How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action?
Abstract
:1. Introduction
2. Model Construction
2.1. Stochastic Frontier Analysis Model (SFA)
2.2. Dynamic Panel Data Model
3. Empirical Estimation
3.1. Efficiency Estimation of Agricultural Water Utilization
3.2. Estimation Results of the Dynamic Panel Model
4. Results and Discussion
4.1. Law of Agricultural Water Utilization Efficiency
4.2. Factors Driving Agricultural Water Utilization Efficiency
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yellow River Conservancy Commission of MWR. Yellow River Resources Bulletin. 2018. Available online: http://www.yrcc.gov.cn/other/hhgb/ (accessed on 30 March 2020).
- Nafyad, S.K.; Shankar, K. Groundwater Quality Assessment using Water Quality Index and GIS Technique in Modjo River Basin, Central Ethiopia. J. Afr. Earth Sci. 2018, 147, 300–311. [Google Scholar]
- Liu, Y.Y.; Mao, D.H. Integrated Assessment of Water Quality Characteristics and Ecological Compensation in the Xiangjiang River, South-central China. Ecol. Indic. 2020, 110, 105922. [Google Scholar] [CrossRef]
- Liu, H.J.; Qiao, L.C.; Sun, S.H. Spatial Distribution and Dynamic Change of Water Use Efficiency in the Yellow River Basin. Resour. Sci. 2020, 42, 57–68. [Google Scholar]
- Xi, J.P. Speech at the Symposium on Ecological Protection and High-Quality Development of the Yellow River Basin. Water Resour. Dev. Manag. 2019, 11, 1–4. [Google Scholar]
- Li, S.X.; Cheng, J.H.; Wu, Q.S. Regional Difference of the Efficiency of Water Usage in China. China Popul. Resour. Environ. 2008, 18, 215–220. [Google Scholar]
- Liao, H.C.; Dong, Y.M. Utilization Efficiency of Water Resources in 12 Western Provinces of china Based on the DEA and Malmquist TFP Index. Resour. Sci. 2011, 33, 273–279. [Google Scholar]
- Karagiannis, G.; Tzouvelekas, V.; Xepapadeas, A. Measuring Irrigation Water Efficiency with a Stochastic Production Frontier. Environ. Resour. Econ. 2003, 26, 57–72. [Google Scholar] [CrossRef]
- Ding, X.H.; He, J.H.; Wang, L.Y. Inter-provincial Water Resources Utilization Efficiency and Its Driving Factors Considering Undesirable Outputs: Based on SE-SBM and Tobit model. China Popul. Resour. Environ. 2018, 28, 157–164. [Google Scholar]
- Wang, M.; Sun, C.Z.; Wang, X.L. Analysis of the Water-Energy Coupling Efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs. Water 2019, 11, 632. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Z.; Ma, Q.F.; Zhao, L.S. Green Efficiency Changes for Water Resources in China Based on SBM-Malmquist Model. Resour. Sci. 2018, 40, 993–1005. [Google Scholar]
- Tong, J.P.; Ma, J.F.; Wang, H.M.; Qin, T.; Wang, Q. Research on Agricultural Total-factor Water Use Efficiency and Its Influencing Factors in China. Econ. Probl. 2014, 6, 101–106. [Google Scholar]
- Ma, H.L.; Shi, C.L.; Chou, N.T. China’s Water utilization efficiency: An analysis with environmental considerations. Sustainability 2016, 8, 516. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.L.; Li, W.M. Agricultural Water Use Efficiency and Influencing Factors in Xinjiang. J. Xinjiang Univ. (Philos. Humanit. Soc. Sci.) 2014, 42, 7–10. [Google Scholar]
- Zhao, J.; Meng, H.; Gong, J. Measurement of Total Factor Agricultural Water Efficiency and Analysis of Influential Factor in Jing-Jin-Ji Area. J. China Agric. Univ. 2017, 22, 76–84. [Google Scholar]
- Xu, L.; Huang, Y. Measurement of Irrigation Water Efficiency and Analysis of Influential Factors: An Empirical Study of Mengcheng County in Anhui Province. Resour. Sci. 2012, 34, 105–113. [Google Scholar]
