The Effect of the Relative Amount of Ingredients on the Rheological Properties of Semolina Doughs
Abstract
:1. Introduction
1.1. Dough Rheology
1.1.1. Frequency Sweep Tests and Cox-Merz Rule
1.1.2. Creep Tests and Burgers Model
2. Materials and Methods
3. Results
3.1. Complex Viscosity and Power-Law Modeling
3.2. Creep Test and Burgers Model
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Liu, C.Y.; Shepherd, K.W.; Rathjen, A.J. Improvement of durum wheat pastamaking and breadmaking qualities. Cereal Chem. 1996, 73, 155–166. [Google Scholar]
- Troncone, R.; Auricchio, S.V. Gluten-sensitive enteropathy (celiac disease). Food Rev. Int. 1991, 7, 205–231. [Google Scholar] [CrossRef]
- Cavone, G.; Dotoli, M.; Epicoco, N.; Franceschelli, M.; Seatzu, C. Hybrid Petri Nets to Re-design Low-Automated Production Processes: The Case Study of a Sardinian Bakery. IFAC-PapersOnLine 2018, 51, 265–270. [Google Scholar] [CrossRef]
- Baire, M.; Melis, A.; Lodi, M.B.; Tuveri, P.; Dachena, C.; Simone, M.; Fanti, A.; Fumera, G.; Pisanu, T.; Mazzarella, G. A wireless sensors network for monitoring the Carasau bread manufacturing process. Electronics 2019, 8, 1541. [Google Scholar] [CrossRef] [Green Version]
- Baire, M.; Melis, A.; Brunolodi, M.; Fanti, A.; Mazzarella, G. Study and Design of a Wireless Sensors Network for the Optimization of Bread Manufacturing Process. In Proceedings of the 2018 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018. [Google Scholar]
- Fois, S.; Sanna, M.; Stara, G.; Roggio, T.; Catzeddu, P. Rheological properties and baking quality of commercial durum wheat meals used to make flat crispy bread. Eur. Food Res. Technol. 2011, 232, 713–722. [Google Scholar] [CrossRef]
- Fanari, F.; Desogus, F.; Scano, E.A.; Carboni, G.; Grosso, M. The rheological properties of semolina doughs: Influence of the relative amount of ingredients. Chem. Eng. Trans. 2019, 76, 703–708. [Google Scholar]
- Lindborg, K.M.; Trägårdh, C.; Eliasson, A.C.; Dejmek, P. Time-resolved shear viscosity of wheat flour doughs—Effect of mixing, shear rate, and resting on the viscosity of doughs of different flours. Cereal Chem. 1997, 74, 49–55. [Google Scholar] [CrossRef]
- Mani, K.; Trägårdh, C.; Eliasson, A.C.; Lindahl, L. Water Content, Water Soluble Fraction, and Mixing Affect Fundamental Rheological Properties of Wheat Flour Doughs. J. Food Sci. 1992, 57, 1198–1209. [Google Scholar] [CrossRef]
- Fanari, F.; Carboni, G.; Grosso, M.; Desogus, F. Thermogravimetric analysis of different semolina doughs: Effect of mixing time and gluten content. Chem. Eng. Trans. 2019, 75, 343–348. [Google Scholar]
- Fanari, F.; Carboni, G.; Grosso, M.; Desogus, F. Effect of the relative amount of ingredients on the thermal properties of semolina doughs. Chem. Eng. Trans. 2019, 76, 1207–1212. [Google Scholar]
- Delcour, J.A.; Hoseney, R.C. Chapter 12: Yeast-Leavened Products. In Principles of Cereal Science and Technology; AACC International, Inc.: St. Paul, MN, USA, 2010; pp. 177–206. ISBN 978-1-891127-63-2. [Google Scholar]
- Levine, H.; Slade, L. Influences of the Glassy and Rubbery States on the Thermal, Mechanical, and Structural Properties of Doughs and Baked Products. In Dough Rheology and Baked Product Texture; Faridi, H., Faubion, J.M., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1990; pp. 157–330. [Google Scholar]
- Yovchev, A.G.; Stone, A.K.; Hucl, P.; Scanlon, M.G.; Nickerson, M.T. Effects of salt, polyethylene glycol, and water content on dough rheology for two red spring wheat varieties. Cereal Chem. 2017, 94, 513–518. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Guida, M.; Danza, A.; Laverse, J.; Frisullo, P.; Lampignano, V.; Del Nobile, M.A. Rheological, microstructural and sensorial properties of durum wheat bread as affected by dough water content. Food Res. Int. 2013, 51, 458–466. [Google Scholar] [CrossRef]
- Chen, G.; Ehmke, L.; Sharma, C.; Miller, R.; Faa, P.; Smith, G.; Li, Y. Physicochemical properties and gluten structures of hard wheat flour doughs as affected by salt. Food Chem. 2019, 275, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Elz, M.C.E.; Ryan, L.A.M.; Arendt, E.K. The Impact of Salt Reduction in Bread: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 514–524. [Google Scholar]
