Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus
Abstract
:1. Introduction
2. Field Measurement
2.1. Site Description
2.2. GIS Application
2.3. Greenery Area
2.4. Urban Morphology
3. Results and Discussion
3.1. In Situ Measurement Result
3.2. GIS Mapping of Air Temperature
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wong, N.H.; Yu, C. Study of green areas and urban heat island in a tropical city. Habitat Int. 2005, 29, 547–558. [Google Scholar] [CrossRef]
- Wong, N.H.; Jusuf, S.K. Study on the microclimate condition along a green pedestrian canyon in Singapore. Archit. Sci. Rev. 2010, 53, 196–212. [Google Scholar] [CrossRef]
- Lowry, W.P. Atmospheric Ecology for Designers and Planners. Landsc. J. Book Rev. 1990, 9, 155–156. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a climatic component in the design of an urban street. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Yang, F.; Lau, S.S.Y.; Qian, F. Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery. Build. Environ. 2010, 45, 115–134. [Google Scholar] [CrossRef]
- Ong, B.L. Green Plot Ratio: An ecological measure for architecture and urban planning. Landsc. Urban Plan. 2003, 63, 197–211. [Google Scholar] [CrossRef]
- Saito, I.; Ishihara, O.; Katayama, T. Study of the effect of green areas on the thermal environment in an urban area. Energy Build. 1990, 15, 493–498. [Google Scholar] [CrossRef]
- Jauregui, E. Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy Build. 1990, 15, 457–463. [Google Scholar] [CrossRef]
- Sonne, J.K.; Vieira, R.K. Cool neighborhoods: The measurement of small scale heat islands. Proc. Aceee Summer Study Energy Effic. Build. 2000, 1, 1307–1318. [Google Scholar]
- Yang, B.; Olofsson, T.; Nair, G.; Kabanshi, A. Outdoor thermal comfort and human behavior pattern under subarctic climate of north Sweden—A pilot study in Umeå. Sustain. Cities Soc. 2017, 28, 387–397. [Google Scholar] [CrossRef]
- Avissar, R. Potential effects of vegetation on the urban thermal environment. Atmos. Environ. 1996, 30, 437–448. [Google Scholar] [CrossRef]
- Honjo, T.; Takakura, T. Simulation of thermal effects of urban green areas on their surrounding areas. Energy Build. 1990, 16, 443–446. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Tsiros, I.X.; Hoffman, M.E. A modeling study for evaluating passive cooling scenarios in urban streets with trees. Case study: Athens, Greece. Build. Environ. 2010, 45, 2798–2807. [Google Scholar] [CrossRef]
- Roth, M. Review of urban climate research in subtropical regions. Int. J. Climatol. 2007, 27, 1859–1873. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Katayama, T.; Ishii, A.; Hayashi, T.; Tsutsumi, J. Field surveys on cooling effects of vegetation in an urban area. J. Therm. Biol. 1993, 18, 571–576. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Roth, M. Temporal Dynamics of the Urban Heat Island of Singapore. Int. J. Climatol. 2006, 2243–2260. [Google Scholar] [CrossRef]
- Gal, T.; Unger, J. A new software tool for SVF calculations using building and tree-crown databases. Urban Clim. 2014, 10, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A. RayMan and SkyHelios Model—Two Tools for Urban Climatology. Fachtag. Des Aussch. Umw. Der Dtsch. Meteorol. Ges. 2012, 5, 1–6. [Google Scholar]
- Svensson, M.K. Sky view factor analysis—implications for urban air temperature differences. Meteorol. Appl. 2004, 11, 201–211. [Google Scholar] [CrossRef]