- Ma, J.F.; Wang, H.M.; Tong, J.P. Research on Spatial Effects of Technological Progress and Efficiency Catch-up on Agricultural Water Use Efficiency. China Popul. Resour. Environ. 2018, 28, 36–45. [Google Scholar]
- Yang, J. The Impact of China’s New Urbanization Development Level on Agricultural Industry Structure. Econ. Surv. 2016, 33, 84–89. [Google Scholar]
- Yang, S.H.; Song, T.Q.; Chen, H.J. Impact of Industrialization and Urbanization on Construction of Agricultural Modernization. China Popul. Resour. Environ. 2012, 22, 398–403. [Google Scholar]
- He, J.L. Impact of Urbanization on Agricultural Sustainable Development and Its Policy Tropism. Res. Agric. Mod. 2002, 3, 208–210. [Google Scholar]
- Zhang, X.L.; Wu, Y.Z.; Skitmore, M.; Jiang, S.J. Sustainable Infrastructure Projects in Balancing Urban-rural Development: Towards the Goal of Efficiency and Equity. J. Clean. Prod. 2015, 109, 445–454. [Google Scholar] [CrossRef]
- Sabet, N.S.; Azharianfar, S. Urban-rural Reciprocal Interaction Potential to Develop Weekly Markets and Regional Development in Iran. Habitat Int. 2017, 61, 31–44. [Google Scholar] [CrossRef]
- Charter, H.O.; Ireri, D. Linkage of California-Arizona Input-Output Models to Analyze Water Transfer Patterns; University of California: Berkeley, CA, USA, 1968. [Google Scholar]
- Christian, S.J.; Cooley, H.; Gleick, P.H. Potential Water Savings Associated with Agricultural Water Efficiency Improvements: A Case Study of California. Water Policy 2012, 14, 194–213. [Google Scholar] [CrossRef]
- Portnov, B.A.; Safriel, U.N. Combating Desertification in the Negev: Dryland Agriculture vs. Dryland Urbanization. J. Arid Environ. 2004, 56, 659–680. [Google Scholar] [CrossRef]
- Feng, H.Y.; Shi, P.J.; Zhou, W.X.; Chen, J.Y.; Zhang, X.B. Threshold Analysis of Urbanization with the Constraint of “Three Red Lines” on Water Resources Management: A case study of Zhangye City. J. Nat. Resour. 2018, 33, 287–301. [Google Scholar]
- Jin, W.; Zhang, H.Q.; Zhang, H.B.; Kong, W.; Mao, G.X.; Zhang, C.J.; Yan, X. The Influence of Population Structural Change on Water Consumption in Urbanization. Resour. Sci. 2018, 40, 784–796. [Google Scholar]
- Wang, Z.Q.; Yang, J.; Deng, X.Z.; Lan, X. Optimal Water Resources Allocation under the Constraint of Land Use in the Heihe river Basin of China. Sustainability 2015, 7, 1558–1575. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; He, F. Cognitive Analysis of Dual-control Action of Total Water Consumption and Intensity in View of Bearing Capacity. China Water Resour. 2016, 23, 34–40. [Google Scholar]
- Yan, T.T.; Liu, D.X.; Luo, L.; Fan, L. Analysis and Reflection on the Implementation of the Dual Action of Total Water Consumption and Intensity. Water Resour. Dev. Res. 2017, 17, 89–93. [Google Scholar]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and Estimation of Stochastic Frontier Function Models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; Van Den Broeck, J. Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lovell, C.K. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lei, Y.T.; Huang, L.P. Regional Differences in Industrial Water Consumption Efficiency and Its Influencing Factors for China’s Major Industrial Provinces: A Study of Provincial Panel Data Based on SFA. China Soft Sci. 2015, 4, 155–164. [Google Scholar]
