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Abstract: Energy-rich cities tend to rely on resource-based industries for economic growth, which
leads to a great challenge for its low-carbon and sustainable economic development. The contiguous
area of Shanxi and Shaanxi Provinces, and the Inner Mongolia Autonomous Region (SSIM) is one
of the most important national energy bases in China. Its development pattern, dominated by the
coal industry, has led to increasingly prominent structural problems along with difficult low-carbon
transition. Taking energy-rich cities in the contiguous area of SSIM as examples, this study analyzes
the main drivers of CO2 emissions and explores the role of economic structure transformation in
carbon emission reduction during 2002–2012 based on structural decomposition analysis (SDA).
The results show that CO2 emissions increase significantly with the coal industry expansion in
energy-rich cities. Economic growth and structure are the main drivers of CO2 emission increments.
An energy structure dominated by coal and improper product allocation structure can also cause
CO2 emission increases. Energy consumption intensity is the main factor curbing CO2 emission
growth in energy-rich cities. The decline of agriculture and services contributes to carbon emission
reduction, while the expansion of mining and primary energy processing industries has far greater
effects on CO2 emission growth. Finally, we propose that energy-rich cities must make more efforts to
transform energy-driven economic growth patterns, cultivate new pillar industries by developing
high-end manufacturing, improve energy efficiency through more investment in key technologies
and the market-oriented reform of energy pricing and develop natural gas and renewable energy to
accelerate low-carbon transition.

Keywords: CO2 emissions; economic structure; structural decomposition analysis; energy-rich cities

1. Introduction

With the development of industrialization and the expansion of cities, climate change with global
warming as the main characteristic has attracted worldwide attention. Increasing anthropogenic
greenhouse gas emissions are the main cause of global warming. According to the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment Report, CO2 emissions account for more than
70% of anthropogenic greenhouse gas emissions. Fossil fuel combustion is the main source of CO2

emissions. With the depletion of fossil fuels and the threat of climate change, developing the low-carbon
economy has become a global trend. Cities are the key areas in which to implement carbon emission

Sustainability 2020, 12, 1875; doi:10.3390/su12051875 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-4602-0974
http://dx.doi.org/10.3390/su12051875
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/5/1875?type=check_update&version=2


Sustainability 2020, 12, 1875 2 of 14

reduction, as their CO2 emissions from energy consumption account for more than 70% of global CO2

emissions [1]. Energy-rich cities often rely on resource-based industries for development and follow a
high carbonization pattern [2], thus facing huge pressures on low-carbon transition.

As the largest energy consumer and CO2 emitter in the world, China is facing great international
pressure on carbon emission reduction. With the economy entering a new stage, the demand for
low-carbon development is more urgent in China. The State Council of China issued the 13th Five-Year
Plan for Controlling Greenhouse Gas Emissions in 2016. It is clearly proposed that CO2 emissions
per unit of GDP by 2020 should be 18% lower than in 2015. Some heavy chemical industries should
strive to reach the peak of their CO2 emissions around 2020. Cities produce more than 80% of the total
CO2 emissions in China and play an increasingly significant role in implementing national carbon
reduction targets [3]. With all cities strictly implementing constraint targets of CO2 emission intensity,
the national emission intensity target by 2020 has been achieved. However, many cities in China still
rely highly on energy-intensive industries for economic growth, and the carbon lock-in effect has
become an important obstacle to reaching CO2 emission peak. The contiguous area of SSIM is one of
the most important national energy bases in China. With the large-scale exploitation of coal resources,
the coal industry has developed rapidly in Xinzhou, Lvliang, Ordos and Yulin in this contiguous area.
In 2017, the output value of the coal industry accounted for more than 40% of total industrial output
value in these cities. The development pattern, dominated by the coal industry, causes increasingly
prominent structural problems along with difficult low-carbon transition. In recent years, governments
have formulated a series of action plans to accelerate structural transformation in the contiguous area
of SSIM. Therefore, it is necessary to clarify the main drivers of CO2 emissions and the role of economic
structure transformation in carbon emission reduction in the contiguous area of SSIM, so as to find
feasible low-carbon transition paths.