- McCann, T.H.; Day, L. Effect of sodium chloride on gluten network formation, dough microstructure and rheology in relation to breadmaking. J. Cereal Sci. 2013, 57, 444–452. [Google Scholar] [CrossRef]
- Tuhumury, H.C.D.; Small, D.M.; Day, L. The effect of sodium chloride on gluten network formation and rheology. J. Cereal Sci. 2014, 60, 229–237. [Google Scholar] [CrossRef]
- Bernklau, I.; Neußer, C.; Moroni, A.V.; Gysler, C.; Spagnolello, A.; Chung, W.; Jekle, M.; Becker, T. Structural, textural and sensory impact of sodium reduction on long fermented pizza. Food Chem. 2017, 234, 398–407. [Google Scholar] [CrossRef]
- Danno, G.; Hoseney, R.C. Effect of sodium chloride and sodium dodecyl sulfate on mixograph properties. Cereal Chem. 1982, 59, 202–204. [Google Scholar]
- Angioloni, A.; Dalla Rosa, M. Dough thermo-mechanical properties: Influence of sodium chloride, mixing time and equipment. J. Cereal Sci. 2005, 41, 327–331. [Google Scholar] [CrossRef]
- Belz, M.C.E.; Axel, C.; Arendt, E.K.; Lynch, K.M.; Brosnan, B.; Sheehan, E.M.; Coffey, A.; Zannini, E. Improvement of taste and shelf life of yeasted low-salt bread containing functional sourdoughs using Lactobacillus amylovorus DSM 19280 and Weisella cibaria MG1. Int. J. Food Microbiol. 2019, 302, 69–79. [Google Scholar] [CrossRef]
- Beck, M.; Jekle, M.; Becker, T. Impact of sodium chloride on wheat flour dough for yeast-leavened products. I. Rheological attributes. J. Sci. Food Agric. 2012, 92, 585–592. [Google Scholar] [CrossRef]
- Larsson, H. Effect of pH and sodium chloride on wheat flour dough properties: Ultracentrifugation and rheological measurements. Cereal Chem. 2002, 79, 544–545. [Google Scholar] [CrossRef]
- Lynch, E.J.; Dal Bello, F.; Sheehan, E.M.; Cashman, K.D.; Arendt, E.K. Fundamental studies on the reduction of salt on dough and bread characteristics. Food Res. Int. 2009, 42, 885–891. [Google Scholar] [CrossRef]
- Stone, A.K.; Hucl, P.J.; Scanlon, M.G.; Nickerson, M.T. Effect of damaged starch and NaCl level on the dough handling properties of a Canadian Western Red Spring Wheat. Cereal Chem. 2017, 94, 970–977. [Google Scholar] [CrossRef]
- Aslankoohi, E.; Rezaei, M.N.; Vervoort, Y.; Courtin, C.M.; Verstrepen, K.J. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. PLoS ONE 2015, 10, e0119364. [Google Scholar] [CrossRef]
- Meerts, M.; Ramirez Cervera, A.; Struyf, N.; Cardinaels, R.; Courtin, C.M.; Moldenaers, P. The effects of yeast metabolites on the rheological behaviour of the dough matrix in fermented wheat flour dough. J. Cereal Sci. 2018, 82, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Ramirez, J.; Carrera-Tarela, Y.; Carrillo-Navas, H.; Vernon-Carter, E.J.; Garcia-Diaz, S. Effect of leavening time on LAOS properties of yeasted wheat dough. Food Hydrocoll. 2019, 90, 421–432. [Google Scholar] [CrossRef]
- Faridi, H.; Faubion, J.M. Dough Rheology and Baked Product Texture; Faridi, H., Faubion, J.M., Eds.; Springer: Boston, MA, USA, 1990; ISBN 978-1-4612-8207-5. [Google Scholar]
- Dobraszczyk, B.J.; Morgenstern, M.P. Rheology and the breadmaking process. J. Cereal Sci. 2003, 38, 229–245. [Google Scholar] [CrossRef]
- Morrison, F.A. Understanding Rheology, Topics in Chemical Engineering; Oxford University Press: Oxford, UK, 2001; ISBN 0-19-514166-0. [Google Scholar]
- Amemiya, J.I.; Menjivar, J.A. Comparison of small and large deformation measurements to characterize the rheology of wheat flour doughs. J. Food Eng. 1992, 16, 91–108. [Google Scholar] [CrossRef]
- Cox, W.P.; Merz, E.H. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 1958, 28, 619–622. [Google Scholar] [CrossRef]
- Sun, M.; Sun, H.; Wang, Y.; Sánchez-Soto, M.; Schiraldi, D. The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels. Gels 2018, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.C.; Brant, D.A. Rheology of concentrated isotropic and anisotropic xanthan solutions. 1. A rodlike low molecular weight sample. Macromolecules 2002, 35, 2212–2222. [Google Scholar] [CrossRef]
- Vernon-Carter, E.J.; Avila-De La Rosa, G.; Carrillo-Navas, H.; Carrera, Y.; Alvarez-Ramirez, J. Cox-Merz rules from phenomenological Kelvin-Voigt and Maxwell models. J. Food Eng. 2016, 169, 18–26. [Google Scholar] [CrossRef]
