Measuring Energy Performance for Regional Sustainable Development in China: A New Framework based on a Dynamic Two-Stage SBM Approach
Abstract
:1. Introduction
2. Model Framework and Methodology
2.1. Conceptual Framework
2.2. Variable Selection
2.3. The Dynamic Two-Stage Energy Perforamnce Model for Regional Sustainable Development
3. Data Collection, Descriptive Statistics, and Model Validity
3.1. Data Collection and Descriptive Statistics
3.2. Model Vadility
4. Empirical Results
4.1. Parameters Setting on the Proposed Dynamic Two-Stage SBM Model
4.2. Comparsion among Dynamic Two-Stage SBM, Dynamic SBM, Two-Stage SBM and SBM Performormance Scores
4.3. Energy Performance of Chinese Provincal Adminstration Regions
4.4. Efficiency Analysis on Regional Discrepancy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, N.; Chen, J.; Yao, S.; Chang, Y.C. A meta-frontier DEA approach to efficiency comparison of carbon reduction technologies on project level. Renew. Sust. Energ. Rev. 2018, 82, 2606–2612. [Google Scholar] [CrossRef]
- Lin, T.Y.; Chiu, S.H. Sustainable performance of low-carbon energy infrastructure investment on regional development: Evidence from China. Sustainability 2018, 10, 4657. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.L.; Lee, Y.C. Efficiency three industrial waste abatements for regions in China. Int. J. Sustain. Dev. World 2008, 15, 132–144. [Google Scholar] [CrossRef]
- Hu, J.L.; Chang, M.C.; Tsay, H.W. The congestion total-factor energy efficiency of regions in Taiwan. Energy Policy 2017, 110, 710–718. [Google Scholar] [CrossRef]
- Fay, M.; Hallegatte, S.; Vogt-Schilb, A.; Rozenberg, J.; Narloch, U.; Kerr, T. Decarbonizing Development: Three Steps to a Zero-Carbon Future; Climate Change and Development; World Bank: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Renewable Energy Policy Network for the 21 Century. Renewables 2017 Global Status Report; Renewable Energy Policy Network for the 21 Century (REN21): Bonn, Germany, 2017; Available online: http://www.ren21.net/gsr-2017/ (accessed on 30 December 2019).
- Zhou, H.; Yang, Y.; Chen, Y.; Zhu, J. Data envelopment analysis application in sustainability: The origins, development, and future directions. Eur. J. Oper. Res. 2018, 264, 1–16. [Google Scholar] [CrossRef]
- Guo, X.D.; Zhu, L.; Fan, Y.; Xie, B.C. Evaluation of potential reductions in carbon emission in Chinese provinces based on environmental DEA. Energy Policy 2011, 39, 2352–2360. [Google Scholar] [CrossRef]
- Bian, Y.; He, P.; Xu, H. Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach. Energy Policy 2013, 63, 962–971. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, H.; Zhang, X. China’s provincial industrial energy efficiency and its determinants. Math. Comput. Model. 2013, 58, 1032–1039. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y. China’s regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution. Energy Econ. 2015, 49, 239–256. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y. Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention. Energy Econ. 2017, 66, 154–166. [Google Scholar] [CrossRef]