- Aini Swarno, H.; Ahmad Zaki, S.; Yusup, Y.; Sukri Mat Ali, M.; Huda Ahmad, N. Observation of Diurnal Variation of Urban Microclimate in Kuala Lumpur, Malaysia. Chem. Eng. Trans. 2017, 56, 523–528. [Google Scholar] [CrossRef]
- Othman, N.E.; Zaki, S.A.; Ahmad, N.H.; Razak, A.A. In-situ Measurement of Pedestrian Outdoor Thermal Comfort in Universities Campus of Malaysia. Kne Soc. Sci. 2019, 608–621. [Google Scholar] [CrossRef] [Green Version]
- Othman, N.E.; Zaki, S.A.; Ahmad, N.H.; Razak, A.A. Outdoor thermal comfort study of an urban university campus in Malaysia. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 57, 288–296, ISSN: 22897879. [Google Scholar]
- Memon, R.A.; Leung, D.Y.C.; Chunho, L.I.U. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Kruger, E.L.; Minella, F.O.; Rasia, F. Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Sharmin, T.; Steemers, K.; Matzarakis, A. Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka, Bangladesh. Build. Environ. 2015, 94, 734–750. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates Second Edition (Book). RoutledgeTaylor Fr. Group 1987. [Google Scholar] [CrossRef]
- Giridharan, R.; Ganesan, S.; Lau, S.S. Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy Build. 2004, 36, 525–534. [Google Scholar] [CrossRef]
- Xi, T.; Li, Q.; Mochida, A.; Meng, Q. Study on the outdoor thermal environment and thermal comfort around campus clusters in subtropical urban areas. Build. Environ. 2012, 52, 162–170. [Google Scholar] [CrossRef]
- Ahmed, A.Q.; Ossen, D.R.; Jamei, E.; Manaf, N.A.; Said, I.; Ahmad, M.H. Urban surface temperature behaviour and heat island effect in a tropical planned city. Theor. Appl. Climatol. 2014, 1–22. [Google Scholar] [CrossRef]
- Giannopoulou, K.; Santamouris, M.; Livada, I.; Georgakis, C.; Caouris, Y. The impact of canyon geometry on intra Urban and Urban: Suburban night temperature differences under warm weather conditions. Pure Appl. Geophys. 2010, 167, 1433–1449. [Google Scholar] [CrossRef]
- Burian, S.J.; Brown, M.J.; Linger, S.P. Morphological Analyses using 3D Building Databases: Los Angeles, California. Los Alamos Natl. Lab. 2002, 74, 836. [Google Scholar]
- Yunus, F.; Jaafar, J.; Mahmod, Z.; Chang, N.K. The influence of air temperature controls in estimation of air temperature over homogeneous terrain. Appl. Ecol. Environ. Sci. 2014, 2, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Malaysia Meteorological Department. Annual Report 2014; Malaysia Meteorological Department: Kuala Lumpur, Malaysia, 2014.
- Malaysia Meteorological Department. Northeast Monsoon Report 2014; Malaysia Meteorological Department: Kuala Lumpur, Malaysia, 2014.
- Malaysia Meteorological Department. Southwest Monsoon Report 2014; Malaysia Meteorological Department: Kuala Lumpur, Malaysia, 2014.
- Malaysia Meteorological Department. Annual Report 2015; Malaysia Meteorological Department: Kuala Lumpur, Malaysia, 2015.
- Malaysia Meteorological Department. Iklim Malaysia. 2017. Available online: http://www.met.gov.my/web/metmalaysia/climate/generalinformation/malaysia (accessed on 6 January 2017).
- Yip, W.S.; Diong, J.Y.; Chang, N.K.; Mat Adam, M.K.; Fakaruddin, F.J.; Saleh, F.Z.; Abdullah, M.H. Analysis of the Northeast Monsoon 2014/2015, Petaling Jaya Selangor Malaysia; Malaysian Meteorolofical Department (MMD) and Ministry of Science, Technology and Innovation (MOSTI): Kuala Lumpur, Malaysia, 2015; pp. 1–34.
- MMD. Malaysia Meteorological Department. 2016. Available online: http://www.met.gov.my/web/metmalaysia/climate/generalinformation/malaysia (accessed on 16 June 2016).