Previous studies have analyzed the driving factors of CO2 emissions at different levels. On a
global scale, Wang and Ang (2018), Jiang and Guan (2017) and Wang et al. (2017) analyzed changes in
CO2 emissions or CO2 emission intensity [4–6]. Wang et al. (2017), Andreoni and Galmarini (2016),
Solaymani (2019), Rodríguez and Pena-Boquete (2017), Kopidou and Diakoulaki (2017) focused on
Brazil, Russia, India and China (BRIC), G7 countries, European Union members, top CO2 emitter
countries and emerging countries in East Asia [7–11]. There are also studies on single countries, such as
China, the United States, Spain and South Korea [12–16]. Carbon emission reduction in China has
attracted more and more attention in recent years. Yuan et al. (2015) found that consumption structure
played a significant role in residential CO2 emission growth in the eastern, central and western regions
of China [17]. Wu et al. (2018) revealed that CO2 emission growth in machinery manufacturing
became slower due to final demand structure and production structure improvement in the south
coastal economic zone of China [18]. Wang and Yang (2015) concluded that the effect of the economic
structure on CO2 emissions had no clear trend in the Beijing–Tianjin–Hebei economic band [19]. On a
city scale, Shen et al. (2018) and Zhao et al. (2010) found that economic structure contributed to
carbon emission reduction in the cities of Beijing and Shanghai in China [20,21]. Zhu et al. (2017)
proposed that regulating economic structure was one of the most effective strategies for reducing CO2

emissions in cities in the Yangtze River Delta region of China [22]. However, there are few studies on
energy-rich cities.

The most widely used methods to analyze drivers of CO2 emissions are econometric methods
and decomposition analysis methods. In terms of econometric methods, STIRPAT models are widely
used to analyze the effects of population, affluence and technology on CO2 emissions [23,24]. Li et al.
(2018) and Zhou et al. (2013) constructed a panel regression method to estimate impacts of these three
factors and institutional factors on CO2 emissions [25,26]. Qin et al. (2019) employed a geographically
weighted regression method to investigate the effects of population, economy and transportation on
CO2 emissions [27]. Lin and Xu (2018) and Xu and Lin (2016) quantified the effects of energy efficiency
and structure on CO2 emissions by using the vector auto-regression model [28,29]. However, these
models have great uncertainty in selecting indicators and model forms. Decomposition analysis is a
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popular alternative method. Index decomposition analysis (IDA) [30–35] and structural decomposition
analysis (SDA) [36–41] are mainly employed. IDA can only measure the direct production effect, while
SDA can capture the direct and indirect production effects by taking inter-industrial interactions into
consideration [6].

Taking energy-rich cities in the contiguous area of SSIM as examples, this study analyzes the
main drivers of CO2 emissions and the role of economic structure transformation during 2002–2012
based on the SDA method. Different from previous studies, this study makes new contributions in
three aspects. First, there are few studies on carbon emission reduction in energy-rich cities, and this
study fills this gap by focusing on Xinzhou, Lvliang, Ordos and Yulin in the contiguous area of SSIM.
Second, in light of the limited availability of input–output tables for cities in China, which is significant
for structural decomposition analysis, this study compiles CO2 emission input–output tables for the
contiguous area of SSIM. Third, although CO2 emission inventories for some cities in China have been
provided in several studies [1,3,42,43] and China High Resolution Emission Database (CHRED) has
been constructed [44], CO2 emission data at the city level are of lower quality and availability compared
with the national and provincial data. Moreover, there is no CO2 emission data covering detailed
industries for the contiguous area of SSIM. This study estimates CO2 emissions by 12 energy types and
17 industries for the contiguous area of SSIM. This study helps to better understand the drivers of CO2

emissions in energy-rich cities and provide references for policymaking for low-carbon transition.
The remainder of this paper is organized as follows: the methodology and data are presented

in Section 2, the empirical results are discussed in Section 3 and the main conclusions and policy
implications are provided in Section 4.

