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Abstract: As a sustainable and cleaner type of facility, prefabricated buildings face more design
barriers than traditional non-prefabricated buildings. Identifying and managing these barriers is key
to improving the success rate of prefabricated building design. However, direct studies on these
design barriers are extremely rare. The present study solved this problem by combining multiple
methods, including grounded theory (GT), structured self-intersection matrix (SSIM), analytic network
process (ANP), and the linear weighted sum method (LWSM). GT was adopted to identify the barriers
to prefabricated building design and then SSIM was used to analyze the interactions among them.
The eight design barriers were finally identified and classified into three clusters: technical barriers,
economic barriers, and management barriers. A further analysis found that there is dependence
and feedback among these clusters. The technical barrier cluster and management barrier cluster
experience self-feedback. A network model based on ANP was next established to calculate the
weights of the barrier elements and then this model was combined with LWSM to evaluate the overall
design barrier strength of a project case. The results showed that architectural individualization has
the greatest impact on prefabricated building design, followed by the collaborative issues among
multiple units and professional designer issues. The overall design barrier strength of the project case
was larger. Therefore, the first suggestion provided to the facility management sector is to establish a
library for standard house types to achieve architectural design through multihouse combinations.

Keywords: prefabricated buildings; design barriers; overall design barrier strength;
facility management

1. Introduction

Since prefabricated buildings have contributed greatly to the global fight against the new
coronavirus “COVID-19”, they have again attracted global attention. Prefabricating buildings has
long been considered a sustainable practice in the architecture, engineering, and construction (AEC)
industries [1], and involves moving a partially finished building from a construction site into a controlled
component factory [2]. Other terms related to prefabricated buildings include prefabrication [3],
industrialized buildings [4], precast buildings [5], prefabrication techniques [6], prefabricated
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construction [7], and off-site construction [8]. Whether emergency-driven or market-driven,
prefabricated buildings are becoming increasingly popular. However, several barriers affecting
the development of prefabricated buildings are often mentioned, including a higher total cost [9],
impaired aesthetics [10], additional risks [11], a lack of professional expertise [12], and the absence of
management experience [13]. Nevertheless, prefabricated buildings are still favored by the government
of China due to their many advantages, including their faster construction speed [14], less required
on-site labor [15], higher construction quality [16], sustainable development [17], and superior
occupational health and safety [18]. With the development of prefabricated buildings, some new
issues are beginning to emerge and become increasingly prominent, especially the design changes of
prefabricated buildings. Bogenstatter noted that the design stage determines up to 80% of operational
costs, as well as the environment impacts [19,20]. Hence, design changes can waste a great deal of
time and money and even affect the quality of buildings. Overcoming this issue remains a troubling
prospect for industry insiders and researchers.

Design changes are common not just for ordinary buildings but also for prefabricated buildings.
However, the design of a prefabricated building involves more units and professions than that of
a standard building. The design unit needs more assistance from the manufacturing unit and the
construction unit when it carries out the design of a prefabricated building. Design for manufacture
and assembly (DFMA) is a tool for improving prefabricated design [21–23]. DFMA is a lean principle
and advocates that the design of a unit should consider the requirements of other units during the
prefabricated building design. The technological and economic feasibility of product manufacturing
and assembly are the aim of DFMA [24]. In real life, it is difficult for these multiple units to be gathered
to discuss the related design work due to geographical constraints. Hence, identifying the basic design
barriers in advance is essential to enhance the success rate of prefabricated building design. We found
via a literature review that specialized research on prefabricated building design barriers is relatively
lacking. The required data can only be mined from partially relevant literature. Montali et al. [25]
presented a series of challenges in facade design: the intrinsic interdependence of the design process,
manufacturability information challenges, and a lack of multiobjective optimization and predictive
design. Zhang et al. [26] summarized some hindrances to prefabrication design, including a long
design time, a lack of design change flexibility, few available codes and standards, a lack of experienced
designers, and the absence of management experience. Wu et al. [27] listed the design-related risks
in prefabricated buildings: an insufficient consideration of supply chain conditions, the insufficient
experience of architects and engineers, poor interdisciplinary design coordination, and a lack of
standards and codes. According to Arditi et al. [28] and Polat [29], a lack of expertise in precast concrete
systems may lead to poor design. Rahman [30] listed some design-related obstacles when studying the
barriers of Modern Methods of Construction (MMCs), including a lack of experience and skills, fewer
available codes, inflexible late design changes, and inadequate coordination.

