Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Local Climatic Zone Mapping
- 1.
- Spatial form elements
- 2.
- Land cover elements
- 3.
- Clustering Rules
2.3.2. Seasonal Variation Characteristics of Land Surface Temperature in LCZ
3. Results
3.1. Localize the Local Climate Zone Class
3.2. Accuracy Assessment
3.3. LCZ Pattern in Chenzhou
3.4. Analysis of Land Surface Temperature Characteristics in Local Climate Zones
4. Discussion
4.1. The LCZ Classification and LST Characteristics in Chenzhou
4.2. Implementation for Urban Planning
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Voogt, J.A.; Oke, T. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Farhadi, H.; Faizi, M.; Sanaieian, H. Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustain. Cities Soc. 2019, 46, 101448. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.; Etessam, I.; Maulud, K.N.A.; Tawil, N. Healthy Environment: The Need to Mitigate Urban Heat Island Effects on Human Health. Procedia Eng. 2011, 20, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Clim. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Giridharan, R.; Ganesan, S.; Lau, S. Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy Build. 2004, 36, 525–534. [Google Scholar] [CrossRef]
- Gago, E.; Roldán, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. Analysis of urban heat island phenomenon and mitigation solutions evaluation for Montreal. Sustain. Cities Soc. 2016, 26, 438–446. [Google Scholar] [CrossRef]
- Silva, J.S.; Da Silva, R.M.; Santos, C.A.G. Spatiotemporal impact of land use/land cover changes on urban heat islands: A case study of Paço do Lumiar, Brazil. Build. Environ. 2018, 136, 279–292. [Google Scholar] [CrossRef]
- Yue, W.; Liu, X.; Zhou, Y.; Liu, Y. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Sci. Total. Environ. 2019, 671, 1036–1046. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Morini, E.; Touchaei, A.G.; Rossi, F.; Cotana, F.; Akbari, H. Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Clim. 2018, 24, 551–566. [Google Scholar] [CrossRef]
- Lima, I.; Scalco, V.; Lamberts, R. Estimating the impact of urban densification on high-rise office building cooling loads in a hot and humid climate. Energy Build. 2019, 182, 30–44. [Google Scholar] [CrossRef]
- Du, X.; Bokel, R.; Dobbelsteen, A.V.D. Spatial configuration, building microclimate and thermal comfort: A modern house case. Energy Build. 2019, 193, 185–200. [Google Scholar] [CrossRef]
- Wu, Z.; Dou, P.; Chen, L. Comparative and combinative cooling effects of different spatial arrangements of buildings and trees on microclimate. Sustain. Cities Soc. 2019, 51, 101711. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P. Urban development and pedestrian thermal comfort in Melbourne. Sol. Energy 2017, 144, 681–698. [Google Scholar] [CrossRef]
- Alexander, P.; Fealy, R.; Mills, G. Simulating the impact of urban development pathways on the local climate: A scenario-based analysis in the greater Dublin region, Ireland. Landsc. Urban Plan. 2016, 152, 72–89. [Google Scholar] [CrossRef] [Green Version]
- Aminipouri, M.; Rayner, D.; Lindberg, F.; Thorsson, S.; Knudby, A.; Zickfeld, K.; Middel, A.; Krayenhoff, E.S. Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver’s local climate zones. Build. Environ. 2019, 158, 226–236. [Google Scholar] [CrossRef]