- Wang, X.Y. Comparative Study of Irrigation Water Efficiency in China’s Provinces Based on DEA and SFA Methods. Stat. Decis. 2010, 8, 44–47. [Google Scholar]
- Zhang, X.; Shi, X. Comparison on Multi-level Model and Static Panel Data Model. Stat. Inf. Forum 2010, 25, 22–26. [Google Scholar]
- Holtz-Eakin, D.; Newey, W.; Rosen, H.S. Estimating Vector Autoregressions with Panel Data. Econometrica 1988, 56, 1371–1395. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial Conditions and Moment Restrictions in Dynamic Panel Data Models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Judson, R.A.; Owen, A.L. Estimating Dynamic Panel Data Models: A Guide for Macroeconomists. Econ. Lett. 1999, 65, 9–15. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Bouayad-Agha, S.; Vedrine, L. Estimation Strategies for a Spatial Dynamic Panel Using GMM--A New Approach to the Convergence Issue of European Regions. Spat. Econ. Anal. 2010, 5, 205–227. [Google Scholar] [CrossRef]
- Darku, A.B. The Impact of Trade Liberalization and the Fiscal Equalization Transfer Policy on Provincial Income Disparities in Canada: An Application of GMM Estimation. Appl. Econ. 2011, 43, 1679–1689. [Google Scholar] [CrossRef]
- Hu, J.; Shang, Y.R.; Shi, X.R.; Hu, Q.H. Adjustment of Crop Planting Structure Considering Optimal Allocation of Water Resources—A Case Study of Xingtai City, Hebei Province. Water Sav. Irrig. 2016, 1, 76–80. [Google Scholar]
- Song, Y.; Cao, Y.P. The Research on Influencing Factors and Dynamic Coupling of New Ecological Urbanization Based on GMM. Ecol. Econ. 2019, 35, 67–72. [Google Scholar]
- Ma, J.F.; Qin, T.; Tong, J.P.; Sun, D.Y. Industrial Agglomeration, Urban Agglomeration and Water Consumption. Soft Sci. 2018, 32, 95–99. [Google Scholar]
- Cao, K.H.; Birchenall, J.A. Agricultural Productivity, Structural Change, and Economic Growth in Post-reform China. J. Dev. Econ. 2013, 104, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.L. The Contribution of Agricultural Labor Migration to Economic Growth in China. Econ. Res. J. 2016, 51, 97–110. [Google Scholar]
- Lv, Y.J.; Kong, L.C.; Li, Y. Measurement of Coupling Coordination Degree between Urbanization and Ecological Environment in China. Urban Probl. 2019, 12, 13–22. [Google Scholar]
- Zhu, M.L.; Liu, J. Study on the Evaluation Index System of Agricultural Efficiency and Water Saving in the Arid Regions of Northwest China. Water Sav. Irrig. 2016, 2, 95–100. [Google Scholar]
- Dhake, A.V.; Subramaniam, V.R.; Desarda, G.I.; Borole, V. Enhancing Water Use Efficiency in Onion Bulb Production: A Farmer-centric Approach. Int. J. Innov. Hortic. 2016, 5, 94–97. [Google Scholar]
- Zuo, Z.Y. Farmers’ Irrigation Technology Choice and Collective Action under Water Resources Constraints—Based on Micro-data of Farmers in North China Groundwater Over-exploitation Area. Rural Econ. 2019, 7, 64–71. [Google Scholar]
- Zhang, Y.; Song, L.; Zhu, X.B. Research on the Efficiency of China’s Regional Patent Structure from a Two-Stage Perspective. J. Intell. 2020, 1, 201–207. [Google Scholar]
- Zhou, Y.; Kong, Y.; Sha, J.; Wang, H.K. The Role of Industrial Structure Upgrades in Eco-efficiency Evolution: Spatial Correlation and Spillover Effects. Sci. Total Environ. 2019, 687, 1327–1336. [Google Scholar] [CrossRef]
- Liu, C.L.; Wang, T.; Guo, Q.B. Factors Aggregating and the Regional Differences among China Urban Agglomerations. Sustainability 2018, 10, 4179. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Zhou, Y.; Wei, J. How do Economic Openness and R&D Investment Affect Green Economic Growth? Evidence from China. Resour. Conserv. Recycl. 2019, 146, 405–415. [Google Scholar]