Compared to other countries, China’s building market is extremely large and active. According to
the data from the Ministry of Housing and Urban–Rural Development of the People’s Republic of
China (MOHURD), the proportion of the newly built prefabricated building area to the newly built
building area will be no less than 20% by 2020. Moreover, prefabricated multifamily buildings are
mainstream in China. Hence, this paper focused on the prefabricated building market in China to
develop a barrier analysis and study the strength measurements for prefabricated building design.
Firstly, this paper selected and partially improvec the required theoretical methods. Secondly, these
theoretical methods were used to identify and analyze the design barriers. Thirdly, a new network
model based on the previous methods was established to calculate the weights of the identified barriers.
Fourthly, a new mathematical model is proposed to measure the overall design barrier strength of a
project. Finally, the detailed results, discussions, conclusions, and future work are presented. This
research is intended to provide some new ideas and references for architectural design units not only
in China, but also for other countries with similar situations.
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2. Research Methodology

The research methodology was determined by the characteristics of the questions being studied.
The study on design barriers for prefabricated buildings has the following characteristics: (1) few
directly or indirectly related studies, (2) more professional factors, (3) closer to project practice, and
(4) dependence between the design barriers. Considering these characteristics, the required methods
included grounded theory (GT), a structured self-intersection matrix (SSIM), the analytic network
process (ANP), and the linear weighted sum method (LWSM). GT was selected to identify and cluster
the barriers towards prefabricated building design. SSIM was adopted to determine the interactions
among these barriers. ANP was used to calculate the weight of each barrier. LWSM was used to
calculate the overall design barrier strength of a prefabricated building project. There is a logical
relationship between these methods.

2.1. GT-SSIM Method

Grounded theory (GT) is a qualitative research method proposed by Strauss and Glaser in 1967 [31],
which is suitable for studies with little related research. Given the paucity of directly related studies
on the present topic, GT was selected to identify the barriers for prefabricated building design. GT
establishes a theory on the basis of empirical data and does not require theoretical assumptions at the
beginning of the research [32]. The basic process of GT includes discovering the problem, collecting
data, analyzing the data to establish a preliminary theory, verifying the theoretical saturation, and
forming a final theory [33]. Figure 1 shows the detailed mechanism of the GT-SSIM method. This
figure includes two subsystems: a processing subsystem and a technology subsystem. The technology
subsystem expresses the relationship among the technologies adopted in the process subsystem.
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(GT-SSIM) method.

As shown in Figure 1, GT allows for diverse data collection. This makes it very suitable for
newer research. Open coding, axial coding, and selective coding are the core of GT [34]. Open coding
conceptualizes and categorizes the collected data to obtain all subcategories. Axial coding summarizes
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several categories from among all subcategories and clarifies the relationships between each category.
Selective coding further summarizes a central category from the above categories and then integrates
those categories via diagrams or storytelling memos. Finally, a theoretical saturation test is carried
out. If it passes the test, the theory is feasible. Otherwise, the above steps are repeated. The paradigm
model for axial coding of GT only requires authors to determine the relationships between concepts
and categories. This approach, however, is subjective. In order to add the objectivity of relationship
judgments, domain experts are more suitable than the authors themselves. The time taken for expert
judgment should not be short or too long in order to acquire more real and accurate data from the
domain experts. The judgment process should avoid repetitive work as soon as possible to ensure
the ongoing energy and patience of the experts. A structured self-intersection matrix (SSIM) meets
all these requirements. Hence, SSIM was adopted to replace the subsequent steps of GT. In SSIM,
four symbols are used to denote different relationships between two barriers [35,36]: V means that a
certain barrier I will influence another barrier j but that j will not influence i; A means that barrier j will
influence barrier i but that i will not influence barrier j; X means that barriers i and j will influence each
other; and O means that barriers i and j are unrelated.