- Morini, E.; Castellani, B.; Presciutti, A.; Anderini, E.; Filipponi, M.; Nicolini, A.; Rossi, F. Experimental Analysis of the Effect of Geometry and Façade Materials on Urban District’s Equivalent Albedo. Sustainability 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Bechtel, B.; Daneke, C. Classification of Local Climate Zones Based on Multiple Earth Observation Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1191–1202. [Google Scholar] [CrossRef]
- Quanz, J.A.; Ulrich, S.; Fenner, D.; Holtmann, A.; Eimermacher, J. Micro-Scale Variability of Air Temperature within a Local Climate Zone in Berlin, Germany, during Summer. Climate 2018, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Beck, C.; Straub, A.; Breitner, S.; Cyrys, J.; Philipp, A.; Rathmann, J.; Schneider, A.; Wolf, K.; Jacobeit, J. Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Clim. 2018, 25, 152–166. [Google Scholar] [CrossRef]
- Shi, Y.; Lau, K.K.-L.; Ren, C.; Ng, E. Evaluating the local climate zone classification in high-density heterogeneous urban environment using mobile measurement. Urban Clim. 2018, 25, 167–186. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Clim. 2013, 34, 1062–1080. [Google Scholar] [CrossRef]
- Ochola, E.M.; Fakharizadehshirazi, E.; Adimo, A.O.; Mukundi, J.B.; Wesonga, J.M.; Sodoudi, S. Inter-local climate zone differentiation of land surface temperatures for Management of Urban Heat in Nairobi City, Kenya. Urban Clim. 2020, 31, 100540. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology—A case study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ren, C.; Xu, Y.; Wang, R.; Ho, J.; Lau, K.K.-L.; Ng, E. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Clim. 2018, 24, 419–448. [Google Scholar] [CrossRef]
- Jan, G.; Michal, L. GIS-based delineation of local climate zones, the case of medium-sized Central European cities. Morav. Geogr. Rep. 2016, 24, 2–12. [Google Scholar]
- Levlovics, E.; Gál, T.; Unger, J. Mapping local climate zones with a vector-based GIS method. Aerul Şi Apa Componente Ale Mediului. 2013, 230–423. [Google Scholar]
- The World Urban Database and Access Portal Tools. Available online: www.wudapt.org (accessed on 2 October 2019).
- Ren, C.; Wang, R.; Cai, M. The Accuracy of LCZ maps Generated by the World Urban Database and Access Portal Tools (WUDAPT) Method: A Case Study of Hong Kong. Urban Heat Island 2016, 210–223. [Google Scholar]
- Wang, R.; Ren, C.; Xu, Y.; Lau, K.K.-L.; Shi, Y. Mapping the local climate zones of urban areas by GIS-based and WUDAPT methods: A case study of Hong Kong. Urban Clim. 2018, 24, 567–576. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; Fritz, S.; Stewart, I.D. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Cai, M.; Wang, R. Local Climate Zone (LCZ) Classification Using the World Urban Database and Access Portal Tools (WUDAPT) Method: A Case Study in Wuhan and Hangzhou. Urban Heat Islands 2016, 56–67. [Google Scholar]
- Perera, N.; Emmanuel, R. A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Clim. 2018, 23, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Gál, T.; Bechtel, B.; Lelovics, E. Comparison of two different Local Climate Zone mapping methods. Int. Conf. Urban Clim. 2015, 342–351. [Google Scholar]
- Davenport, A.; Grimmond, C.; Oke, T. The revised Davenport roughness classification for cities and sheltered country. In Proceedings of the 15th conference on probability and statistics in the atmospheric sciences/12th conference on applied climatology, Ashville, NC, USA, 8–11 May 2000; pp. 14–18. [Google Scholar]