- Xie, B.C.; Wang, J.Y.; Ma, J.J.; Duan, N. Efficiency evaluation of China’s provincial power systems based on the dynamic network slacks-based measure model. J. Clean. Prod. 2018, 174, 650–660. [Google Scholar] [CrossRef]
- Guo, X.; Lu., C.C.; Lee, J.H.; Chiu, Y.H. Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China. Energy 2017, 134, 392–399. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA: A slacks-based measure. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Tone, K.; Tsutsui, M. Dynamic DEA with network structure: A slacks-based measure. Omega 2014, 42, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Cook, W.D.; Liang, L.; Zhu, J. Measuring performance of two-stage network structure by DEA: A review and future perspective. Omega 2010, 38, 423–430. [Google Scholar] [CrossRef]
- Galagedera, D.U.A.; Roshdi, I.; Fukuyama, H.; Zhu, J. A new network DEA model for mutual fund performance appraisal: An application to U.S. equity mutual funds. Omega 2018, 77, 168–179. [Google Scholar] [CrossRef]
- Iftikhar, Y.; Wang, Z.; Zhang, B.; Wang, B. Energy and CO2 emissions efficiency of major economies: A network DEA approach. Energy 2018, 147, 197–207. [Google Scholar] [CrossRef]
- Chiu, S.H.; Lin, T.Y. Performance evaluation of Taiwanese international tourist hotels: Evidence from a modified NDEA model with ICA technique. Technol. Econ. Dev. Econ. 2018, 24, 1560–1580. [Google Scholar] [CrossRef]
- Lin, T.Y.; Chiu, S.H. Using independent component analysis and network DEA to improve bank performance evaluation. Econ. Model. 2013, 32, 608–616. [Google Scholar] [CrossRef]
- Chiu, S.H.; Lin, T.Y. Two-stage performance evaluation of domestic and foreign banks in Taiwan. Asian J. Econ. Model. 2018, 6, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q. Industrial energy efficiency with CO2 emission in China: A nonparametric analysis. Energy Policy 2012, 49, 164–172. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Wang, Q.W.; Zhou, P. Measuring energy performance with sectoral heterogeneity: A nonparametric analysis. Energy Econ. 2017, 62, 70–78. [Google Scholar] [CrossRef]
- Yang, G.L.; Fukuyama, H.; Chen, K. Investing the regional sustainable performance of the Chinese real estate industry: A slacks-based measure. Omega 2019, 84, 141–159. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, G. Energy efficiency of Chinese service sector and its regional differences. J. Clean. Prod. 2017, 614–625. [Google Scholar] [CrossRef]
- Tone, K.; Kweh, Q.L.; Lu, W.M.; Ting, I.W.K. Modeling investments in the dynamic network performance of insurance companies. Omega 2019, 88, 237–247. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. IPCC Guideline for National Greenhouse Gas Inventories. 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html (accessed on 17 December 2019).