2.2. ANP-LWSM Method

The analytic network process (ANP) method proposed by Saaty entails a coupling of the
control hierarchy and network hierarchy [37,38]. The control hierarchy includes objective criteria or
subcriteria [39]. These criteria (or subcriteria) are independent of each other, and their weights can
be calculated via the analytic hierarchy process (AHP). The network hierarchy consists of elements
and clusters. There may be some dependence or feedback among these elements (or clusters). Hence,
AHP is no longer suitable for calculating their weights. The power of ANP lies in its use of ratio
scales to capture various interactions and make accurate decisions [40]. We assumed that the network
hierarchy had m clusters (namely C1, C2, . . . ,Cm). The unweighted super matrix W, weighted super
matrix W, and limited super matrix W

∞

are calculated by equations (1), (2), and (3), respectively [41].
Wij indicates the effect of the elements in Ci on the elements in Cj, while aij indicates the weight of Ci

compared to Cj.

W =
(
Wij

)
m×m

=


W11 · · · W1m

...
. . .

...
Wm1 · · · Wmm

 (1)

W =
(
Wij

)
m×m

=
(
aijWij

)
m×m

(2)

W
∞

= lim
t→∞

W
t

(3)

After identifying and ranking the design barriers, the overall design barrier strength of a
prefabricated building project was measured. Since the linear weighted sum method (LWSM) is
an objective optimization method suitable for scheme evaluation [42], the measurement model was
established based on LWSM. For the overall design barrier strength f, see equation (4), where xi is the
score of barrier i, and wi is the weight of barrier i.

f =
n∑

i=1

(xi ×ωi) xi = 1, 2, · · · , 5&0 ≤ ωi ≤ 1 (4)

3. Barrier Identification and Relationship Judgement

3.1. GT-Based Barrier Identification

The design barriers for prefabricated buildings will be endless if they are subdivided. In addition,
the relative independence among these barriers cannot be ensured. Given the feasibility of this study,
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these barriers should be collected as much as possible and then systematically clustered. GT is suitable
for achieving this task.

The design of prefabricated buildings involves multiple units, including the owner, the design
unit, the construction unit, and the manufacturing unit. Moreover, there are fewer relevant data
and qualified respondents for such buildings compared to non-prefabricated buildings. Hence, it
is unfeasible to collect the required data by sending out a large number of questionnaires. In order
to obtain the required data, more attention should be paid to the diversity of data sources. Several
approaches, including a literature review, a semistructured in-depth interview, an expert consultation,
and project investigation, were adopted to collect and perfect the required data. During the literature
review, a large amount of research literature was browsed by fuzzy retrieval. The search terms
included barrier, barrier-like words, design, design-like words, prefabricated buildings, and many
others. However, after careful reading, only five journal articles [25–30] and two online articles were
ultimately selected for their valuable content. By reviewing the previous files on three prefabricated
building projects, some practical relevant content was found and recorded. During the semi-structured
in-depth interview and expert consultation, many experts were invited. Four of these experts agreed
to accept face-to-face interviews, while the other two only provided online consultations due to their
geographical distance. All related content was then combined. Since this content was in both Chinese
and English, the number of words was not easy to count. Moreover, the amount of the content was
too large to be displayed one by one. Hence, Table 1 only shows the portions of the open coding.
According to the standardized process of “data, labeling, conceptualization, and categorization” in
open coding, eight subcategories were extracted, including technical maturity issues, professional
designer issues, limitations of professional knowledge, architectural individualization, funding issues,
interest concerns among multiple units, internal management issues, and collaborative issues among
multiple units.

