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Abstract: Field Programmable Gate Array (FPGA) is widely used in real-time network processing
such as Software-Defined Networking (SDN) switch due to high performance and programmability.
Bit-Vector (BV)-based approaches can implement high-performance multi-field packet classification,
on FPGA, which is the core function of the SDN switch. However, the SDN switch requires not only
high performance but also low update latency to avoid controller failure. Unfortunately, the update
latency of BV-based approaches is inversely proportional to the number of rules, which means can
hardly support the SDN switch effectively. It is reasonable to split the ruleset into sub-rulesets that can
be performed in parallel, thereby reducing update latency. We thus present SplitBV for the efficient
update by using several distinguishable exact-bits to split the ruleset. SplitBV consists of a constrained
recursive algorithm for selecting the bit positions that can minimize the latency and a hybrid lookup
pipeline. It can achieve a significant reduction in update latency with negligible memory growth and
comparable high performance. We implement SplitBV and evaluate its performance by simulation
and FPGA prototype. Experimental results show that our approach can reduce 73% and 36% update
latency on average for synthetic 5-tuple rules and OpenFlow rules respectively.

Keywords: SDN switch; Packet Classification; update latency; Bit-Vector; FPGA

1. Introduction

Software-Defined Networking (SDN) [1] satisfies both flexibility and programmability for routers.
SDN separates the control plane (named controller) and data plane (named switch) of routers.
OpenFlow [2] is deployed in SDN as a de facto standard, which defines the communication mechanism
and message format between the controllers and the switches [3]. SDN controllers have a necessary
demand on SDN switches that the control commands must be transmitted timely and executed
efficiently, namely update performance guarantees.

The SDN switches use lookup tables with match-action rules to enforce the forwarding strategy,
which is essentially a multi-field packet classification problem [2]. Commands issued by the SDN
controllers usually become regular rule update operations (insert, delete, and modify) for the lookup
tables (called rulesets). Recently, the research topic puts more emphasis on achieving both fast packet
classification and fast rule updates. Ternary Content Addressable Memory (TCAM) has been widely
adopted in the industrial field [4,5] for enabling line-speed classification. Despite that, TCAM has the
significant disadvantages of capacity-limited, power-hungry, and invalid for range-match [5–7]. Field
Programmable Gate Array (FPGA) has been recognized as a promising alternative in real-time network
processing applications [8–10]. Due to its high performance with flexible reconfigurability, FPGA
is increasingly being utilized for accelerating SDN software switches [11,12]. Decision-tree-based
algorithms [13–16] and Tuple-Space-Search (TSS) algorithms [17–20] are two major approaches
implemented on the CPU/GPU platform. However, the characteristics of these algorithms conflict
with FPGA devices and cannot be effectively migrated to FPGA. Bit-Vector-based (BV-based)
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algorithms [21–25] exploit hardware parallelism of FPGA and easily achieve line-speed classification
performance. In particular, the state-of-the-art research TPBV [24] and further optimized WeeBV [25,26]
have implemented microsecond-level data structure updates on the hardware pipeline by using
self-reconfiguration processing elements.

Unfortunately, the worst-case latency of completing one update operation by the above
researches [24–26] is unbearable, which is crucial for SDN controllers. It has been confirmed that most
flows are small in SDN [27], which generate plenty of new rules that needed to be updated. Excessive
latency of the update operation raises two serious problems: (1) process pressure of the control plane
caused by accumulative new packets [28]; (2) losing packets on the forwarding plane, which has a
destructive impact on latency-sensitive applications [29].

In this paper, we present SplitBV to ensure as small latency as possible for high-performance
SDN switches on FPGA. SplitBV selects several distinguishable exact-bits to split the ruleset into
independent sub-rulesets without rule replication. These diminutive sub-rulesets can be implemented
parallelly in BV-based pipelines, thus reducing update latency tremendously. Moreover, the update
and lookup processes between different pipelines do not conflict with each other, which further reduces
the damage of rule updates to classification performance. Our contributions in this work include:

• A novel architecture for packet classification, SplitBV. SplitBV divides the ruleset into independent
sub-rulesets and uses BV-based pipelines to match the sub-rulesets in parallel.