2. Methods and Data

2.1. CO2 Emission Accounts

This study accounts for the CO2 emissions of Xinzhou, Lvliang, Ordos and Yulin in the contiguous
area of SSIM based on the IPCC emission factor approach. The formula is as follows:

TC =
∑
m,i

Em,i×δm ×CV ×CEFm ×COFm (1)

where TC is CO2 emissions from energy consumption; Em,i is the consumption of energy type m by
industry i; δm is the conversion factor of energy type m from physical unit to coal equivalent; CV is the
net calorific value; CEFm represents CO2 emission factor of energy type m; COFm represents oxidization
ratio of energy type m.

Following Shan et al. (2017, 2018), Jing et al. (2018), Tong et al. (2018) [1,3,42,45], this study
estimates energy consumption of agriculture, construction and tertiary industries in Xinzhou, Lvliang,
Ordos and Yulin by scaling down the corresponding provincial energy balance tables. It is assumed
that these cities have the same energy intensity of agriculture, construction and tertiary industry as
their provinces. Industrial energy consumption in these cities mainly comes from energy consumption
and the transformation tables of industrial enterprises.

2.2. Structural Decomposition Analysis

Several studies including Fan et al. (2019) and Wei et al. (2017) conducted SDA from final
demand-side based on the Leontief input–output model [37,40]. Liang et al. (2016), Li et al. (2018) and
Zhang (2010) adopted SDA from primary supply-side based on the Ghosh input–output model [14,38,46].
This study decomposes CO2 emissions in Xinzhou, Lvliang, Ordos and Yulin from the supply-side,
and the SDA combined with the Ghosh input–output model is used.

CO2 emission input–output tables for Xinzhou, Lvliang, Ordos and Yulin are compiled in this
study. There are mainly two steps: compiling the city-level input–output table and placing CO2

emissions by industries at the bottom of city-level input–output table. Input–output surveys are
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generally time- and labor-consuming. Therefore, non-survey methods have attracted widespread
attention [47–50]. Following Miller and Blair (2009), Chen et al. (2016), Lenzen et al. (2014) and
Flegg et al. (2016) [49,51–53], this study uses the augmentation of Flegg’s location quotient method
(AFLQ) to compile input–output tables for Xinzhou, Lvliang, Ordos and Yulin (see Appendix A for
more details).

Based on these cities’ input–output tables, the Ghosh input–output model is constructed as
follows:

eZ + V = X (2)

where e is the 1 × n dentity matrix; Z is the n × n intermediate input matrix; V and X represent the
primary input matrix and the total input matrix, respectively.

The direct output coefficient matrix A′ is defined by Formula (3). Then, the total input matrix can
also be calculated by Formula (4).

A′ = X̂−1Z (3)

V(I −A′)−1 = X (4)

where (I −A′)−1 is the Ghosh inverse matrix. Denote the Ghosh inverse matrix as G. Its element gi j
represents the total output of industry j enabled by the unitary input of industry i.

Then, CO2 emissions of Xinzhou, Lvliang, Ordos and Yulin can be estimated as follows:

TC = VG f (5)

where f is the CO2 emission intensity matrix and represents CO2 emissions per unit of output.
Its element fi can be decomposed into:

fi =
TCi
Xi

=
∑

m

TCm,i

Xi
=
∑

m

Ei
Xi
×

Em,i

Ei
×

TCm,i

Em,i
(6)

where TCm,i represents CO2 emissions from energy m consumption in industry i; TCi is the total CO2

emissions in industry i; Xi is the total output of industry i; Em,i represents energy m consumption
in industry i; Ei is the total energy consumption in industry i. Therefore, Formula (5) can also be
expressed as:

TC = VG f = VG× (EF× ES×CE) = POP× PGDP× IS×G× EF× ES×CE (7)

where POP is the population; PGDP is the per capita GDP; IS is the 1× n economic structure matrix;
EF is the n× n energy consumption intensity matrix, and represents energy consumption per unit of
output; ES is the n×m energy consumption structure matrix; CE represents CO2 emissions per unit of
energy consumption.

