation in atmospheric oscillation,
we quantified the average circulation composites and then explored the role of circulation variations
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on the trends in extreme aridity. First, we identified the high AI years (1984, 1991, 1998, and 2003)
and low AI years (1988, 2001, and 2013) during the study period in the HRB. Next, the change in
circulation patterns was computed by the differences between high AI and low AI years based on the
ERA5 reanalysis dataset.

Figure 12a exhibits the difference in sea level pressure between high AI and low AI years. The sea
level pressure declined overall up to 50 hPa, and thus pressure will decrease the weakening impact
of atmosphere on solar radiation, and this will elevate the climate warming. In Figure 12b, summer
temperature showed a rising trend overall, hence, warm moist air brings from the ocean during summer
may be resultant in higher summer temperature and triggers a warming, which was distributed in the
Eastern China. In addition, the northeasterly wind in Eastern China was strengthened, which lessen
the extent of the winter monsoon in the north and declined the incursions of colder air, that led to
warming in the HRB in winter season (Figure 12c). As seen from Figure 12d, the higher changes in the
monthly average geopotential height (500 hPa) happened in summer (near 30 gpm) in the HRB, Eastern
China, and a Eurasian continent anticyclone centered was formed in upper portion (near 45◦ N and 95◦

E) and there is no visible anticyclone centered on the study area. Furthermore, a cyclone also happened
in the western Pacific (near 40◦ N and 130◦ E), which suggested a weakening eastern Asian summer
monsoon during these high and low AI years. Eastern China consists of large areas with elevated
geopotential height differences, forming a ridge with relatively higher geopotential heights. The ridge
pattern is located under the anticyclone centered on the top of the study area. A large region of sinking
air or a deep warm air mass will both lead to form ridge pattern. Since air is often sinking within a
ridge pattern, it tends to bring warmer and drier weather which is unfavorable for the formation of
rain. The ridge pattern of high pressure was also related to the high temperature in the ocean which
triggered in substantial warming along the east coast of China as well as adverse ecological effects.
The incident of persistent higher geopotential height anomalies and dry weather will increase due to
global climate warming. This is in good agreement with the findings of the earlier studies [70].

Moreover, agricultural crop production is also highly sensitive to variations in climate factors.
Research on the spatiotemporal patterns of ET0 and AI and their contributing factors can provide
reference information for irrigation management and solutions to the climate change situation. The HRB
is a major grain-producing base in China, where the major crops include winter wheat, paddy rice,
and summer maize. These crops have been proven to be easily affected by variable climate, such as
significantly increasing Ta, decreasing u2 and Rs, and slightly decreasing RH [6,8]. Against the
background of climate change, more challenges, including extreme flood, drought [42], and water
losses [71], are faced by agricultural crop production and water management in the HRB.

In the lower HRB, ET0 showed a slightly upward trend and ultimately led to a decrease in AI.
Generally speaking, water requirements of various crops and vegetation will be enhanced, especially
in the lower HRB, on account of decreasing Pre and increasing ET0. Similar phenomena also occur in
spring and autumn. Ultimately, decreased AI could lead to decreased water availability, crop yields,
and agricultural productivity. More specifically, as shown in Table 1 and Figures 4 and 5, the increasing
trend of Pre and significant decreasing trend of ET0 in summer in combination with abundant rainfall
will promote more water storage and vegetation growth. Although more irrigation water is required
for crop production, excessive Pre concentrated in the monsoon season (June–September) could have
an extremely uneven spatial distribution and cause oversaturated soil and even increase the frequency
of flood disasters and water logging [72]. In addition, the increasing AI trend with increasing Pre and
slightly decreasing ET0 in winter could also maintain the soil moisture condition, which would benefit
the seeding, tilling, overwintering, and regreening periods of winter wheat. In contrast, the AI in
spring and autumn showed a downward trend, especially in the upper and lower HRB, which showed
a faster decreasing AI trend than other areas. All of these would also adversely affect the growth of
winter wheat and summer maize. Gao et al. [73] reported that the increasing trend of drought and
the effect on yield were the greatest in the regreening and heading periods of winter wheat in the
HRB. Furthermore, except for jointing and tasseling stages, summer maize showed water deficit in
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other growth stages [74]. Moreover, the increasing AI trend in the upper and lower HRB in spring
deserves further attention, especially in the lower HRB, which showed a significant increasing ET0

trend (Table 1). Thus, analyzing the spatiotemporal evolution of ET0 and AI trends and determining the
causes in the HRB will be beneficial for farmers and policy makers to implement reasonable irrigation
management and focus on the sustainable utilization of irrigation water resources considering climate
change. Furthermore, the anthropogenic impacts of land use change, rapid urbanization linked to
atmospheric teleconnection should be considered in future research.Sustainability 2020, 12, 1743 20 of 25 

 

 

Figure 12. Spatial differences in sea level pressure (a), air temperature in summer (b), air temperature
in winter (c), geopotential height and wind speed in summer (d) at 500 hPa between high AI and low
AI years.



Sustainability 2020, 12, 1743 21 of 25

6. Conclusions

In the present study, spatiotemporal variations of Pre, ET0, and AI were investigated. The dominant
factors influencing ET0 and AI trends were also explored in this study. The study indicated that the
leading factors and the order of influencing factors of ET0 trends calculated by the detrending method
are highly consistent with those calculated by the differential equation method. Pre, ET0 and AI were
much larger in summer than in other seasons. AI had a nonsignificant increasing trend in annual
time scale, while Pre and ET0 exhibited decreasing trends. However, AI showed a downward trend in
spring and autumn (becoming drier) and an upward trend during summer and winter due to increased
Pre (becoming wetter). Overall, lower AI values were identified in the north and higher in the south.
Lower ET0 was identified in the south and higher in the north annually and in growing season and
spring, while ET0 decreased from west to east in summer and winter. The spatial distribution of Pre
was similar to that of AI. The original ET0 indicated a significant decreasing trend, thus the detrended
ET0 was larger than the original one; the detrended AI and Pre were not distinguished from the original,
as they did not change obviously. For ET0 trends, u2 was the dominant factor of ET0 trends in spring,
autumn, winter and annual time scale, while in other seasons (growing season and summer), Rs played
a dominant role. For AI trends, AI was mostly contributed by Pre in spring, autumn and winter,
the Rs contributed the most to AI trends in growing season and summer, then in annual time scale,
u2 was the dominant factor. In general, the contribution of Pre was much larger than ET0 in spring,
autumn and winter, which only showed a positive contribution in winter. Moreover, AI was mostly
contributed by ET0 in summer. Thus, AI was dominated by ET0 in annual time scale and growing
season, which was the result of the positive and negative contributions of Pre in different seasons
offset each other. The outcomes of the study are important for evaluating limited water resources and
irrigation management to adapt measures to control aridity in these susceptible regions throughout
the HRB. A better understanding of the mechanisms that influence the ET0 and AI changes will assist
to further variations in the dryness climatic characteristics in the HRB.
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