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Abstract: In this work, the impact of exogenous aerobic bacteria mixture (EABM) on municipal solid
waste (MSW) is well evaluated in the following aspects: biogas production, leachate analysis, organic
waste degradation, EABM population, and the composition of microbial communities. The study was
designed and performed as follows: the control bioreactor (R1) was filled up with MSW and the culture
medium of EABM and the experimental bioreactor (R2) was filled up with MSW and EABM. The data
suggests that the composition of microbial communities (bacterial and methanogenic) in R1 and
R2 were similar at day 0, while the addition of EABM in R2 led to a differential abundance of Bacillus
cereus, Bacillus subtilis, Staphylococcus saprophyticus, Staphlyoccus xylosus, and Pantoea agglomerans
in two bioreactors. The population of exogenous aerobic bacteria in R2 greatly increased during
hydrolysis and acidogenesis stages, and subsequently increased the degradation of volatile solid
(VS), protein, lipid, and lignin by 59.25%, 25.68%, 60.47%, and 197.62%, respectively, compared to R1.
The duration of hydrolysis and acidogenesis in R2 was 33.33% shorter than that in R1. At the end of
the study, the accumulative methane yield in R2 (494.4 L) was almost three times more than that in
R1 (187.4 L). In addition, the abundance of acetoclasic methanogens increased at acetogenesis and
methanogenesis stages in both bioreactors, which indicates that acetoclasic methanogens (especially
Methanoseata) could contribute to methane production. This study demonstrates that EABM can
accelerate organic waste degradation to promote MSW biodegradation and methane production.
Moreover, the operational parameters helped EABM to generate 20.85% more in accumulative
methane yield. With a better understanding of how EABM affects MSW and the composition of
bacterial community, this study offers a potential practical approach to MSW disposal and cleaner
energy generation worldwide.

Keywords: anaerobic digestion; municipal solid waste; microbial communities; exogenous aerobic
bacteria; methane production; methanogenic bacteria

1. Introduction

With increasing global urbanization and industrialization, municipal solid waste (MSW) is a
growing problem worldwide due to its impact on human health and the environment [1]. At present,
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landfill is the most common method of MSW disposal; approximately 80%of waste generated globally
is converted into landfill [2,3]. Benefits of landfill include the potential of utilizing landfill gas (mostly
methane and carbon dioxide) to generate electricity, as well as eliminating environmental safety risks to
human health. However, fast human population expansion and industrialization have led to drastically
increased MSW production, not to mention land shortages [4]. According to the world bank, the growth
rate of MSW generation is much greater than the rate of urbanization, and MSW production has risen
tenfold in the past century [5,6]. Hence, researchers have focused on how to accelerate biodegradation
at the landfill sites to combat the crisis we face [7–10]. Some studies indicate that physical and chemical
treatments could influence biodegradation and methane production of MSW [11–13], while others
suggest that bacteria plays a crucial role in MSW biodegradation [14]. For instance, high C/N ratio
feedstock digestion is enhanced when methanogenic propionate degradation consortiais enriched [15].
Enterobacter aerogenes and Escherichia coli were also reported as co-culture for the hydrogen production
of using MSW [16]. Researchers believe the alternations of physical and chemical parameters offer
better environmental conditions for bacteria to catalyze MSW to carbon dioxide, methane, and water
through a cascade of biochemical reactions [17].