Changes in CO2 emissions from year t0 to year t1 can be calculated as follows:

∆TC = TC1
− TC0 = POP1

× PGDP1
× IS1

×G1
× EF1

× ES1
×CE1

− POP0
× PGDP0

×

IS0
×G0

× EF0
× ES0

×CE0 = C∆POP + C∆PGDP + C∆IS + C∆G + C∆EF + C∆ES + C∆CE
(8)

C∆POP, C∆PGDP, C∆IS, C∆G, C∆EF, C∆ES and C∆CE represent the contributions of population,
economic growth, economic structure, production output structure, energy consumption intensity,
energy consumption structure and CO2 emissions per unit of energy consumption to CO2 emission
changes, respectively.

Superscripts one and zero represent years t1 and t0, respectively. CO2 emissions per unit of energy
consumption are constant during the study period. Therefore, the value of C∆CE is zero. CO2 emission
changes can be attributed to scale effect (C∆PGDP and C∆POP), structural effect (C∆IS, C∆G and
C∆ES) and intensity effect (C∆EF).
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Following Chen et al. (2019), Jiang and Guan (2017), Xu et al. (2017) and Yuan et al.
(2015) [5,17,36,54], this study uses the pole decomposition method to estimate the contributions
of factors to CO2 emissions. The formula is as follows:

C∆PGDP = 1
2 × (POP1

× ∆PGDP× IS0
×G0

× EF0
× ES0

×CE0 + POP0
× ∆PGDP× IS1

×G1
×

EF1
× ES1

×CE1)
(9)

C∆POP = 1
2 × (∆POP× PGDP0

× IS0
×G0

× EF0
× ES0

×CE0 + ∆POP× PGDP1
× IS1

×G1
×

EF1
× ES1

×CE1)
(10)

C∆IS = 1
2 × (POP1

× PGDP1
× ∆IS×G0

× EF0
× ES0

×CE0 + POP0
× PGDP0

× ∆IS×G1
×

EF1
× ES1

×CE1)
(11)

C∆G = 1
2 × (POP1

× PGDP1
× IS1

× ∆G× EF0
× ES0

×CE0 + POP0
× PGDP0

× IS0
× ∆G×

EF1
× ES1

×CE1)
(12)

C∆ES = 1
2 × (POP1

× PGDP1
× IS1

×G1
× EF1

× ∆ES×CE0 + POP0
× PGDP0

× IS0
×G0
×

EF0
× ∆ES×CE1)

(13)

C∆EF = 1
2 × (POP1

× PGDP1
× IS1

×G1
× ∆EF× ES0

×CE0 + POP0
× PGDP0

× IS0
×G0
×

∆EF× ES1
×CE1)

(14)

2.3. Data Sources

Input–output tables are compiled every five years in China, and the latest tables are from 2012.
Based on the input–output tables of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous
Region in 2002 and 2012, this study compiles CO2 emission input–output tables for Xinzhou, Lvliang,
Ordos and Yulin. The total output, added value and population data of these cities can be collected
from the Xinzhou Statistical Yearbooks (2008, 2013), Lvliang Statistical Yearbooks (2001–2005, 2012),
Ordos Statistical Yearbooks (2003, 2013) and Yulin Statistical Yearbooks (2002, 2012). The added value
data for China can be obtained from the China Statistical Yearbooks (2003, 2013). All economic data
were converted into constant prices in 2002 using price indices.