Table 1. Parts of open coding in GT.

Raw Data Labeling Conceptualization Categorization

For prefabricated buildings, a traditional
design is not enough, and an in-depth

process design is required. . . . The barrier
to current fabricated architectural design is

that the standardized design is relatively
poor (aa1).

aa1. Standardized design is
relatively low

a1. Low
standardized design

A1. Architectural
individualization

Determining the optimal design by
considering the difficulty of manufacturing,

logistics, and on-site installation, rather
than producing the drawings alone (aa2).

aa2. Considering
manufacturing, logistics, and

on-site installation
during design

a2. Collaboration among
multiple units

A2. Collaborative issues
among multiple units

. . . . . . . . . . . .
Lack of standards for modular members

that can be adopted consistently in design
and construction across projects (aa5). . . .
Lack of a well-established design code or

standard for the joints to connect with
modular components on-site (aa6). . . . . . . .
Insufficiently developed regulations and

policies to promote OSC (aa7).

aa5. Lack of standards for
modular members

aa6. Lack of a well-established
design code or standards

for joints
aa7. Insufficiently developed

regulations and policies

a5. Lacking policies and
design code

A5. Technical
maturity issues

. . . . . . . . . . . .

Axial coding is a process of cluster analysis that uses a few main categories to represent many
subcategories. Technical barriers, economic barriers, and management barriers were extracted from
the eight subcategories according to the two dimensions of attributes and logic. Selective coding was
adopted to extract the core category of “barriers in prefabricated building design” from the three
main categories. After open coding, axial coding, and selective coding, a new theory was generated,
as shown in Table 2. This theory includes the core category, main categories, subcategories, and a
description. In classical GT, theoretical saturation is verified by raw data reserved in advance. If the new
data no longer generate extra categories, then the theory tends to become saturated. The files provided
by another two prefabricated building projects were conceptualized and categorized according to
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the standard process of GT. The results showed that new categories were not discovered. Therefore,
the theory in Table 2 is saturated.

Table 2. Barrier systems affecting prefabricated building design.

Core Category Main Categories Subcategories Description of Subcategories

Barriers for prefabricated
building design

Technical barriers (T)

Technical maturity issues (T1)

Prefabricated technology is still relatively
new and immature, and some design
standards and norms are imperfect or

even lacking.

Professional designer
issues (T2)

Prefabricated buildings require detailed
designs, but professional designers are
scarce, and/or their design experience

is insufficient.

Limitations of professional
knowledge (T3)

The process of prefabricated building
design involves multiple units and
professions, but it is impossible for

designers to master all types of knowledge.

Architectural
individualization (T4)

Some prefabricated buildings pursue
individualization, which leads to a low

level of design standardization.

Economic barriers (E) Funding issues (E1)
Insufficient funds required by the design

unit during the prefabricated
building design.

Interest concerns among
multiple units (E2)

Units often provide guidance for
prefabricated building designs based on

their own interests.

Management barriers (M)
Internal management

issues (M1) Management issues of the design unit itself.

Collaborative issues among
multiple units (M2)

Coordination and cooperation between
design units and other units during

prefabricated building design.

3.2. SSIM-Based Relationship Judgment

The relationships and weights of the prefabrication design barriers should be determined by
designers with relevant experience. A one-to-one judging method was selected instead of anonymous
questionnaires. The one-to-one contact method has several advantages over anonymous questionnaires:
(1) the qualifications of the experts can be guaranteed; (2) direct communication between the interviewer
and interviewee can be achieved; (3) subsequent feedback is available when the expert opinions are
largely inconsistent; (4) more accurate responses and other valuable information can be obtained. Five
of the six experts in GT and fifteen new experts were invited to one-to-one interviews. Although all
twenty experts provided preliminary judgments, fifteen of them were ultimately selected according
to one-on-one communication at the time, alongside later feedback. For information on the fifteen
experts, see Table 3. Five of the experts agreed to be interviewed and make judgments face to face,
while the other fifteen only engaged in online judgments one-to-one. Experts who engage in structural
design (among four roles) accounted for a maximum of 60.00%. Experts with more than five years
of experience accounted for 73.33%. Experts participating in more than ten prefabricated projects
accounted for 60.00%. Hence, the qualifications of these experts were acceptable.