- Shang, Y.Z.; Wang, J.H.; Liu, J.H.; Jiang, D.; Zhai, J.Q.; Jiang, S. Suitability Analysis of China’s Energy Development Strategy in the Context of Water Resource Management. Energy 2016, 96, 286–293. [Google Scholar] [CrossRef]
- Yang, L.; Ouyang, H.; Fang, K.N.; Ye, L.L.; Zhang, J. Evaluation of Regional Environmental Efficiencies in China Based on Super-efficiency-DEA. Ecol. Indic. 2015, 51, 13–19. [Google Scholar] [CrossRef]
- Tian, Y.H.; Liu, Y.Q.; Jin, J.J. Effect of Irrigation Schemes on Forage Yield, Water Use Efficiency, and Nutrients in Artificial Grassland under Arid Conditions. Sustainability 2017, 9, 2035. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, D.J. Agricultural Water Utilization Efficiency and Its Influencing Factors in China: Based on MinDW Model. J. Environ. Econ. 2018, 3, 56–74. [Google Scholar]
- Guan, X.J.; Liang, S.X.; Meng, Y. Evaluation of Water Resources Comprehensive Utilization Efficiency in the Yellow River Basin. Water Sci. Technol. Water Supply 2016, 16, 1561–1570. [Google Scholar] [CrossRef]
- Kang, S.Z.; Hao, X.M.; Du, T.S.; Tong, L.; Su, X.L.; Lu, H.M.; Li, X.L.; Huo, Z.L.; Li, S.; Ding, R.S. Improving Agricultural Water Productivity to Ensure Food Security in China under Changing Environment: From Research to Practice. Agric. Water Manag. 2017, 179, 2–17. [Google Scholar] [CrossRef]
- Valipour, M. Land Use Policy and Agricultural Water Management of the Previous Half of Century in Africa. Appl. Water Sci. 2015, 5, 367–395. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.T.; Yu, C.; Xiong, L.C.; Chang, Y. How can agricultural water use efficiency be promoted in China? A spatial temporal analysis. Resour. Conserv. Recycl. 2019, 145, 411–418. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.H.; Zhang, Q.; Zheng, M.B. Improving Agricultural Water Use efficiency: A Quantitative Study of Zhangye City Using the Static CGE Model with a CES Water-Land Resources Account. Sustainability 2017, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Mekonnen, M.M.; Hoekstra, A.Y.; Wda, Y. Inter- and Intra-annual Variation of Water Footprint of Crops and Blue Water Scarcity in the Yellow River Basin (1961–2009). Adv. Water Resour. 2016, 87, 29–41. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing Environmental Kuznets Curve Hypothesis in Asian Countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Ridzuan, S. Inequality and the Environmental Kuznets curve. J. Clean. Prod. 2019, 228, 1472–1481. [Google Scholar] [CrossRef]
- Ding, X.H.; Fu, Z.; Jia, H.W. Study on Urbanization Level, Urban Primacy and Industrial Water Utilization Efficiency in the Yangtze River Economic Belt. Sustainability 2019, 11, 6571. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.H.; Tang, N.; He, J.H. The Threshold Effect of Environmental Regulation, FDI Agglomeration and Water Use Efficiency under “Double Control Actions”—An Empirical Test Based on Yangtze River Economic Belt. Water 2019, 11, 452. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Q. A Comparative Study on Dynamic Panel Parameter Estimation. Stat. Res. 2017, 23, 108–119. [Google Scholar]
- Shao, W.W.; Liu, H.Z.; Zhou, Z.H.; Cao, X.L. Influencing Factors and Countermeasure for Agricultural Water during Urbanization and Industrialization in Northeast China. J. Econ. Water Resour. 2015, 33, 1–3. [Google Scholar]