Energy consumption data are derived from the above-mentioned statistical yearbooks and
China Energy Statistical Yearbooks (2000–2002, 2013). This study accounts for CO2 emissions by
12 energy types and 17 industries for Xinzhou, Lvliang, Ordos and Yulin. The energy types, industrial
classification and their codes are presented in Appendix B Tables A1 and A2. The conversion factors
of energy consumption from physical units to the coal equivalent are from China Energy Statistical
Yearbooks (2013). CO2 emission factors are from the IPCC Guidelines for National Greenhouse Gas
Inventories (2006). The CO2 emission factor of heat is estimated by dividing CO2 emissions from
energy consumption in the heat production process by the heat production amount. The CO2 emission
factor of electricity is obtained from the Baseline Emission Factors for Regional Power Grids in China.
The oxidization ratio of fuel combustion is derived from the Provincial Greenhouse Gas Inventory
Compilation Guidelines issued by the National Development and Reform Commission of the People’s
Republic of China.

3. Results and Discussion

3.1. Economic Structure and CO2 Emissions Characteristics

The proportion of coal mining and washing in economic growth in the contiguous area of SSIM
was much higher than the national level. The most prominent change in economic structure in
the contiguous area was the expansion of coal mining and washing and the decline of agriculture.
As shown in Figure 1, coal mining and washing (S2) in Xinzhou accounted for 19.21% of GDP in 2012,
rising by 16% compared with 2002. Metal ore mining and processing (S3) also showed an obvious
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upward trend. The proportions of coal mining and washing (S2) in Lvliang and Ordos increased by
27% and 14%, respectively, reaching 45.42% and 32.04% in 2012. The proportion of coal mining and
washing (S2) in Yulin was 38.47% in 2012, with an increase of 20% during the study period. Mining and
processing of nonmetal ores and other ores (S4) also expanded. However, farming, forestry, animal
husbandry and fishery (S1) shrank greatly. Manufacturing development in the contiguous area was
still weak. The proportions of manufacturing (S5–S11) in GDP in Xinzhou, Lvliang, Ordos and Yulin
were 10.24%, 22.76%, 9.56% and 9.55%, respectively, in 2012, lower than the national level (31.10%).
Meanwhile, the proportion of other services (S17) in these cities was 10%–20% lower than the national
level (29.45%).
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Figure 1. Economic structure changes in the contiguous area of the Inner Mongolia Autonomous
Region (SSIM) from 2002 to 2012.

CO2 emissions in the contiguous area of SSIM showed a significant growth trend. As shown in
Figure 2, CO2 emissions in Ordos were 110.83 Mt in 2012, with an increment of 90.72 Mt. CO2 emissions
in Lvliang and Yulin increased by 42.65 and 50.27 Mt, respectively, reaching 68.42 Mt and 66.33 Mt in
2012. CO2 emission increment in Xinzhou was the lowest (12.90 Mt), and its CO2 emissions were 31.31
Mt in 2012.Sustainability 2020, 12, x FOR PEER REVIEW 7 of 15 
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3.2. The Main Drivers Of CO2 Emission Increments

Economic growth is the main driver of CO2 emission increases in energy-rich cities in the
contiguous area of SSIM. As shown in Figure 3, per capita GDP caused 59.64 Mt, 36.44 Mt, 25.65 Mt
and 10.10 Mt CO2 emission increments in Ordos, Yulin, Lvliang and Xinzhou, respectively, from 2002
to 2012. This is consistent with Wang et al. (2017), Shen et al. (2018) and Xu et al. (2016) [13,20,27].
During the study period, the coal market was in a golden development period in China. The average
annual growth rate of the economy was more than 10%, even up to about 20% in the contiguous area
of SSIM. This rapid economic growth inevitably leads to a large amount of CO2 emissions.Sustainability 2020, 12, x FOR PEER REVIEW 8 of 15 
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to 2012.