- Li, Y.; Shi, X.; Yang, M.; Liang, I. Variables selection in data envelopment analysis via Akaike’s information. Ann. Oper. Res. 2017, 253, 453–476. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, N.L.; Wu, M.; Bian, Y. Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach. Omega 2016, 60, 60–72. [Google Scholar] [CrossRef]
Variables | Mean | Std. Dev. | Max | Min |
---|---|---|---|---|
Inputs-Electricity portfolio | ||||
Inv (100 million RMB) | 567.83 | 376.92 | 2214.23 | 73.10 |
Intermediate outputs | ||||
ThermalE (100 million kWh) | 1420.17 | 1131.58 | 4671.00 | 120.00 |
CleanE (100 million kWh) | 479.61 | 606.89 | 3215.00 | 4.90 |
Carry-over | ||||
ThermalPIC (MW) | 3217.33 | 2312.75 | 10,335.00 | 230.00 |
CleanPIC (MW) | 1629.91 | 1572.94 | 8059.00 | 23.70 |
Inputs- Energy productivity | ||||
PEC (MTOE) | 143.97 | 99.04 | 482.90 | 15.85 |
IOE (100 million kWh) | 1394.81 | 607.65 | 3144.00 | 1.00 |
Final outputs-Energy productivity | ||||
CO2 (Million ton) | 526.79 | 346.09 | 1757.02 | 75.62 |
RGP (100 million RMB) | 22,282.84 | 16,804.72 | 81,571.96 | 1893.54 |
Inv | CleanPIC | ThermalPIC | CleanE | ThermalE | |
---|---|---|---|---|---|
Inv | 1.000 | ||||
CleanPIC | 0.606 *** | 1.000 | |||
ThermalPIC | 0.641 *** | 0.235 *** | 1.000 | ||
CleanE | 0.497 *** | 0.947 *** | 0.153 ** | 1.000 | |
ThermalE | 0.576 *** | 0.124 * | 0.968 *** | 0.042 | 1.000 |
CleanE | ThermalE | PEC | IOE | CO2 | GRP | |
---|---|---|---|---|---|---|
CleanE | 1.000 | |||||
ThermalE | 0.042 | 1.000 | ||||
PEC | 0.108 | 0.895 *** | 1.000 | |||
IOE | −0.260 *** | 0.144 * | 0.071 | 1.000 | ||
CO2 | 0.191 ** | 0.888 *** | 0.981 *** | 0.127 * | 1.000 | |
GRP | 0.148 ** | 0.543 *** | 0.576 *** | 0.518 *** | 0.867 *** | 1.000 |
Electricity Portfolio Stage | Energy Productivity Stage | ||
---|---|---|---|
Inputs/Outputs | log(ThermalE) | log(CleanE) | log(GRP) |
Constant | 0.633 | 1.263 *** | 6.754 *** |
(0.916) | (2.735) | (10.505) | |
log(Inv) | 0.096 *** | 0.038 | |
(3.329) | (0.830) | ||
log(ThermalPIC) | 0.738 *** | ||
(8.551) | |||
log(CleanPIC) | 0.583 *** | ||
(9.961) | |||
log(ThermalE) | 0.150 ** | ||
(2.541) | |||
log(CleanE) | 0.050 * | ||
(1.950) | |||
log(PEC) | 0.650 *** | ||
(5.048) | |||
log(IOE) | 0.001 | ||
(0.067) | |||
log(CO2) | 1.212 *** | ||
(5.949) | |||
Adj. R2 | 0.987 | 0.989 | 0.995 |
F-statistic | 390.211 *** | 451.616 *** | 976.811 *** |
Dynamic Two-Stage SBM (Model 1) | Dynamic SBM (Model 2) | Two-Stage SBM (Model 3) | SBM (Model 4) | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | DMU | Performance Score | Rank | Performance Score | Rank | Performance Score | Rank | Performance Score | Rank |
1 | Beijing | 0.0591 | 28 | 1.0000 | 1 | 1.0000 | 1 | 1.0000 | 1 |
2 | Tianjin | 0.0223 | 29 | 0.0886 | 30 | 1.0000 | 1 | 0.9999 | 7 |
3 | Hebei | 0.0988 | 21 | 0.1353 | 26 | 0.5816 | 29 | 0.3354 | 21 |
4 | Shanxi | 0.0823 | 24 | 0.0938 | 29 | 0.9928 | 12 | 0.1307 | 27 |