- Xu, E.Y.; Ren, C.; Cai, M.; Edward, N.Y.Y.; Wu, T. Classification of Local Climate Zones Using ASTER and Landsat Data for High-Density Cities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Tsunematsu, N.; Yokoyama, H.; Honjo, T.; Ichihashi, A.; Ando, H.; Shigyo, N. Relationship between land use variations and spatiotemporal changes in amounts of thermal infrared energy emitted from urban surfaces in downtown Tokyo on hot summer days. Urban Clim. 2016, 17, 67–79. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Wang, R.; Cai, M.; Ren, C.; Bechtel, B.; Xu, Y.; Ng, E. Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone. Urban Clim. 2019, 28, 100455. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.C.; Li, X.; Wang, S. Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Tan, P.Y.; Bin Ismail, M.R. Building shade affects light environment and urban greenery in high-density residential estates in Singapore. Urban For. Urban Green. 2014, 13, 771–784. [Google Scholar] [CrossRef]
- Kotharkar, R.; Bagade, A. Local Climate Zone classification for Indian cities: A case study of Nagpur. Urban Clim. 2018, 24, 369–392. [Google Scholar] [CrossRef]
Indicators | Data | Calculation |
---|---|---|
BH | Building Data | BH = Sum of building height/building number |
BSF | Building Data | BSF = building area/building number |
SVF | Building Data | SVF = Sum of SVF/Number of measuring points |
SAR | Building and road data | Average street width = Street area/street length SAR = Average building height/Average street width |
TR | Building and Landsat 8 | Davenport classification |
VCR | Landsat 8 | ENVI |
ISF | Landsat 8 | ENVI |
PSF | Landsat 8 | Perviousness = 1 − Imperviousness |
Roughness Grade | Z0(m) | Type | Representative Form |
---|---|---|---|
1 | 0.0002 | sea level | Open sea and lake, snow plain, flat desert, tarmac, etc. |
2 | 0.005 | smooth | Beach, marsh, frozen water, snow, etc. |
3 | 0.03 | open | Low plants, grazing grass, airstrips, etc. |
4 | 0.10 | Relative open | Agricultural areas with low plants (crops), open rural areas, suburban open residential areas that are relatively separated and spaced at least 20 times the building height |
5 | 0.25 | rough | Buildings with tall plants (crops), scattered and spaced 8 to 12 times the building height |
6 | 0.5 | Very rough | Jungle, orchard, grove, low-rise building with no more than 3 to 7 times space |
7 | 1.0 | smooth | Mature and regular forests, high-density built-up areas and small changes in building height |
8 | ≥2 | chaos | Mixed low-rise and high-rise buildings in urban centers, large areas of forests, mixed areas of irregular height and open space |
Season | Data | Date | Cloud |
---|---|---|---|
Spring | Landsat 8 | 2018–04–08 | 1.3 |
Summer | Landsat 8 | 2017–07–26 | 15.08 |
Autumn | Landsat 8 | 2017–10–30 | 6.36 |
Winter | Landsat 8 | 2018–02–03 | 13.7 |
Standard LCZ Class | New LCZ Class | ||||
---|---|---|---|---|---|
Built-up LCZ | LCZ-1 Compact high-rise | LCZ-2 Compact multi-floor | LCZ-3 Compact low-rise | LCZ-2′ Compact middle-rise | |
BH: ≥36 m | BH: 12–18 m | BH: 3–9 m | BH: 14–33 m | ||
BSF: 40–60% | BSF: 40–70% | BSF: 40–70% | BSF: 40–70% | ||
SVF: 0.2–0.4 | SVF: 0.3–0.6 | SVF: 0.2–0.6 | SVF: 0.3–0.6 | ||