As a complex biological reaction, MSW biodegradation consists of four distinct stages: hydrolysis,
acidogenesis, acetogenesis, and methanogenesis [18]. Bacteria break down organic waste into H2,
CO2, and organic acids at hydrolysis and acidogenesis stages; after that, methanogens convert them
into methane at acetogenesis and methanogenesis stages [19,20]. Hence, researchers introduced other
materials containing highly active microbial communities, such as sludge and manure, as additives
to promote MSW biodegradation and methane production [21,22]. However, unclear composition
and uncertain culture conditions of those microbial communities make this method difficult to adopt
for landfill/industry. Therefore, we need to come up with a practical method. In our previous
study, we raised a hypothesis that by accelerating organic waste, MSW biodegradation and methane
production could be promoted [23]. Hence, five specific species of aerobic bacteria were obtained
from a landfill site and prepared as exogenous aerobic bacteria mixture (EABM). The study observed
that organic waste degradation and methane production increase when EABM codigest with MSW.
However, the study is insufficient to prove that EABM could accelerate organic waste degradation.
In this study, we intend to take an insight into the interaction between EABM and organic waste
degradation by adopting metagenome sequencing [24–26]. Moreover, the working condition of EABM
within MSW is crucial to develop a practical approach. This study evaluates the effects of operational
parameters (data unpublished) of EABM on MSW biodegradation. In addition, the shift of bacterial
community associated with MSW biodegradation with EABM addition is also analyzed.

The aim of this research is to study the impact of EABM on sustainable methane production
associated with MSW biodegradation. For this purpose, the interaction of EABM and organic waste
will first be presented by connecting the data of EABM reproduction, organic waste degradation,
and biogas production (methane, carbon dioxide, and oxygen concentration). This study not only
presents conclusive data that EABM promotes methane production by accelerating organic waste
degradation, but also outlines the operational parameters for EABM in MSW and the effects of EABM
on microbial community. This research presents new insight about EABM, which may help advance
the development of an applicable approach for MSW biodegradation and cleaner energy generation
at landfills.

2. Materials and Methods

2.1. Materials and Setup

All bacteria strains were stored at 4 °C in our lab before experiments. The preparations of EABM
and MSW strictly follow procedures outlined in a previous study [23]. Two acrylic bioreactors (R1 and
R2) with a dimension of 8 mm × 0.2 m × 0.66 m were constructed (Figure 1). Each bioreactor came
with one leachate collection pot and one gas collection pot at the top, as well as one MSW sampling
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pot on the side. The leachate was pumped back through the recirculation pipe after being collected
at the bottom of bioreactor. Ten kg MSW shredded to 5 cm in diameter and well mixed was placed
above 2 kg gravel stones in each bioreactor and covered with 2 kg soil on top. The initial MSW pH
in R1 (well mixed with 1.0 kg EABM culture medium) and R2 (well mixed with 1.0 kg EABM and
200.0 g Phanerochaete chrysosporium mycelia pellets) was adjusted to around 7.0 pH (Table 1). During the
experiments, the leachate was recirculated back to the bioreactor every two days and the bioreactors
were maintained at 30 ◦C. The moisture content remained the same until the end of the study.
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Table 1. Configurations of bioreactors.

Experiments Quantity of
Wet Waste, kg

Moisture
Content a

(mean ± SD), %

Volatile Solid
(VS) a (Mean ±

SD), %

Leachate
Recirculation Supplement Initial

pH

R1 10 45.17 ± 2.09 67.2 ± 2.78 Yes

1 kg culture
medium of

exogenous aerobic
bacteria mixture

(EABM)

7.0

R2 10 45.36 ± 2.36 66.5 ± 2.21 Yes
1 kg EABM and

200 g mycelia
pellets

7.0

a Average values of triplicate measurements with standard deviation.

2.2. Sampling and Analytical Methods

MSW samples, biogas, and the leachates were measured every other day. Biogas was collected by
connecting a Tedlar bag to the gas port. Biogas volume was measured by liquid displacement under the
conditions previously described [27]. Meanwhile, an infrared methane gas analyzer Gasboard-3200L
(Cubic Optoelectronics China Ltd., Wuhan, China) was used to measure the concentration of methane,
carbon dioxide, and oxygen. Once the leachate was sampled, it was first analyzed using a pH meter
(Mettler Toledo Instruments Ltd., Shanghai, China). The moisture content was calculated by heating the
sample at 105 ◦C for 24 h as a dry weight. Volatile solid (VS) was calculated by ashing the dry weight
sample at 550 °C to a constant weight in a muffle furnace. Organic waste degradation (protein, lipid,
and lignin) were calculated using the methods described in previous studies [28–30]. Microsoft Excel
was adopted to calculate related statistical parameters. Significant differences were determined when
p ≤ 0.05. All values in tables were the average from triplicate measurements with standard deviation.