• A recursive splitting algorithm based on greedy sorting, SplitAL. SplitAL first determines the searching
steps of matching fields based on greedy strategy and then employs a constrained recursive
algorithm to resolve the problem of exponential computational complexity.

• A hybrid matching pipeline on FPGA, SplitHP. SplitHP contains a hash element for mapping
different sub-rulesets into different two-dimensional pipeline consisted of processing elements
(PEs, proposed in [24])).

We generate synthetic 10K 5-tuple rules and OpenFlow1.0 rules from well-known ClassBench [30]
and the lastest ClassBench-ng [31] to evaluate our scheme. It is reasonable to choose rules around
10K since recent researches [32,33] have validated against dozens of thousands of rules. Experimental
results show that SplitBV reduces the update latency by average 37% and 41% compared with TPBV
on the two typical rulesets respectively.

The rest of the paper is organized as follows. Section 2 reviews the background and discusses
problem of this paper. Section 3 surveys and analyses prior works. In Section 4, we detail our scheme.
The hardware architecture is proposed in Section 5. We present experimental results in Section 6.
Finally, the paper is concluded in Section 7.

2. Background

2.1. Multi-Field Packet Classification

Packet classification can be defined as: Given a ruleset consisted of N rules and an input packet
header consisted of F fields, find all the rules matching the packet header and export the highest
priority rule. Each rule is an individual predefined entry used for classifying a packet stream, which is
associated with a unique rule ID (RID), a priority and an action. A packet header matches a rule, which
means that matches all matching fields of the rule.

Classical packet classification contains five matching fields: Source IP Address, Destination
IP Addres, Source Port, Destination Port, and Protocol. Each matching field has a different match
type. For OpenFlow, classical packet classification is transformed into multi-field packet classification.
OpenFlow1.0 has 12 matching fields, while version 1.5.1 extends to 45 matching fields. Besides,
the multi-field packet classification in OpenFlow has the following characteristics: (1) more rules,
to support fine-grained management of SDN controllers; (2) faster rule update, caused by plenty of
short streams in SDN. Packet classification for SDN switches should achieve both high-performance
and low update latency.
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2.2. Rule Updates on SDN Switch

SDN divides the function of the router into two parts: controller and switch. Figure 1 shows
a regular router model that uses FPGA acceleration. A controller is typically implemented on the
CPU platform to generate policies for new packets. The switch on FPGA usually consists of three
modules: Parser, Packet Classification (Classific.), and Action. The Parser module takes head messages
from the input packet as a key. Packet Classification is the core module, which uses the key to match
the rule with the highest priority from the ruleset, and then transport results to the Action module
for execution. A new packet generates a miss that will be uploaded to the controller, and then the
controller dispatch the corresponding rule update into the Packet Classification module.

From the beginning of the first miss generation, continuously arriving packets will generate
misses successively until the new rule is configured on the data plane. It is worth noting that the new
rule entering the data plane will not take effect immediately. The controllers calculate a new rule at
the microsecond level, while the data plane completes the update configuration at the millisecond
level [34]. Excessive latency will accumulate plenty of misses for controller, resulting in a sharp
decline in controller performance. Excessive latency will accumulate plenty of misses for the controller,
resulting in a sharp decline of controller performance [28]. Meanwhile, massive miss-route packets on
the data plane can seriously affect latency-sensitive applications [29].

ActionParser

rule update 

miss

Controller

Packet
Classific.

control plan

data plan

Switch FPGA

Figure 1. An example of SDN controller and switch with FPGA.