Table 3. Information regarding the fifteen experts.

Roles of Experts Percent Years of Experience
in Prefabrication Percent Numbers of

Prefabrication Projects Percent

Detailed design 20.00 1~5 26.67 1~10 40.00
Architectural design 13.33 6~10 46.67 11~20 26.67

Structural design 60.00
>10 26.67

21~30 13.33
Research and
development 6.67 >30 20.00

Inconsistencies among experts emerged when judging the dependence between the identified
design barriers. Currently, there are two known principles for dealing with this phenomenon: the
principle of “the minority gives way to the majority” [43,44] and the principle of “the error is within
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the allowable range” [45,46]. Since the error value in SSIM is not easy to calculate, the principle of “the
minority gives way to the majority” was adopted here. The statistical results were sent to some experts
with divergent perspectives to request their opinions. After several rounds of improvement, the final
results are shown in Table 4.

Table 4. Structured self-intersection matrix for design barriers.
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ANP consists of control hierarchy and network hierarchy. A network model based on ANP was
established to calculate the weights of the design barriers, as shown in Figure 2. This model only
shows the structure of the network hierarchy. The elements of the network hierarchy include technical
maturity issues, professional designer issues, limitations of professional knowledge, architectural
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In order to design a simple and effective questionnaire, it was necessary to determine the
dependence between the relevant barriers. The statistical results of intercluster dependence are
shown in Table 5, and the statistical results of interelement dependence are shown in Table 6. If
the count of a cell in Table 5 is greater than 0, then the corresponding comparison item must be set
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in the questionnaire. By contrast, when the count of a cell in Table 6 is greater than 1 instead of 0,
the corresponding comparison item can only be set in the questionnaire. This questionnaire was
designed according to SuperDecisions, and the relevant content is attached in Appendix A.

Table 5. Statistical results of intercluster dependence.
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4.2. Calculation of Barrier Weights

ANP does not require a large amount of sample data. Hence, the data provided by fifteen
qualified experts is enough for the network model. The questionnaire itself has the function of data
rationality testing: one test is a random consistency ratio test, and the other is a ranking error test.
The unweighted super matrix, weighted super matrix, and limit super matrix of each questionnaire
were automatically calculated by the software SuperDecisions to obtain the ANP ranking. If the error
between the ANP ranking and the approximate ranking of a barrier in a questionnaire exceeds two,
then the expert corresponding to the questionnaire needs to be contacted again. Kendall’s W test is
suitable for assessing the degree of consensus among different experts [47]. The values of this test range
from 0 to 1 [48], and values higher than 0.7 indicate an acceptable degree of consensus [49]. Hence,
Kendall’s W test was used as a consistency test among the different questionnaires. If the tests within
the questionnaire and between the questionnaires failed, the summary results were fed back to the
experts with diverging perspectives to obtain their opinions. In order to complete all tests as quickly
as possible, data processing followed the principle of “less obey most” as much as possible during the
multiple feedbacks. After multiple rounds of feedbacks and calculations, the value of Kendall’s W
was determined to be 0.891, which was greater than 0.7. The final weights of each barrier cluster and
element are the average of all questionnaires (see Table 7).
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Table 7. Weights of each barrier cluster and element.