The MSW samples for high-through put sequencing were collected every 10 days from day 0 from
two bioreactors. Each sample was first centrifuged at 3000× g for 5 min, then the supernatant was
centrifuged at 10,000× g for 20 min. After that, the supernatant was decanted carefully to obtain the
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settled biomass for DNA extraction. Total genomic DNA was extracted using a Soil DNA Kit (OMEGA,
USA) according to the manufacturer’s instructions. The 16S rRNA genes were amplified based on
the publish methods with bacterial universal primer (515F: GTG CCA GCM GCC GCG GTA A, 806R:
GGA CTA CHV GGG TWT CTA AT) and archaeal universal primer (Ar915F: AGG AAT TGG CGG
GGG AGC AC, Ar1386R: GCG GTG TGT GCA AGG AGC) [31,32]. After PCR amplification, 16S
rRNA genes were stored at −20 °C until submitted to the company (The Beijing Genomics Institute,
China) for the pyrosequencing analysis. DNA samples were paired-end sequenced by Miseq from
Illumina. High-quality reads were connected as cleantags by overlap. After excluding singletons
operational taxonomic units (OTUs), clustering at 3% divergence (97% similarity), OTUs were identified.
Final OTUs were assigned and classified into each taxonomic level.

3. Results and Discussions

3.1. Methane Production Associate with MSW Biodegradation

Daily methane production in two bioreactors started to increase all the way to the peak of 10.1 L
and 24.5 L in R1 and R2, respectively (Figure 2B). However, after peaking, production decreased sharply
until no methane production could be measured. Meanwhile, the trends of the accumulative methane
yield in two bioreactors were similar (Figure 2A). After the lag phase at the beginning, the production
cumulated rapidly until it became stabilized. At the end of the study, the accumulative methane yield
in R1 and R2 was 187.6 L and 494.9 L, respectively. The data shows that with the addition of EABM,
the accumulative methane yield in R2 was 163.81% more than R1.
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Methane production per organic matter indicates the degree of waste stabilization [27].
According to the authors of [33–35], the methane production rate under microbial treatments varies
from 44.6 to 79 L·kg−1 organic matter. The methane production rate under physical and chemical
treatments is between 57.27 to 79.28 L·kg−1 organic matter [36–38]. Meanwhile, at the end of this study,
the methane production rate in R2 was 136.20 L·kg−1 organic matter, which is higher than what was
reported (Table 2).

Table 2. Comparisons of methane productions rate with references.

Methane Production Rate, L·kg−1 VS

R2 a MSW under Microbial Treatments b MMSW under Physical and Chemical Treatments b

136.20 44.6 [33] 79 [34] 45.3 [35] 57.27 [36] 79.28 [37] 63.56 [38]
a Data from this study. b Data from references.

The operational parameters for EABM in this study included adjusting the initial MSW pH to
around 7.0 at the beginning. During the experiment, the bioreactor was maintained at 30 ◦C, and all
collected leachate was pumped back to the bioreactor. Compared to the previous study, the operational
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parameters helped to generate 20.85% and 37.63% in the accumulative methane yield and methane
production rate [23].