Economic structure also plays a significant role in driving CO2 emission growth. Changes in
economic structure contributed to 35.02, 20.07, 12.22 and 4.06 Mt CO2 emission increments in Ordos,
Yulin, Lvliang and Xinzhou, respectively, from 2002 to 2012. This is different from Zhang et al. (2018),
Lu et al. (2015) and Chen et al. (2016) [33,55,56], who found economic structure has an inhibition
effect on CO2 emission growth. This difference is mainly attributed to the different characteristics of
economic structure changes. During the study period, the coal industry in the contiguous area of SSIM
expanded significantly and theeconomic structure became more carbon intensive.

Energy structure has a positive effect on CO2 emission growth in most cities in the contiguous
area of SSIM. An energy consumption structure dominated by coal led to 9.88, 5.08 and 3.85 Mt CO2

emission increments in Ordos, Lvliang and Xinzhou, respectively, from 2002 to 2012. However, energy
structure improvement had the opposite effect on CO2 emissions in Yulin. This is mainly due to
the decline in coal consumption proportion and the significant increase in natural gas consumption
in Yulin.

Energy consumption intensity is the main factor reducing CO2 emissions in the contiguous area of
SSIM. Energy consumption intensity reduced CO2 emissions by 18.47, 10.54, 6.82 and 4.70 Mt in Ordos,
Yulin, Lvliang and Xinzhou, respectively, from 2002 to 2012. This is in accordance with Shen et al.
(2018), Xu et al. (2017) and Zhu et al. (2017) [20,22,54]. Governments in Xinzhou, Lvliang, Ordos and
Yulin have clearly set up constraint targets of energy conservation in different stages since 2005. As a
result, energy efficiency has improved significantly.

The production output structure has different effects on CO2 emissions in energy-rich cities.
The improvement of the production output structure reduced CO2 emissions in Xinzhou (−1.85) and
Ordos (−3.11 Mt). However, the production output structure still positively affected CO2 emissions
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in Lvliang and Yulin. Therefore, the product supply chain should be taken into consideration in
promoting carbon emission reduction. Population has slight promotion effects on CO2 emissions in
Xinzhou (1.44), Lvliang (4.21), Ordos (7.76) and Yulin (5.09 Mt). The population in the contiguous area
of SSIM grew slowly during the study period. In recent years, population loss has even occurred.

The scale effect contributes most to CO2 emission growth, followed by the structural effect, while
the intensity effect offsets the growth to some extent. The scale effect drove CO2 emissions to increase by
11.54, 29.86, 67.40 and 41.53 Mt, respectively, in Xinzhou, Lvliang, Ordos and Yulin, and the structural
effect also caused an increase of 6.06, 19.61, 41.79 and 19.28 Mt in these cities, respectively. However,
the inhibition effect of energy intensity on CO2 emissions was significantly smaller than the promotion
effect of scale and structure.

3.3. Contribution of Different Industries to CO2 Emissions

Economic structure plays an important role in the high carbonization of Xinzhou, Lvliang, Ordos
and Yulin. This study further analyzes the contribution of changes in the proportion of different
industries in economic growth to CO2 emissions. As shown in Figure 4, coal mining and washing (S2)
and metal ore mining and processing (S3) were the main industries driving CO2 emission growth in
Xinzhou. The remarkable expansion of S2 and S3 caused 2.10 and 1.71 Mt CO2 emission increments,
respectively, from 2002 to 2012. On the contrary, farming, forestry, animal husbandry and fishery (S1)
and services (S16 and S17) contributed most to carbon emission reduction (−1.54 Mt).
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Figure 4. Contributions of different industries to CO2 emission increments in the contiguous area of
SSIM from 2002 to 2012.