SAR: > 2 | SAR: 0.75–2 | SAR: 0.75–1.5 | SAR: 0.75–2 | ||
ISF: 40–60% | ISF: 30–50% | ISF: 20–50% | ISF: 30–50% | ||
PSF: <10% | PSF: <20% | PSF: <30% | PSF: <20% | ||
VCR: <10% | VCR: <20% | VCR: <30% | VCR: <20% | ||
TR: 8 | TR: 6–7 | TR: 6 | TR: 6–7 | ||
LCZ-4 Open high-rise | LCZ-5 Open middle-rise | LCZ-6 Open low-rise | LCZ-34 Compact low-middle-rise mixed | ||
BH: > 36 m | BH: 12–18 m | BH: 3–9 m | BH: 3–33 m | ||
BSF: 20–40% | BSF: 20–40% | BSF: 20–40% | BSF: 40–70% | ||
SVF: 0.5–0.7 | SVF: 0.5–0.8 | SVF: 0.6–0.9 | SVF: 0.3–0.6 | ||
SAR: 0.75–1.25 | SAR: 0.3–0.75 | SAR: 0.3–0.75 | SAR: 0.75–2 | ||
ISF: 30–40% | ISF: 30–50% | ISF: 20–50% | ISF: 30–40% | ||
PSF: 30–40% | PSF: 20–40% | PSF: 30–60% | PSF: 30–40% | ||
VCR: 30–40% | VCR: 20–40% | VCR: 30–60% | VCR: 30–40% | ||
TR: 7–8 | TR: 5–6 | TR: 5–6 | TR: 7–8 | ||
LCZ-7 Lightweight low-rise | LCZ-8 Large low-rise | LCZ-9 Sparsely built | LCZ-8B Large low-rise mixed with plant | ||
BH: 3–9 m | BH: 3–9 m | BH:3–9 m | BH: 3–9 m | ||
BSF: 60–90% | BSF: 30–50% | BSF:10–20% | BSF: 30–50% | ||
SVF: 0.2–0.5 | SVF: >0.7 | SVF:>0.8 | SVF: >0.6 | ||
SAR: 1–2 | SAR: 0.1–0.3 | SAR:0.1–0.25 | SAR: 0.1–0.3 | ||
ISF: <20% | ISF: 40–50% | ISF: <20% | ISF: 40–50% | ||
PSF: <30% | PSF: <20% | PSF: 60–80% | PSF: 20–40% | ||
VCR: <30% | VCR: <20% | VCR: 60–80% | VCR: <20% | ||
TR: 4–5 | TR: 5 | TR: 5–6 | TR: 5 | ||
Land cover LCZ | LCZ-A Dense trees | LCZ-B Scattered trees | LCZ-C Scrub | LCZ-D Low plants | |
ISF: <10% | ISF: <10% | ISF: <10% | ISF: <10% | ||
PSF: >90% | PSF: >90% | PSF: >90% | PSF: >90% | ||
TR: 8 | TR: 5–6 | TR: 4–5 | TR: 3–4 | ||
VCR:>90% | VCR:>90% | VCR:>90% | VCR:>90% | ||
BSF: <10% | BSF: <10% | BSF: <10% | BSF: <10% | ||
LCZ-E Bare paved | LCZ-F Bare soil | LCZ-G Water | |||
ISF: >90% | ISF: <10% | ISF: <10% | |||
PSF: <10% | PSF: >90% | PSF: >90% | |||
TR: 1–2 | TR: 1–2 | TR: 1 | |||
VCR: <10% | VCR: <10% | VCR: <10% | |||
BSF: >90% | BSF: <10% | BSF: <10% |
Reference Data | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCZ-1 | LCZ-2 | LCZ-2′ | LCZ-3 | LCZ-34 | LCZ-4 | LCZ-5 | LCZ-6 | LCZ-7 | LCZ-8 | LCZ-8B | LCZ-9 | LCZ-A | LCZ-B | LCZ-C | LCZ-D | LCZ-E | LCZ-F | LCZ-G | User Accuracy (%) | User Accuracy Variance | ||
Classification Data | LCZ-1 | 5 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 50.00 | 0.33 |
LCZ-2 | 2 | 32 | 9 | 0 | 6 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 62.75 | 0.13 | |
LCZ-2′ | 0 | 9 | 18 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56.25 | 0.17 | |
LCZ-3 | 2 | 1 | 5 | 53 | 3 | 0 | 0 | 12 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 67.95 | 0.10 | |
LCZ-34 | 1 | 1 | 0 | 3 | 11 | 0 | 5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 45.83 | 0.20 | |
LCZ-4 | 2 | 0 | 0 | 0 | 0 | 12 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 66.67 | 0.22 | |
LCZ-5 | 0 | 0 | 0 | 0 | 4 | 0 | 25 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 1 | 71.43 | 0.15 | |
LCZ-6 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 68 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 5 | 0 | 0 | 1 | 81.93 | 0.08 | |
LCZ-7 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 21 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 70.00 | 0.17 | |
LCZ-8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 55.56 | 0.34 | |
LCZ-8B | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 3 | 47 | 2 | 0 | 0 | 1 | 2 | 1 | 0 | 0 | 74.60 | 0.11 | |