3. Prior Works

3.1. Packet Classification Algorithms

Packet classifications recently can be divided into two main categories: RAM (Random Access
Memory)-based algorithmic solutions and TCAM (Ternary Content Addressable Memory)-based
solutions [3,35]. Each storage unit in TCAM can have three different types of states: {0, 1, and *},
and TCAM can search all rules in parallel in a single lookup cycle. TCAM suffers high cost and high
power consumption, and hard to perform range matching [3]. Anat Bremler-Barr et al. proposed gray
code [36] and layered interval code [37] to enable TCAM support range matching at the cost of entry
explosion. Thus in practice, the number of range fields is severely limited.

Decision-tree-based approaches [13–15] analyze all fields in a ruleset to construct decision trees for
packet classification. Tree depth and rule duplication in a decision tree affect the searching efficiency
and memory requirement of one implementation. Also, the state-of-the-art CutSplit [16] can hardly
make an excellent trade-off among storage, performance, and updating,

Tuple space solutions (TSS) [17,18] leverage the fact that the number of distinct tuples is much
less than that of rules in a ruleset. TSS can insert or delete rules from distinct tuples in amortized one
memory access, resulting in high update performance. However, with the growing field number in a
ruleset, both tuple number and tuple size increase. A longer processing latency could be expected.
PartitionSort [19] reduces average lookup times by presenting a pre-computed priority for each tuple
space, but there is no guarantee of its worst-case performance. The further TupleMerge [20] relaxes
the rule’s restrictions on entering the same tuple to reduce the number of tuples. However, too many
tuples merging can lead to hash conflicts, which can seriously affect performance.
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3.2. BV-Based Solutions Analyses

The BV-based approaches split matching fields (e.g., source IP address) into L
s sub-fields

(s (1� s� L) denotes the length of a sub-field, and L denotes the length of total matching fields).
A bit-vector (BV) of length N is used to represent the matching result of N rules on a sub-field;
usually, N is the number of the entire ruleset. Each bit of BV corresponds to a rule, with 0 for
success and 1 for failure. When performing AND operations on L

s BVs of all sub-fields, the matching
result of the ruleset for the input packet is obtained. FSBV [22] is a particular case where s is 1,
which creates bit-level sub-field partitioning. StrideBV [23] increases s for enhancing performance.
The state-of-the-art TPBV [24] divides a ruleset into N

n sub-rulesets for improving the scalability on
large rulesets. WeeBV [26] further reduces the memory consumption of TPBV but damages rule
updates on the hardware.

To support large-scale ruleset and ensure performance, TPBV implements a two-dimensional
pipeline consisted of processing elements (PEs) and priority encoders (PrEncs) on FPGAs [24]. Each PE
is responsible for matching a sub-field and is self-reconfigurable. However, the increasing number of
rulesets forces the pipeline array to expand, which severely affects update latency. Figure 2 shows the
worst-case update latency of TPBV, where parameters s and n are the best scheme in [24]. The update
latency of TPBV consists of two parts: (1) propagation time, the time from entering the pipeline to
finding the updated location; (2) processing time, the time from the execution of the updated instruction
at the updated location to the new rule effective. It can be seen from Figure 2 that propagation time
has a significant impact on update latency.

128 512 1K 2K 5K 10K
Rule Number

0
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µ
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Latency
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ProcessTime

Figure 2. The worst-case latency of TPBV in [24] with s = 4 and n = 8.

An matching example of TPBV is illustrated in Figure 3a. A bit-vector BVi
Kj is used to represent

the matching result of Kj for the corresponding matching sub-fieldj of the sub-ruleseti. The values
of BVi

Kj can be calculated by algorithms in [23]. In this example, parameter s determines that each
horizontal pipeline has two PEs ( L

s = 4
2 =2), and parameter n determines that there are two horizontal

pipelines ( N
n = 6

3 =2). The propagation path of packet header is: PE[0, 0] → {PE[0, 1], PE[1, 0]} →
{PrEnc[0], PE[1, 1]} → {PrEnc[1]}. If the update location is in PE[1, 1], the update command have to
wait 2 clock cycles for propagating.