Clusters Weights Elements Weights Ranking

Technical barriers (T) 0.6285

Technical maturity issues (T1) 0.1027 5
Professional designer issues (T2) 0.1471 3

Limitations of professional
knowledge (T3) 0.0597 6

Architectural individualization (T4) 0.3190 1

Economic barriers (E) 0.1494
Funding issues (E1) 0.0401 7

Interest concerns among multiple
units (E2) 0.1093 4

Management barriers
(M) 0.2221

Internal management issues (M1) 0.0288 8
Collaborative issues among multiple

units (M2) 0.1932 2

4.3. Measurement of Barrier Strength

Although the weight of each design barrier has been determined, each barrier’s occurrence
likelihood and severity may vary between different prefabricated building projects. For a prefabricated
building project, it is sometimes necessary to assess its overall design’s barrier strength. The linear
weighted sum method (LWSM) was used to calculate the overall barrier strength of a prefabricated
building design. The key to LWSM is to select an evaluation set. A Likert scale served as the evaluation
set in many previous studies [50,51]. Hence, it was adopted here to measure the severity of each design
barrier: 1, 2, 3, 4, and 5 represent very weak, weak, medium, strong, and very strong, respectively [52].
The calculation principle is shown in Equations (5) and (6). W is a weight vector and R is the average
scoring vector of n experts. f is the overall design barrier strength of the project. The value of f is
limited to between 1 and 5. The higher the value, the greater the barrier strength encountered during
the prefabricated building design, and vice versa.

f = W×R = [ω1,ω2, · · · ,ω8] × [r1, r2, · · · , r8]
T (5)

ri = (ri1 + ri2+, · · · , rin) ÷ n i = 1, 2, · · · , 8 (6)

4.4. Case Evaluation

A case study with detailed information is an effective way to simulate and test the established
methodology. A prefabricated building project is under construction in Nanjing, China. It is a large
project for improving the lives of the community residents. Some basic data on the project were
obtained with the help of a project member, and the plane layout of the floor is shown in Figure 3.
The gross floor area of this project is over 35000 m2, and the capacity building area above ground is
about 20600 m2. The planning height limit is no more than 60 m. This project features an assembled
monolithic frame structure with an overall assembly rate of no less than 40% divided into three
construction areas: A, B, and C. Construction area A includes two floors underground and three floors
above ground. Construction area B includes two floors underground and eleven floors above ground.
Construction area C consists of two floors underground and four floors above ground. The building’s
designed working life is 50 years.
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A brief consultation was conducted with the above project member. Although some design
barriers appeared during the project design, they were not specifically measured. Hence, three experts
involved in the project design were further invited to evaluate the severity of each barrier. The
corresponding questionnaire is attached in Appendix B. The final score of each barrier was calculated
according to the average scores of the three experts, as shown in Table 8. The overall barrier strength of
this project is 3.6244. This is an early warning signal that should be taken seriously by the design unit.

Table 8. Average value of the severity of each barrier.

Barrier Elements Average Value of Expert Judgments

Technical maturity issues (T1) 2.6667
Professional designer issues (T2) 3.3333

Limitation of professional knowledge (T3) 2.0000
Individualization of architecture (T4) 4.3333

Funding issues (E1) 2.6667
Interest concerns among multiple units (E2) 3.0000

Internal management issues (M1) 3.0000
Collaborative issues among multiple units (M2) 4.3333

5. Results and Discussion

5.1. The Relationship and Importance Analysis of Design Barriers

This study identified eight barrier elements affecting prefabricated building design using GT
and analyzed the dependence among these barrier elements via SSIM. Technical maturity issues
and professional designer issues influence each other. Meanwhile, technical maturity issues are also
influenced by architectural individualization. Collaborative issues among multiple units are influenced
by internal management issues, funding issues, interest concerns among multiple units, as well as the
limitations of professional knowledge. In addition, funding issues are also influenced by collaborative
issues. The eight barrier elements were further classified into three clusters according to their respective
attributes: the technical barrier cluster, the economic barrier cluster, and the management barrier
cluster. Compared to the economic barrier cluster, the technical barrier cluster and management barrier
cluster experience self-feedback.