Date | Outdoor Air Temperature (°C) | Relative Humidity (%) | ||||||
---|---|---|---|---|---|---|---|---|
Average | SD | Max | Min | Average | SD | Max | Min | |
8/4/15 | 30.5 | 3.24 | 37.6 | 26.3 | 70.1 | 16.15 | 89.1 | 35.1 |
9/4/15 | 30.1 | 3.46 | 38.2 | 25.4 | 68.8 | 16.08 | 92.2 | 38.7 |
10/4/15 | 28.5 | 2.24 | 34.4 | 25.1 | 76.4 | 11.89 | 91.8 | 51.5 |
11/4/15 | 28.8 | 3.83 | 36.3 | 23.6 | 75.3 | 18.00 | 98.2 | 42.2 |
12/4/15 | 27.3 | 3.67 | 37.2 | 24.4 | 82.5 | 15.23 | 95.6 | 46.6 |
13/4/15 | 28.9 | 4.02 | 36.8 | 24.0 | 74.9 | 18.41 | 95.9 | 41.1 |
14/4/15 | 29.3 | 3.43 | 36.4 | 24.9 | 75.7 | 17.30 | 95.6 | 44.8 |
Location | Description | RBG | SVF | H/W |
---|---|---|---|---|
A | Field | 1:1.42 | 0.75 | 0.49 |
B | Construction area | 1:0.49 | 0.79 | 0.89 |
C | Main entrance gate | 1:4.32 | 0.61 | 0.27 |
D | Tennis court | 1:0.34 | 0.68 | 0.16 |
E | Engineering laboratory | 1:1.15 | 0.62 | 0.20 |
F | Between two low rise buildings | 1:1.01 | 0.61 | 0.43 |
G | Parking area | 1:1.04 | 0.97 | 0.18 |
H | Between Razak Tower and MJIIT | 1:2.49 | 0.83 | 1.26 |
1 | Rooftop MJIIT (Weather station 1) | - | - | - |
2 | Between field and MJIIT (Weather station 2) | - | - | - |
3 | Main entrance gate (Weather station 3) | - | - | - |
Climatic Variables | Model of Sensor | Measurement Range | Accuracy |
---|---|---|---|
Air temperature | Onset HOBO U12-013 | −20° to +70 °C | ±0.35 °C |
Relative humidity | 5% to 95% | ±2.5% |
Date | Outdoor Air Temperature (°C) | Relative Humidity (%) | ||||||
---|---|---|---|---|---|---|---|---|
Average | SD | Max | Min | Average | SD | Max | Min | |
8/4/2015 | 30.4 | 2.81 | 35.2 | 26.3 | 67.6 | 14.68 | 84.5 | 37.4 |
9/4/2015 | 30.2 | 3.09 | 35.2 | 26.2 | 65.8 | 14.95 | 88.6 | 38.9 |
10/4/2015 | 28.4 | 2.00 | 33.1 | 25.9 | 75.3 | 11.62 | 90.7 | 53.4 |
11/4/2015 | 28.8 | 3.41 | 34.7 | 24.2 | 73.0 | 16.35 | 93.0 | 44.2 |
12/4/2015 | 27.3 | 2.97 | 34.4 | 24.9 | 81.0 | 12.97 | 92.3 | 49.8 |
13/4/2015 | 28.8 | 3.59 | 35.0 | 24.5 | 73.1 | 17.09 | 92.3 | 41.3 |
14/4/2015 | 29.1 | 2.88 | 34.2 | 25.6 | 74.4 | 15.70 | 91.4 | 47.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaki, S.A.; Othman, N.E.; Syahidah, S.W.; Yakub, F.; Muhammad-Sukki, F.; Ardila-Rey, J.A.; Shahidan, M.F.; Mohd Saudi, A.S. Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus. Sustainability 2020, 12, 2962. https://doi.org/10.3390/su12072962
Zaki SA, Othman NE, Syahidah SW, Yakub F, Muhammad-Sukki F, Ardila-Rey JA, Shahidan MF, Mohd Saudi AS. Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus. Sustainability. 2020; 12(7):2962. https://doi.org/10.3390/su12072962
Chicago/Turabian StyleZaki, Sheikh Ahmad, Nurnida Elmira Othman, Siti Wan Syahidah, Fitri Yakub, Firdaus Muhammad-Sukki, Jorge Alfredo Ardila-Rey, Mohd Fairuz Shahidan, and Ahmad Shakir Mohd Saudi. 2020. "Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus" Sustainability 12, no. 7: 2962. https://doi.org/10.3390/su12072962
APA StyleZaki, S. A., Othman, N. E., Syahidah, S. W., Yakub, F., Muhammad-Sukki, F., Ardila-Rey, J. A., Shahidan, M. F., & Mohd Saudi, A. S. (2020). Effects of Urban Morphology on Microclimate Parameters in an Urban University Campus. Sustainability, 12(7), 2962. https://doi.org/10.3390/su12072962