3.2. Bacteriareproduction in Bioreactors

The compositions of bacterial community in two bioreactors were similar at Phylum level at
day 0 (Figure 3A). The bacterial 16S rRNA gene sequences were assigned to Bacteroidetes, Firmicutes,
Synergistetes, Chlorofex, Gemmatimonadetes, and Spirochaetes. At Family level, they were identified as
Bacillaceae, Enterobacteriaceae, Staphylococcaceae, Hydrogenophilaceae, Pseudomonadaceae, and Rhodocyclaceae
(Figure 3B). However, the addition of EABM led to a difference in abundance of bacteria in two
bioreactors at day 0 of the study.
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Figure 3. The abundance of bacteria in two bioreactors at day 0: (A) the abundance of bacteria classified
by Phylum and (B) the abundance of bacteria classified by Family.

Bacillus cereus, B. subtilis, Staphylococcus saprophyticus, S. xylosus, and Pantoea agglomerans are the
dominant bacteria in both bioreactors; their abundances increased rapidly at first. Later, the abundances
of Staphylococcus saprophyticus, Staphylococcus xylosus, and Pantoea agglomerans dropped after the 30th
and 20th day in R1 and R2, respectively. Meanwhile, the abundances of Bacillus cereus and B. Subtilis
still remained at high levels in both bioreactors (Figure 4).
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Figure 4. The abundance of five species of aerobic bacteria in two bioreactors with time: (A) the
abundance of five species of aerobic bacteria in R1 with time and (B) the abundance of five species of
aerobic bacteria in R2 with time.

Sporulation is an important and multicellular process which plays a crucial role for spore-forming
bacteria [39]. This process makes it possible for bacteria to enter a dormant state and survive adverse
environments for extended periods, even centuries [40,41]. Oxygen and nutrients became insufficient
as methane is produced in bioreactors, which forced Bacillus cereus and B. subtilis to form spores.
This may explain why these two species remain dominant when methane was generated, while the
abundances of other added bacteria dropped.
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3.3. Methanogens in Bioreactors

The compositions of methanogenic communities in two bioreactors were similar at day 0 (Figure 5).
At Phylum level, the sequences were classified as Crenarchaeota and Euryarchaeota in both bioreactors.
At Genus level, they were identified as Methanobacterium, Methanothermobacter, Methanogenium,
Methanomicrobiales, Methanosaeta, Methanosarcina, and Methnospirillum. McMahon pointed out that high
levels of archaea with Methanosaeta was the dominant acetoclastic methanogen that started up well in
the anaerobic digestion [42]. This may also explain why the Methanosaeta Genus was the dominant
methanogen in both bioreactors of this study.
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Based on the substrate that methanogens utilize, they can typically be classified as
hydrogenotrophic or acetoclastic. CO2 and H2 can be consumed by hydrogenotrophic
methanogens to produce methane, while acetoclastic methanogens use acetate to produce methane.
Acetoclastic methanogens remained dominant in both bioreactors at day 0 as well as by the end of
the study (Table 3). After 60 days of biodegradation, the abundances of acetoclastic methanogens
increased in both bioreactors, while the abundances of hydrogenotrophic methanogens decreased.
However, compared to R1, the abundances of acetoclastic methanogens in R2 at the end of study was
18.94% higher than in R1. The predominance of acetoclastic methanogens at stable bioreactors were
found in a previous study [43,44]. Meanwhile, other studies also reported that the increase of acetoclastic
methanogens was accompanied by 85%–120% increases in methane production. Hence, the increase
of acetoclastic methanogens contributed to methane production compared to hydrogenotrophic
methanogens at biodegradation [45].

Table 3. Percentages of two types of methanogens.