- Li, S.M.; Yin, X.W. Analysis of the impact of Chinese Rural Labor Migration on Agricultural Total Factor Productivity. J. Agrotech. Econ. 2019, 9, 4–13. [Google Scholar]
- Zhang, H.L.; Li, J.Y. The Impact of Agricultural Technology Progress, Rural Labor Transfer and The Income Gap between Urban and Rural Areas: Study and Analysis on the Grouping of Agricultural Labor Productivity. East China Econ. Manag. 2020, 34, 69–75. [Google Scholar]
- Ma, H.L.; Chou, N.T.; Wang, L. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China. Sustainability 2016, 8, 1176. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Deng, X.; Shen, Q.L.; Qi, Y.B. Agricultural Technology Progress, Rural Labor Transfer, and Farmers’ Income--Analysis of Group PVAR Model Based on Agricultural Labor Productivity. J. Agrotech. Econ. 2017, 6, 28–41. [Google Scholar]
- Lu, H.; Xie, H.L.; Yao, G.G. Impact of Land Fragmentation on Marginal Productivity of Agricultural Labor and Non-agricultural Labor Supply: A Case Study of Jiangsu, China. Habitat Int. 2019, 83, 65–72. [Google Scholar] [CrossRef]
- Bao, C.; Zhou, J.J. Exploring the Coupling and Decoupling Relationships between Urbanization Quality and Water Resources Constraint Intensity: Spatiotemporal Analysis for Northwest China. Sustainability 2017, 9, 1960. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.S. Interactive Development of China’s Industrialization and Agricultural Modernization under the Background of New Urbanization. Soc. Sci. 2017, 6, 85–89. [Google Scholar]
- Hao, Y.F.; Wang, Z.B. Does Agglomeration of Productive Services Contribute to High-quality Agricultural Growth? J. Humanit. 2019, 5, 54–61. [Google Scholar]
- Yang, L.; Yang, F. “Feedback” or “Siphon”—Research on the Relationship between Industry and Agriculture in China’s Resource-based Cities. Contemp. Econ. Manag. 2019, 41, 1–9. [Google Scholar]
- Liu, M.H.; Lu, F. Agricultural and Industrial Sector: Feeding Each Other or Back-feeding--A study Based on Spatial Durbin Model. Rev. Econ. Manag. 2017, 33, 153–161. [Google Scholar]
- Wan, G.H.; Yang, D.; Zhang, Y. Why Asia and China have Lower Urban Concentration and Urban Primacy. J. Asia Pac. Econ. 2017, 22, 90–105. [Google Scholar] [CrossRef]
- Brezzi, M.; Veneri, P. Assessing Polycentric Urban Systems in the OECD: Country, Reginal and Metropolitan Perspectives. Eur. Plan. Stud. 2015, 23, 1128–1145. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Jiang, N.; Shi, G.; Cheng, X. The Evolution of the Urban Spatial Pattern in the Yangtze River Economic Belt: Based on Multi-Source Remote Sensing Data. Sustainability 2018, 10, 2733. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Yu, Z.B.; Lian, J. Measurement Indicators and Influencing Factors of Urban Population Concentration—Regression Analysis of the Impact of China’s Economic Development on Urban Population Concentration. Inq. Econ. Issues 2007, 3, 32–37. [Google Scholar]
- Chen, W.Z. Empirical Study Theoretical and Evidence on the Optimal Scale of Urban Primacy Ratio. Stat. Decis. 2017, 5, 126–129. [Google Scholar]
- Jin, Y.T. A study on the Impact of Urban Prime Position on the Urban-rural Income Gap--An Empirical Analysis Based on China’s Provincial Panel Data. Contemp. Econ. 2017, 9, 35–37. [Google Scholar]