5 | Inner Mongolia | 0.3020 | 13 | 0.1896 | 22 | 1.0000 | 1 | 0.1228 | 28 |
6 | Liaoning | 0.2962 | 15 | 0.4579 | 18 | 0.5880 | 28 | 0.3805 | 18 |
7 | Jilin | 0.1943 | 17 | 1.0000 | 1 | 0.8540 | 16 | 0.4689 | 16 |
8 | Heilongjiang | 0.1820 | 18 | 0.2572 | 21 | 0.7703 | 22 | 0.3553 | 20 |
9 | Shanghai | 0.0817 | 25 | 1.0000 | 1 | 1.0000 | 1 | 1.0000 | 1 |
10 | Jiangsu | 0.2047 | 16 | 0.9996 | 11 | 1.0000 | 1 | 1.0000 | 1 |
11 | Zhejiang | 0.4200 | 11 | 0.5949 | 17 | 0.8140 | 19 | 0.6623 | 11 |
12 | Anhui | 0.0708 | 27 | 0.0991 | 28 | 0.9988 | 11 | 0.3000 | 23 |
13 | Fujian | 0.5013 | 7 | 0.6449 | 15 | 0.7534 | 24 | 0.4459 | 17 |
14 | Jiangxi | 0.3005 | 14 | 0.4193 | 19 | 0.7577 | 23 | 0.3761 | 19 |
15 | Shandong | 0.0824 | 23 | 0.9983 | 13 | 0.9509 | 13 | 1.0000 | 1 |
16 | Henan | 0.0894 | 22 | 0.1808 | 24 | 0.7769 | 21 | 0.6383 | 12 |
17 | Hubei | 0.8145 | 3 | 1.0000 | 1 | 0.9333 | 14 | 0.5567 | 14 |
18 | Hunan | 0.4668 | 8 | 0.9994 | 12 | 0.8312 | 18 | 0.8403 | 10 |
19 | Guangdong | 0.5503 | 5 | 1.0000 | 1 | 1.0000 | 1 | 1.0000 | 1 |
20 | Guangxi | 0.4606 | 9 | 0.6051 | 16 | 0.6671 | 27 | 0.3310 | 22 |
21 | Hainan | 1.0000 | 1 | 1.0000 | 1 | 1.0000 | 1 | 0.9998 | 8 |
22 | Chongqing | 0.4315 | 10 | 0.7029 | 14 | 0.7898 | 20 | 0.5514 | 15 |
23 | Sichuan | 1.0000 | 1 | 1.0000 | 1 | 1.0000 | 1 | 1.0000 | 1 |
24 | Guizhou | 0.5666 | 4 | 1.0000 | 1 | 0.9222 | 15 | 0.2142 | 25 |
25 | Yunnan | 0.9956 | 2 | 1.0000 | 1 | 1.0000 | 1 | 0.6274 | 13 |
26 | Shaanxi | 0.0812 | 26 | 0.1202 | 27 | 0.7157 | 25 | 0.2666 | 24 |
27 | Gansu | 0.3075 | 12 | 0.4086 | 20 | 0.6871 | 26 | 0.1561 | 26 |
28 | Qinghai | 0.5293 | 6 | 1.0000 | 1 | 1.0000 | 1 | 0.9995 | 9 |
29 | Ningxia | 0.1255 | 20 | 0.1721 | 25 | 0.8345 | 17 | 0.0723 | 30 |
30 | Xinjiang | 0.1424 | 19 | 0.1875 | 23 | 0.4020 | 30 | 0.0961 | 29 |
Mean | 0.3487 | 0.6118 | 0.8540 | 0.5643 | |||||
Std. | 0.2949 | 0.3808 | 0.1379 | 0.3333 | |||||
Number of efficient DMU | 2 | 10 | 10 | 6 |
Performance Indicator | Group | Significant Sign | Significant Level |
---|---|---|---|
Overall energy performance | Independent sample | Y | 1% |
Model1–Model2 | Y | 1% | |
Model1–Model3 | Y | 1% | |
Model1–Model4 | Y | 5% | |
Model2–Model3 | N | - | |
Model2–Model4 | N | - | |
Model3–Model4 | Y | 5% |
No. | DMU | Electricity Portfolio | Rank | Energy Productivity | Rank | Overall Energy Performance | Rank |
---|---|---|---|---|---|---|---|
1 | Beijing | 0.0273 | 29 | 1.0000 | 1 | 0.0591 | 29 |
2 | Tianjin | 0.0123 | 30 | 0.7516 | 12 | 0.0223 | 30 |
3 | Hebei | 0.0696 | 22 | 0.3160 | 26 | 0.0988 | 22 |
4 | Shanxi | 0.0638 | 23 | 0.2389 | 28 | 0.0823 | 25 |
5 | Inner Mongolia | 0.1385 | 16 | 1.0000 | 1 | 0.3020 | 14 |
6 | Liaoning | 0.3195 | 13 | 0.3298 | 25 | 0.2962 | 16 |
7 | Jilin | 0.1255 | 19 | 0.6516 | 18 | 0.1943 | 18 |
8 | Heilongjiang | 0.1300 | 18 | 0.4682 | 22 | 0.1820 | 19 |
9 | Shanghai | 0.0518 | 26 | 0.6941 | 15 | 0.0817 | 26 |
10 | Jiangsu | 0.0937 | 21 | 1.0000 | 1 | 0.2047 | 17 |