- Bistany, K.L.; Kokini, J.L. Comparison of Steady Shear Rheological Properties and Small Amplitude Dynamic Viscoelastic Properties of Fluid Food Materials. J. Texture Stud. 1983, 14, 113–124. [Google Scholar] [CrossRef]
- Schofield, R.K.; Scott Blair, G.W. The relationship between viscosity, elasticity and plastic strength of a soft material as illustrated by some mechanical properties of flour dough IV—The separate contributions of gluten and starch. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1937, 160, 87–94. [Google Scholar]
- Bloksma, A.H. Rheology and chemistry of dough. In Wheat, Chemistry and Technology; Khan, K., Shewry, P.R., Eds.; AACC International, Inc.: St. Paul, MN, USA, 1978; pp. 523–584. [Google Scholar]
- Steffe, J.F. Rheological Methods on Food Process Engineering; Freeman Press: East Lansing, MI, USA, 1996. [Google Scholar]
- Mainardi, F.; Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 2011, 193, 133–160. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Koksel, F.; Nickerson, M.T.; Scanlon, M.G. Modeling the viscoelastic behavior of wheat flour dough prepared from a wide range of formulations. Food Hydrocoll. 2020, 98, 105129. [Google Scholar] [CrossRef]
- Mironeasa, S.; Codină, G.G. Dough rheological behavior and microstructure characterization of composite dough with wheat and tomato seed flours. Foods 2019, 8, 626. [Google Scholar] [CrossRef] [Green Version]
- ICC. Determination of the Total Nitrogen Content by Combustion According to the Dumas Principle and Calculation of the Crude Protein Content; ICC: Dubai, United Arab Emirates, 2008. [Google Scholar]
- ICC. Gluten Index Method for Assessing Gluten Strength in Durum Wheat (Triticum Durum); ICC: Dubai, United Arab Emirates, 1995. [Google Scholar]
- Phan-Thien, N.; Safari-Ardi, M. Linear viscoelastic properties of flour-water doughs at different water concentrations. J. Nonnewton. Fluid Mech. 1998, 74, 137–150. [Google Scholar] [CrossRef]
- Malkin, A.Y. The state of the art in the rheology of polymers: Achievements and challenges. Polym. Sci. Ser. A 2009, 51, 80–102. [Google Scholar] [CrossRef]
- Bourne, M.C.; Rao, M.A. Viscosity measurements of foods. In Instrumental Methods for Quality Assurance in Foods; CRC Press: Boca Raton, FL, USA, 2017; pp. 211–229. ISBN 9781351438148. [Google Scholar]
- Tao, C.; Kutchko, B.G.; Rosenbaum, E.; Massoudi, M. A review of rheological modeling of cement slurry in oil well applications. Energies 2020, 13, 570. [Google Scholar] [CrossRef] [Green Version]
- Fanari, F.; Frau, I.; Desogus, F.; Scano, E.A.; Carboni, G.; Grosso, M. Influence of wheat varieties, mixing time and water content on the rheological properties of semolina doughs. Chem. Eng. Trans. 2019, 75, 529–534. [Google Scholar]
- Meerts, M.; Cardinaels, R.; Oosterlinck, F.; Courtin, C.M.; Moldenaers, P. The impact of water content and mixing time on the linear and non-linear rheology of wheat flour dough. Food Biophys. 2017, 12, 151–163. [Google Scholar] [CrossRef]
- Fanari, F.; Carboni, G.; Grosso, M.; Desogus, F. Thermal properties of semolina doughs with different relative amount of ingredients. Sustainability 2020, 12, 2235. [Google Scholar] [CrossRef] [Green Version]
Carbohydrates (%) | Fats (%) | Proteins (%) | Gluten (%) | Gluten Index (%) | |
---|---|---|---|---|---|
Commercial Semolina | 71 * | 1.5 * | 11.7 ** | 8.7 ** | 88.00 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanari, F.; Desogus, F.; Scano, E.A.; Carboni, G.; Grosso, M. The Effect of the Relative Amount of Ingredients on the Rheological Properties of Semolina Doughs. Sustainability 2020, 12, 2705. https://doi.org/10.3390/su12072705
Fanari F, Desogus F, Scano EA, Carboni G, Grosso M. The Effect of the Relative Amount of Ingredients on the Rheological Properties of Semolina Doughs. Sustainability. 2020; 12(7):2705. https://doi.org/10.3390/su12072705
Chicago/Turabian StyleFanari, Fabio, Francesco Desogus, Efisio Antonio Scano, Gianluca Carboni, and Massimiliano Grosso. 2020. "The Effect of the Relative Amount of Ingredients on the Rheological Properties of Semolina Doughs" Sustainability 12, no. 7: 2705. https://doi.org/10.3390/su12072705
APA StyleFanari, F., Desogus, F., Scano, E. A., Carboni, G., & Grosso, M. (2020). The Effect of the Relative Amount of Ingredients on the Rheological Properties of Semolina Doughs. Sustainability, 12(7), 2705. https://doi.org/10.3390/su12072705