The parameters s and n are generally related to the characteristics of the FPGA devices used.
In general, each FPGA has its fixed s and n to achieve maximum performance. This means that the
"number of layers" of a two-dimensional pipeline is related to the size of the ruleset, in other words,
a larger ruleset causes a larger propagation time. We note that the exact-bits in the rules can be used
to split the ruleset. As shown in Figure 3b, selecting the first bit in the rule as the split-bit, ruleset
can be divided into two sub-rulesets {R0, R1, R4}, and {R2, R3, R5}. With the same s and n, the two
sub-rulesets correspond to two independent pipelines, respectively. In particular, the input packet
head will enter only one pipeline according to 1st bit. If the 1st bit of input packet is 1, the rules in
the previous sub-ruleset {R0, R1, R4} must not be matched. Therefore, these two pipelines can handle
updates and matches concurrently. In this case, the propagation time of the entire pipeline is reduced
to half of its original value. Based on the above observation, we are motioned to reduce propagation
time to reduce rule update latency.
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Figure 3. A matching example of TPBV for a 4-bit ruleset with s = 2 and n = 3.

4. Proposed Scheme

4.1. Ideas and Architecture

As mentioned above, our proposed SplitBV divides the whole ruleset into different sub-ruleset by
selecting several specific bit locations. Notice that there is no rule replication between these sub-rulesets.
Rule replication brings two problems: more memory consumption and the challenge of rule updates.
If a rule exists in more than one sub-ruleset, it will result in multiple rule updates. Rule replication
occurs when there is a wildcard in the selected location. Given the selected bit positions, the candidate
rules that are exact bits at these positions constitute a sub-rule set.

Figure 4 shows the architecture of SplitBV. The splitting of ruleset can be divided into F steps (F is
the number of matching fields). Each step corresponds to a field partition process because the rules
have different characteristics in different matching fields. Ideally, the original ruleset can find p bit
positions on one field, Splitting all rules into a HASH table of 2p table items. In this case, only one step,
sub− ruleset1 needs to be executed, which is the original ruleset. Each item in a HASH table contains
rules that are looked up using TPBV-pipeline [24]. However, it is often difficult to find such a bit
position in a single field. Because the rules are not usually accurate in all fields, that is, in some fields
is a full wildcard match. To avoid rule replication, SplitBV tries to partition the ruleset in different
fields. It is a noteworthy fact that no rule can be a full wildcard match on all fields. Therefore, up to
F sub-rulesets can be obtained from the original ruleset without rule replication. At the same time,
for each sub-ruleset, at least one-bit position can be found to generate a HASH table. Each item
corresponds to the TPBV pipeline responsible for matching N(i,j) rules.Moreover, if the number of
remaining rules is less than the minimum size of the HASH table (2× n), then we can directly use
TPBV for matching without splitting.
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Figure 4. The architecture of SplitBV.
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The worst-case propagation time of SplitBV = L
s + dMax(N(i,j))

n e − 1. This is because the TPBV
pipelines corresponding to the different HASH tables can be matched in parallel. For a HASH table,
the input packet will enter only one TPBV pipeline corresponding to a table item. Therefore, in order
to minimize the latency, of SplitBV, especially propagation time, it is necessary to find a field selection
order and a bit location scheme on each field to minimize Max(N(i,j)).

4.2. Brute Force Strategy

We first define the following variables: the total number of rules N, the total length of all matching
fields L, and the number of matching fields F. An alternative combination consists of two parts:
the matching field selection order and the bit position selection on each field. Given an alternative
combination, the original ruleset can be quickly split, and the propagation time can be easily calculated.
In order to get the combination of minimal propagation time, the brute force strategy is to find out
all possible alternative combinations and then calculate each alternative combination. The selection
order of matching fields is a sequential arrangement problem, and there are a total of F! matching
arrangement schemes. For matching fields with matching length of fi, p (1 � p � fi) bits can be
randomly selected. Formula 1 gives the total number of selected location combinations.