R1 R2

Hydrogenotrophic
methanogens

Acetoclastic
methanogens

Hydrogenotrophic
methanogens

Acetoclastic
methanogens

Day 0 41.26 56.35 40.20 54.85
Day 60 32.77 61.42 21.94 73.05
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3.4. Correlations of Microbial Community Dynamics and Methane Production

Combining the data of bioga sproduction and microbial community dynamics, similarities were
found in both bioreactors (Figure 6). Oxygen concentration decreased rapidly when biodegradation
began, causing bacteria to become dominant in both bioreactors. On the other hand, methanogens
became active and started to reproduce when the methane level greatly increased. However, differences
can still be found in two bioreactors. The pH value is a key parameter to differentiate the four stages of
MSW biodegradation [46]. The decrease in pH isa mark of the acidogenesis stage, while a neutral pH is
a mark of the acetogenesis stage and methanogenesis stage [47]. The first neutral pH appeared on the
32nd day in R1 and the 24th day in R2, which means the duration of the hydrolysis and acidogenesis
stage in R2 is 33.33% shorter than in R1 (Figure 7). At the stage of hydrolysis and acidogenesis,
the degradation of the volatile solid, protein, lipid, and lignin in R2 was 59.25%, 25.68%, 60.47%,
and 197.62% higher than in R1 (see data in the Supplementary Materials). Oxygen concentration below
3% was first recorded on the 25th in R1 and the 15th in R2 (Figure 6). Meanwhile, the abundances
of Bacillus cereus, B. subtilis, Staphylococcus saprophyticus, S. xylosus, and Pantoea agglomerans increased
rapidly and the maximum abundances were recorded on the 30th in R1 and the 20th in R2 during
the hydrolysis and acidogenesis stages (Figure 4). Hence, the addition of EABM enhanced the
processes of hydrolysis and acidogenesis through consuming oxygen and organic waste, driving
MSW biodegradation forward to the acetogenesis and methanogenesis stages. At the end of study,
the abundance of acetoclastic methanogens in R2 showed 18.94% higher than in R1 (Table 3). With the
addition of EABM, the degradation of organic waste in MSW increased. Complex organic waste
was broken down into organic acid, offering more acetate for acetoclastic methanogens to utilize [19].
As the product of these biological reactions, methane production increased at the end.
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3.5. Future Prospects and Current Challenges

Studies clearly indicated that EABM promote methane production by accelerating organic waste
degradation during MSW biodegradation. Certain prepared procedures and operating conditions of
EABM guarantee its stability and repeatability on MSW biodegradation. China has required major
cities to implement waste classification in the year 2017 [48]. A study suggested that government
policy could advance waste classification management [49]. Hence, the concentration of organic
waste is expected to increase at landfills. This would give EABM a great advantage to promote
MSW biodegradation and cleaner energy generation. The lab-scale results inspired us to perform
field trials for more convincing data to develop a practical approach. Therefore, the extraction well
operation, leachate recirculation routes, and operation methods of EABM at landfills should be taken
into consideration. Moreover, research indicates toxicants such as sulfide, ammonia, and emerging
nanomaterials could seriously retard methane production at landfills [50,51]. Further research should
focus on eliminating toxicants before MSW is introduced into landfill as well as the life cycle assessment
and commercial operating calculation of a re-designed landfill. In addition, turning landfill sites into
city gardens or transforming solid waste into soil fertilizer could be a new solution after MSW codigests
with EABM and reaches stabilization [51,52].

4. Conclusions

The results suggest that the EABM accelerated organic waste degradation, which promoted
MSW biodegradation and methane production. VS degradation increased by 59.25%, and duration
hydrolysis and acidogenesis stages were shortened by 33.33%. The accumulative methane yield in
R2 (494.9 L) showed almost three times more than that in R1 (187.6 L). Meanwhile, the operational
parameters for EABM helped to generate 20.85% more methane production. The high-throughput
sequencing reveals that when the biodegradation was driven to the acetogenesis and methanogenesis
stages, methanogens became active. As methane was produced, the abundance of hydrogenotrophic
methanogens decreased and the acetoclastic methanogens increased. Methanosaeta was the dominant
in the methanogenic community, which may contribute to the methane production in biodegradation.
Hence, after closely studying the impacts of EABM on methane production of MSW and its operational
parameters, we conclude that the addition of EABM is a potential solution for MSW disposal at landfills.
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