The positive effects of economic structure on CO2 emissions in Lvliang and Ordos are determined
by coal mining and washing. Coal mining and washing (S2) led to an increase in CO2 emissions
by 18.30 Mt from 2002 to 2012 in Lvliang. Farming, forestry, animal husbandry and fishery (S1),
the processing of petroleum, coking, processing of nuclear fuel (S6) and the tertiary industry contributed
to reducing CO2 emissions by 9.96 Mt. Coal mining and washing (S2) and the processing of petroleum,
coking, processing of nuclear fuel (S6) had the largest positive effects on CO2 emission increments in
Ordos (32.96 and 8.36 Mt, respectively), which was offset by farming, forestry, animal husbandry and
fishery (S1) and other manufacture (S11) to some extent (−5.51 Mt).

Mining and processing industries are the largest contributors to CO2 emission growth in Yulin.
Coal mining and washing (S2) and the mining and processing of nonmetal ores and other ores (S4)
had great positive effects on CO2 emissions from 2002 to 2012, which caused 24.59 and 8.09 Mt CO2

emission increments, respectively. Farming, forestry, animal husbandry and fishery (S1) and services
showed certain carbon emission reduction effects (−10.41 Mt).
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4. Conclusions and Policy Implications

Taking Xinzhou, Lvliang, Ordos and Yulin in the contiguous area of SSIM as examples, this study
explores the main drivers of CO2 emissions and the role of economic structure transformation in
carbon emission reduction. The CO2 emission input–output tables of these cities for 2002 and 2012 are
compiled. Then, the SDA combined with the Ghosh input–output model is constructed to decompose
CO2 emission increments in these cities from 2002 to 2012. The main conclusions can be drawn
as follows:

(1) CO2 emissions from energy consumption in energy-rich cities increase significantly with the
expansion of the coal industry. Ordos had the largest increase in CO2 emissions (90.72), followed by
Yulin (50.27) and Lvliang (42.65 Mt). Xinzhou had the smallest CO2 emission increments (12.90 Mt);

(2) Economic growth and structure changes are the main factors driving CO2 emission growth,
and energy consumption intensity contributes most to carbon emission reduction in energy-rich cities.
An energy structure dominated by coal resources has a small promotion effect on CO2 emission
increments. Production output structure could also cause CO2 emission increases if more products
flow to carbon-intensive industries;

(3) Mining and primary energy processing industries, including coal and nonmetal ore mining,
and petroleum, coking, and nuclear fuel processing, play the most significant role in CO2 emission
increments. Agriculture and services have the largest effects on carbon emission reduction. However,
mining and primary energy processing industries are carbon-intensive, and their effects on CO2

emissions are far greater than the emission reduction effects of agriculture and services.
Based on these findings, the following policy implications are proposed.
First, energy-driven economic growth patterns must be transformed in energy-rich cities. With the

depression of the coal market, the economic growth rate in the contiguous area of SSIM has declined
sharply since 2012. Therefore, energy-rich cities must make efforts to transform the economy from
energy-driven to innovation-driven in order to achieve sustainable development.

Second, energy-rich cities must accelerate economic structure transformation for carbon emission
reduction. Government departments should strengthen the upgrading of the traditional coal industry.
Small plants with high emissions should be closed or merged. Meanwhile, backward production
capacity and its related facilities should be phased out gradually. Energy performance contracting can
be carried out in high energy-consuming enterprises. More efforts should be made to cultivate new
pillar industries by developing high-end manufacturing.

Third, investment in science and technology should be increased to improve energy efficiency.
During the study period, energy efficiency in the contiguous area of SSIM was obviously improved
by strengthening the application of energy-saving technologies. However, the energy consumption
intensity of coal mining, the processing of petroleum, coking, processing of nuclear fuel and the
production and supply of electricity was still high. Therefore, more funds should be invested in the
research and development of key technologies for the efficient and clean use of coal. For example,
the low-temperature power generation of coal gangue-fired circulating sulfurization bed technology
can be developed. In addition, the market-oriented reform of energy pricing should be implemented.
Increasing fossil fuel prices moderately will provide incentives for energy-intensive industries to
improve energy efficiency.