The barrier prioritization towards prefabricated building design was implemented by ANP. In the
three aforementioned clusters, we found that the technical barrier cluster is the most important,
the management barrier cluster is the second most important, and the economic barrier cluster is third.
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The corresponding weights were 0.6285, 0.2221, and 0.1494, respectively. Hence, our study suggests
that solving the technical barrier cluster is the key to improving the success rate of prefabricated
building design by a large margin. In the eight barrier elements, architectural individualization had a
maximum weight of 0.3190. This shows that architectural individualization is the most important factor
hindering the success rate of prefabricated building design. In addition, architectural individualization
is not conducive to the development of professional technology and its designers. Hence, architectural
standardization should be taken seriously, including standard components, house types, and processes.
Collaborative issues among multiple units came second. According to the feedback from experts,
the collaborative issues between design units and owners are a priority. Professional designer issues,
interest concerns among multiple units, and technical maturity issues ranked third, fourth, and fifth,
respectively. The importance of technical maturity was reduced here, which may be related to the
development time of prefabricated buildings. Technical maturity was a key factor hindering the
development of prefabricated buildings in previous studies [53]. Professional designer issues are also
related to the development times of prefabricated buildings. As time increases, the importance of
professional designer issues will be further weakened. Limitations of professional knowledge, funding
issues, and internal management issues ranked sixth, seventh, and eighth, respectively. The importance
of these three barriers was very weak, so their management should require fewer resources.

5.2. Strength Analysis of Design Barriers

This study further establishes a mathematical model for measuring the overall design barrier
strength of a prefabrication project. Considering the collection difficulty of project cases and their
corresponding designers, only one project case was obtained. Some barriers were encountered during
the project design. The results of the three experts’ scores indicate that the project faces serious
architectural individualization and collaborative issues among multiple units. Professional designer
issues, interest concerns among multiple units, and internal management issues tend to be medium
in terms of their severity. Only technical maturity issues, limitations of professional knowledge, and
funding issues are less severe. The overall barrier strength, 3.6244, was closer to 4 than 3. This value
means that the overall barrier strength was greater. In order to reduce the overall design barrier
strength more effectively, architectural individualization and collaborative issues among multiple units
should be given priority in the process of solving the eight barriers.

6. Conclusions and Future Work

This study identified the eight barriers affecting prefabricated building design and classified these
barriers into technical barrier clusters, economic barrier clusters, and management barrier clusters via
grounded theory (GT). Then, this study analyzed the dependence among these barriers via a structured
self-intersection matrix (SSIM). We determined that the technical barrier cluster and management barrier
cluster present self-feedback. Based on the above, this study established a ANP-based network model
to calculate the weight of each design barrier. Architectural individualization is the most important
barrier during prefabricated building design, followed by the collaborative issues among multiple
units and professional designer issues. In addition, this study further established a mathematical
model that can measure the overall design barrier strength of a prefabrication project. The evaluation
results of the project case show that the overall design barrier strength is greater. These findings will
provide a reference for members of the facility management sector (especially those in the design unit)
engaged in prefabricated buildings and improve the success rate of prefabricated building design.

Architectural individualization is crucial to improving people’s lives. Although it cannot be
eliminated, its adverse effects can be weakened in other ways. Based on the results of further
investigations and consultations, our first suggestion is to establish a library of standard house types
to achieve architectural design via multihouse combinations. This library will consist of standard
houses, standard components, and design codes. The individual demands of owners will be met
through the permutation and combination of standard houses. The second suggestion is to create a
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cross-professional collaboration platform and increase the training for professional designers. Since
building information modeling (BIM) possesses the characteristics of visualization, coordination,
simulation, optimization, and parameterization, it should be used to assist in the realization of the
library, platform, and training. For example, the facility management sector (especially the design unit)
could establish a BIM-based collaboration platform.