11 | Zhejiang | 0.2936 | 14 | 0.7772 | 11 | 0.4200 | 12 |
12 | Anhui | 0.0447 | 27 | 0.5848 | 19 | 0.0708 | 28 |
13 | Fujian | 0.3699 | 9 | 0.7829 | 9 | 0.5013 | 8 |
14 | Jiangxi | 0.1851 | 15 | 0.6584 | 17 | 0.3005 | 15 |
15 | Shandong | 0.0345 | 28 | 0.7231 | 14 | 0.0824 | 24 |
16 | Henan | 0.0526 | 25 | 0.5665 | 20 | 0.0894 | 23 |
17 | Hubei | 0.8549 | 5 | 0.7776 | 10 | 0.8145 | 4 |
18 | Hunan | 0.3529 | 10 | 0.7483 | 13 | 0.4668 | 9 |
19 | Guangdong | 0.3475 | 11 | 1.0000 | 1 | 0.5503 | 6 |
20 | Guangxi | 0.3971 | 6 | 0.5604 | 21 | 0.4606 | 10 |
21 | Hainan | 1.0000 | 1 | 1.0000 | 1 | 1.0000 | 1 |
22 | Chongqing | 0.3209 | 12 | 0.6835 | 16 | 0.4315 | 11 |
23 | Sichuan | 1.0000 | 1 | 1.0000 | 1 | 1.0000 | 1 |
24 | Guizhou | 0.9152 | 4 | 0.4282 | 24 | 0.5666 | 5 |
25 | Yunnan | 0.9968 | 3 | 0.9948 | 7 | 0.9956 | 3 |
26 | Shaanxi | 0.0540 | 24 | 0.4443 | 23 | 0.0812 | 27 |
27 | Gansu | 0.3807 | 8 | 0.2817 | 27 | 0.3075 | 13 |
28 | Qinghai | 0.3907 | 7 | 0.9363 | 8 | 0.5293 | 7 |
29 | Ningxia | 0.1254 | 20 | 0.1414 | 30 | 0.1255 | 21 |
30 | Xinjiang | 0.1303 | 17 | 0.1823 | 29 | 0.1424 | 20 |
Mean | 0.3093 | 0.6574 | 0.3487 |
Regional Block | Provinces |
---|---|
East | Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan |
Central | Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan |
West | Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang |
Regional Block | Electricity Portfolio | Energy Productivity | Overall Energy Performance | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Efficiency | Inefficiency | Mean | Efficiency | Inefficiency | Mean | Efficiency | Inefficiency | |
Eastern | 0.2382 | 1 (9%) | 10 (91%) | 0.7613 | 4 (36%) | 7 (64%) | 0.3015 | 1 (9%) | 10 (91%) |
Central | 0.2262 | 0 (0%) | 8 (100%) | 0.5868 | 0 (0%) | 8 (100%) | 0.2751 | 0 (0%) | 8 (100%) |
Western | 0.4409 | 1 (9%) | 10 (91%) | 0.6048 | 2 (18%) | 9 (82%) | 0.4493 | 1 (9%) | 10 (91%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, S.-H.; Lin, T.-Y.; Yang, H.-L. Measuring Energy Performance for Regional Sustainable Development in China: A New Framework based on a Dynamic Two-Stage SBM Approach. Sustainability 2020, 12, 2851. https://doi.org/10.3390/su12072851
Chiu S-H, Lin T-Y, Yang H-L. Measuring Energy Performance for Regional Sustainable Development in China: A New Framework based on a Dynamic Two-Stage SBM Approach. Sustainability. 2020; 12(7):2851. https://doi.org/10.3390/su12072851
Chicago/Turabian StyleChiu, Sheng-Hsiung, Tzu-Yu Lin, and Hai-Lan Yang. 2020. "Measuring Energy Performance for Regional Sustainable Development in China: A New Framework based on a Dynamic Two-Stage SBM Approach" Sustainability 12, no. 7: 2851. https://doi.org/10.3390/su12072851
APA StyleChiu, S. -H., Lin, T. -Y., & Yang, H. -L. (2020). Measuring Energy Performance for Regional Sustainable Development in China: A New Framework based on a Dynamic Two-Stage SBM Approach. Sustainability, 12(7), 2851. https://doi.org/10.3390/su12072851