LCZ-9 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 0 | 2 | 72 | 0 | 7 | 16 | 6 | 1 | 0 | 0 | 65.45 | 0.09 | |
LCZ-A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 50.00 | 0.44 | |
LCZ-B | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 1 | 1 | 0 | 0 | 2 | 50 | 24 | 7 | 0 | 0 | 0 | 54.35 | 0.10 | |
LCZ-C | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 21 | 82 | 5 | 0 | 0 | 0 | 66.67 | 0.08 | |
LCZ-D | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 4 | 1 | 3 | 43 | 0 | 0 | 0 | 76.79 | 0.11 | |
LCZ-E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 80.00 | 0.39 | |
LCZ-F | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 27 | 0 | 84.38 | 0.13 | |
LCZ-G | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 66.67 | 0.22 | |
Weights | 10 | 51 | 32 | 78 | 24 | 18 | 35 | 83 | 30 | 9 | 63 | 110 | 6 | 92 | 123 | 56 | 5 | 32 | 18 | |||
Producer Accuracy (%) | 41.67 | 66.67 | 52.94 | 80.30 | 40.74 | 75.00 | 64.10 | 66.67 | 84.00 | 55.56 | 90.38 | 94.74 | 12.50 | 60.24 | 59.42 | 60.56 | 44.44 | 93.10 | 80.00 | |||
Producer Accuracy Variance | 0.24 | 0.11 | 0.14 | 0.09 | 0.16 | 0.19 | 0.12 | 0.07 | 0.14 | 0.28 | 0.08 | 0.05 | 0.11 | 0.09 | 0.07 | 0.09 | 0.25 | 0.09 | 0.19 | |||
Portmanteau Accuracy (%) | 98.63 | 96.00 | 96.57 | 95.66 | 96.69 | 98.86 | 97.26 | 94.40 | 98.51 | 99.09 | 97.60 | 95.20 | 97.26 | 91.43 | 88.91 | 95.31 | 99.31 | 99.20 | 98.97 | |||
Portmanteau Accuracy Partial (%) | 29.41 | 47.76 | 37.50 | 58.24 | 27.50 | 54.55 | 51.02 | 58.12 | 61.76 | 38.46 | 69.12 | 63.16 | 11.11 | 40.00 | 45.81 | 51.19 | 40.00 | 79.41 | 57.14 | |||
Overall Accuracy | 67.31% | |||||||||||||||||||||
Kappa | 0.65 |
LCZ Map | UA (LCZ-34) | OA | Kappa |
---|---|---|---|
Version 1 | 45.83% | 67.31% | 0.65 |
Version 2 | 67.12% | 69.54% | 0.67 |
Season | Class | Difference | Standard Error of Difference | Lower CL | Upper CL | Significance |
---|---|---|---|---|---|---|
Spring | LCZ8-LCZ8B | 3.02 | 0.36 | 1.33 | 2.80 | 0.000 |
Summer | LCZ8-LCZ8B | 3.29 | 0.39 | 0.97 | 2.41 | 0.000 |
Autumn | LCZ8-LCZ8B | 1.94 | 0.23 | 0.73 | 1.65 | 0.000 |
Winter | LCZ8-LCZ8B | 1.09 | 0.13 | 0.20 | 0.73 | 0.000 |
Spring | LCZ3-LCZ34 | 3.19 | 0.38 | 1.06 | 2.61 | 0.000 |
Summer | LCZ3-LCZ34 | 2.19 | 0.26 | 1.24 | 2.31 | 0.000 |
Autumn | LCZ3-LCZ34 | 3.27 | 0.39 | 2.15 | 3.74 | 0.000 |
Winter | LCZ3-LCZ34 | 1.17 | 0.14 | 0.26 | 0.83 | 0.000 |
Spring | LCZ2-LCZ2′ | 1.97 | 0.23 | −1.12 | −0.16 | 0.000 |
Summer | LCZ2-LCZ2′ | 2.41 | 0.29 | −1.00 | 0.16 | 0.073 |
Autumn | LCZ2-LCZ2′ | 2.67 | 0.32 | −0.01 | 1.27 | 0.000 |
Winter | LCZ2-LCZ2′ | 1.60 | 0.19 | −0.67 | 0.10 | 0.059 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zheng, B.; Hu, Y. Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China. Sustainability 2020, 12, 2974. https://doi.org/10.3390/su12072974
Chen Y, Zheng B, Hu Y. Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China. Sustainability. 2020; 12(7):2974. https://doi.org/10.3390/su12072974
Chicago/Turabian StyleChen, Yaping, Bohong Zheng, and Yinze Hu. 2020. "Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China" Sustainability 12, no. 7: 2974. https://doi.org/10.3390/su12072974
APA StyleChen, Y., Zheng, B., & Hu, Y. (2020). Mapping Local Climate Zones Using ArcGIS-Based Method and Exploring Land Surface Temperature Characteristics in Chenzhou, China. Sustainability, 12(7), 2974. https://doi.org/10.3390/su12072974