Since this study is relatively new, these established theories and findings will provide reference
and guidance for architectural design units in China and other countries with similar situations.
The influence of labor unions in these countries is relatively weak or even ignored, so unions were not
included in the barrier system. One limitation of this study is that we could only use one project case
and its corresponding three designers due to the difficulty of data collection. In this study, we also
found that technical maturity issues and professional designer issues are related to time. The time of
the study may have an impact on the weights of these barriers. Hence, the number of project cases and
the impact of time may be a direction for future research.
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Appendix A

Dear expert:
Hello! Changes in prefabricated building designs are common, which greatly reduces the

success rate and quality of such designs. This survey aims to rank the barriers affecting prefabricated
building design. We hereby promise that all questions in this questionnaire will maintain your
work confidentiality and personal privacy. This study is only for academic research purposes, not
commercial purposes.

(1) Please fill in your basic information in Table A1.

Table A1. Basic information for the expert.

Position Role Years of Experience in Prefabrication Number of Prefabrication Projects

(2) All design barriers and their explanations (omitted).
(3) Please approximately rank the barriers in Table A2.

Table A2. Ranking of design barriers.

Ranking 1 2 3 4 5 6 7 8
Barriers

Note: 1 to 8 indicate a decreasing level of importance.

(4) Pairwise comparison of barrier importance.
The following Table A3, Table A4, Table A5, Table A6, Table A7, are used to determine the

importance of barriers. Values 1, 3, 5, 7, and 9 represent equal importance, slightly important, more
important, very important, and extremely important, while 2, 4, 6, and 8 represent the intermediate
values (Please put “

√
” in the corresponding cells in the tables. For research purposes, the cluster
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“alternative” and the element “a project” are, by default, absolutely important, so the “
√

” is placed in
advance at the corresponding position (9)).

(4.1) Comparison between clusters

Table A3. Cluster comparisons with respect to “alternatives”.

Clusters 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Clusters
Technical
barriers

Management
barriers

Technical
barriers

Economic
barriers

Management
barriers

Economic
barriers

Table A4. Cluster comparisons with respect to technical barriers.

Clusters 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Clusters
Technical
barriers

√
Alternatives

Technical
barriers

Management
barriers

Alternatives
√ Management

barriers

Table A5. Cluster comparisons with respect to economic barriers.

Clusters 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Clusters

Alternatives
√ Management

barriers

Table A6. Cluster comparisons with respect to management barriers.

Clusters 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Clusters

Alternatives
√ Management

barriers

Alternatives
√ Economic

barriers

Management
barriers

Economic
barriers

(4.2) Comparison between elements

Table A7. Element comparisons with respect to “a project”.

Elements 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 Elements
Limitations of
professional
knowledge

Professional
designer issues

Limitations of
professional
knowledge

Architectural
individualization

Limitations of
professional
knowledge

Technical
maturity issues

Professional
designer issue

Architectural
individualization

Professional
designer issues

Technical
maturity issues

Architectural
individualization

Technical
maturity issues

Internal
management issues

Collaborative
issues between
multiple units

Interest concerns
among

multiple units
Funding issues
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Appendix B

Dear expert:
Hello! Changes in prefabricated building designs are common, which greatly reduces the success

rate and quality of such designs. We have identified some barriers affecting the success rate of
prefabricated building design. Please evaluate this prefabricated building project based on these
identified barriers.

(1) All design barriers and their explanations (omitted).
(2) Questions and expert judgments.
According to your experience, please determine the severity of the following design barriers

during the project design (Please put “
√

” in the corresponding cell in the Table A8 below).

Table A8. Severity evaluation of the design barriers for the project case.

Design Barrier Elements
Level (1 very weak, 2 weaker, 3 medium, 4 stronger,

5 very strong)
1 2 3 4 5

Technical maturity issues

Professional designer issues

Limitations of professional knowledge

Architectural individualization

Funding issues

Interest concerns among multiple units

Internal management issues

Collaborative issues between multiple units
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