- Wallace, J.S. Increasing Agricultural Water Use Efficiency to Meet Future Food Production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, X.Y.; Chen, S.Y.; Sun, H.Y. Changes in Water Use Efficiency and Water Footprint in Grain Production over the Past 35 Years: A Case Study in the North China Plain. J. Clean. Prod. 2016, 116, 71–79. [Google Scholar] [CrossRef]
- Pan, J.F.; Liu, Y.Z.; Zhong, X.H.; Lampayan, R.M.; Singleton, G.R.; Huang, N.R.; Liang, K.M.; Peng, B.L.; Tian, K. Grain Yield, Water Productivity and Nitrogen Use Efficiency of Rice under Different Water Management and Fertilizer-N Inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
Province | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|
Shanxi | 0.08 | 0.16 | 0.23 | 0.30 | 0.36 | 0.41 | 0.46 | 0.51 | 0.55 | 0.59 | 0.62 |
Inner Mongolia | 0.13 | 0.21 | 0.27 | 0.34 | 0.39 | 0.44 | 0.49 | 0.53 | 0.57 | 0.61 | 0.64 |
Shandong | 0.63 | 0.66 | 0.69 | 0.72 | 0.74 | 0.76 | 0.78 | 0.80 | 0.82 | 0.83 | 0.85 |
Henan | 0.50 | 0.54 | 0.58 | 0.62 | 0.65 | 0.68 | 0.71 | 0.73 | 0.75 | 0.77 | 0.79 |
Sichuan | 0.97 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Shaanxi | 0.74 | 0.76 | 0.78 | 0.80 | 0.82 | 0.83 | 0.85 | 0.86 | 0.87 | 0.88 | 0.89 |
Gansu | 0.21 | 0.28 | 0.34 | 0.39 | 0.44 | 0.49 | 0.54 | 0.57 | 0.61 | 0.64 | 0.67 |
Qinghai | 0.14 | 0.21 | 0.28 | 0.34 | 0.39 | 0.45 | 0.49 | 0.54 | 0.58 | 0.61 | 0.64 |
Ningxia | 0.01 | 0.02 | 0.07 | 0.15 | 0.22 | 0.29 | 0.35 | 0.40 | 0.45 | 0.50 | 0.54 |
mean value | 0.37 | 0.42 | 0.47 | 0.51 | 0.56 | 0.59 | 0.63 | 0.66 | 0.69 | 0.71 | 0.74 |
CV | 0.98 | 0.79 | 0.64 | 0.53 | 0.46 | 0.39 | 0.34 | 0.30 | 0.26 | 0.23 | 0.20 |
Variables | Regression Coefficient | SD | Z Statistics | P Value | Regression Coefficient | SD | Z Statistics | P Value |
---|---|---|---|---|---|---|---|---|
Estimation Type | Difference GMM | System GMM | ||||||
Water utilization | 0.9206 | 0.0104 | 88.69 | 0.000 | 0.9197 | 0.0073 | 126.46 | 0.000 |
Population urbanization | −0.0665 * | 0.0356 | −1.87 | 0.062 | −0.0566 ** | 0.0262 | −2.16 | 0.031 |
Economic urbanization | −0.0236 *** | 0.0085 | −2.77 | 0.006 | −0.0191 ** | 0.0091 | −2.08 | 0.037 |
Balanced urbanization | −0.0021 * | 0.0012 | −1.74 | 0.083 | −0.0007 | 0.0011 | −0.65 | 0.517 |
Technology innovation | 0.0010 *** | 0.0003 | 3.71 | 0.000 | 0.0010 ** | 0.0003 | 3.41 | 0.001 |
Per capita water availability | 0.0022 | 0.0041 | 0.53 | 0.595 | 0.0035 | 0.0039 | 0.90 | 0.366 |
Precipitation | 0.0057 | 0.0086 | 0.66 | 0.509 | 0.0041 | 0.0081 | 0.51 | 0.611 |
Crop planting ratio | −0.0315 *** | 0.0043 | −7.40 | 0.000 | −0.0349 *** | 0.0043 | −8.21 | 0.000 |
Rice planting ratio | −0.4635 ** | 0.1801 | −2.57 | 0.010 | −0.1595 | 0.1100 | −1.45 | 0.147 |
Constant | 0.1163 | 0.0370 | 3.14 | 0.002 | 0.0974 | 0.0401 | 2.43 | 0.015 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Kong, Y.; Ding, X. How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action? Sustainability 2020, 12, 2869. https://doi.org/10.3390/su12072869
Zhang X, Kong Y, Ding X. How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action? Sustainability. 2020; 12(7):2869. https://doi.org/10.3390/su12072869
Chicago/Turabian StyleZhang, Xiling, Yusheng Kong, and Xuhui Ding. 2020. "How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action?" Sustainability 12, no. 7: 2869. https://doi.org/10.3390/su12072869
APA StyleZhang, X., Kong, Y., & Ding, X. (2020). How High-Quality Urbanization Affects Utilization Efficiency of Agricultural Water Resources in the Yellow River Basin under Double Control Action? Sustainability, 12(7), 2869. https://doi.org/10.3390/su12072869