Finally, governments should vigorously support the improvement of energy structure and
product allocation structure in energy-rich cities. Fiscal policies, such as investment subsidies, financial
discounts, tax preferences and price subsidies can be implemented to develop natural gas and renewable
energy (wind power, photovoltaic power). Additionally, energy structure adjustment has been paid
more attention by strictly controlling the total consumption of coal and promoting new energy power
projects since 2012. Moreover, higher income taxes should be levied to prevent enterprises from selling
too many products to carbon-intensive enterprises.
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Appendix A

The key to compiling the city-level input–output table is to estimate the intermediate input matrix.
The calculation method in early studies is to use simple location quotient (SLQ) to regionalize the
national input–output table [57,58]. The formula of SLQ is as follows:

SLQr
i =

Xr
i /Xr

Xn
i /Xn (A1)

where Xr
i represents the output of industry i in region (city) r; Xr is the total output in region (city) r;

Xn
i represents the output of industry i in the country (province); Xn is the total output in the country

(province).
Based on SLQ, the cross-industry quotient (CIQ) is developed by taking the relative importance of

supply industries and purchase industries into consideration. CIQ is defined as:

CIQr
i j =

Xr
i /Xn

i
Xr

j/Xn
j

(A2)

where i and j represent supply industries and purchase industries, respectively.
A large number of studies have found that both SLQ and CIQ underestimate the interregional

economic interactions [49,59]. Flegg et al. (1995) modified the location quotients and proposed FLQ
formula as follows [60]:

FLQr
i j = CIQr

i j × λ (i , j) (A3)

FLQr
i j = SLQr

i × λ (i = j) (A4)

λ = [log2(1 +
Xr

Xn )]
δ

(A5)

The range of δ is defined as [0,1). With δ rising, the import in region (city) r will also increase.
McCann and Dewhurst (1998) argued that regional specialization might lead to a regional intermediate
input coefficient higher than the national coefficient [61]. Thus, Flegg and Webber (2000) adjusted the
FLQ [50]. The augmentation of Flegg’s location quotient (AFLQ) is defined as:

AFLQr
i j =

 FLQr
i j × log2(1 + SLQr

j) SLQr
j > 1

FLQr
i j SLQr

j ≤ 1

 (A6)

Based on AFLQ, intermediate input coefficients in Xinzhou, Lvliang, Ordos and Yulin can be
calculated as follows:

ar
i j = AFLQr

i j × an
ij (A7)

where ar
i j is the intermediate input coefficient in city r. an

ij represents the intermediate input coefficient
in the province which the city r belongs to.
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Intermediate input matrices in Xinzhou, Lvliang, Ordos and Yulin are calculated by multiplying
intermediate input coefficients by the total output. According to statistical data of the total intermediate
input in Xinzhou, Lvliang, Ordos and Yulin, this study chooses δ with the smallest error.

Appendix B

Table A1. Industrial classification and codes.

Code Industry

S1 Farming, forestry, animal husbandry and fishery
S2 Coal mining and washing
S3 Metal ore mining and processing
S4 Mining and processing of nonmetal ores and other ores
S5 Manufacture of foods and tobacco
S6 Processing of petroleum, coking, processing of nuclear fuel
S7 Chemical industry
S8 Manufacture of nonmetallic mineral products
S9 Smelting and pressing of metals

S10 General and special purpose machinery
S11 Other manufacture
S12 Production and supply of electricity and steam
S13 Production and supply of gas and water
S14 Construction
S15 Transportation, storage, and post services
S16 Wholesale, retail trade and hotel, restaurants
S17 Others

Table A2. Energy types and codes.

Code Energy types

E1 Raw coal
E2 Coal products
E3 Coke
E4 Coke oven gas
E5 Blast furnace gas
E6 Natural gas
E7 Gasoline
E8 Diesel oil
E9 Fuel oil

E10 Other petroleum products
E11 Heat
E12 Electricity
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