Combp( f ieldi) = Cp=1
fi

+ Cp=2
fi

+ · · ·+ Cp= fi
fi

= 2 fi (1)

Given a matching field order permutation StepList, formula 2 gives the total number of selected
position combinations on F matching fields. Therefore, the brute force strategy must calculate the
values of F! ∗ 2L schemes, and then select the optimal solution through the sorting algorithm. This kind
of computational complexity is obviously unbearable.

F

∏
i=0

Combp( f ieldi) = 2 f1 × 2 f2 × · · · × 2 fF = 2L (2)

4.3. Split Algorithm

Notice that the two parts of an alternative combination are in sequence. Therefore, we first try
to determine the near-optimal matching field selection order quickly and then propose a constrained
recursive algorithm to find all the bit position combination schemes.

4.3.1. Distinguish by field

We use Dis to denote the distinguishability of a field, and formula 3 gives the calculation function
of Dis. Pre f ixKind represents the number of different prefixes of the original rule set in the current
field, and the prefix consists of three characters. The greater the distinguishability of a field, the more
precise specific locations can be found in this field. Meanwhile, it also means that these exact bit
positions can be used to build a HASH table, where each table item contains as small a set of rules as
possible. We adopt the idea of greedy choice: calculate the distinguishable for each field, and then give
StepList in descending order.

Dis( f ieldi) =
Pre f ixKind

N
(3)

4.3.2. Select-Bits Combination

There is a noteworthy fact that wildcards in prefix matching appear continuously and must
appear after exact bits. We adopt a simple strategy that we select consecutive pi (1 � pi � fi) bits
starting from the first bit of f ieldi for the sub-rulesets. Even with the above strategy, the total number
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of bit location selection combination is still exponential, and formula 4 gives the upper limit (derived
by inequality of arithmetic and geometric means).

F

∏
i=0

Combcontinuous_p( f ieldi) = f1 × f2 × · · · × fF � (
L
F
)

F
(4)

In order to further reduce the number of alternatives and approach the optimal solution as much
as possible, we propose a recursive algorithm SelectBits with constraints. Algorithm 1 shows the
pseudo-code of the SelectBit algorithm. SelectBits recurses the matching fields in StepList sorted by
Dis in descending order from beginning to end. In particular, line 8 of SelectBits gives constraints to
reduce the number of recursions. CurRuleSet.num indicates the number of rules currently waiting to
be partitioned. Each table item in, HASH table is expected to have at least n rules. For f ieldi, the pi
needs to satisfy: 2pi × n � CurRuleSet.num ⇔ pi � log2

CurRuleSet.num
n . In our tests, we found that

log2
CurRuleSet.num

n is usually much less than fi, which greatly reduces the number of recursions. For the
10K rules, the average computing percentage ( Search times

Rule number ) of the 5-tuple rule is 1.18% (0.85% of ACL,
2.13% of FW, and 0.55% of IPC), and the average computing percentage of the OpenFlow1.0 (12-tuple)
rules is 2.37%. Line 2 gives the conditions for recursive termination: (1) all fields have been searched
stepped by StepList; (2) the number of remaining rules is less than the minimum size of the HASH
table (2× n, when p = 1), and then set p = 0 and return. In addition, considering that the greedy
strategy of StepList may lead to a locally but bot globally optimal solution, line 18 allows skipping
of f ieldi that currently cannot be effectively partitioned. Skipping all fields is obviously the wrong
solution, and line 3 excludes this situation.

Algorithm 1 SelectBits

Input: The list of field information, FieldList The list of index of FieldList sorted in descending order
of Dis, StepList; The current remaining rules for searching, CurRuleSet; The current value of step,
CurStep; The list of pi on each field, PList The number of cluster, n;

Output: The global set of combination of pi on each field, G_ResultSet;
1: function SELECTBITS(CurRuleSet,CurStep,CurMax,PList)
2: if CurStep > F or CurRuleSet.num < 2× n then
3: if PList is all −1 then . return
4: end if
5: Add PList+[0] to G_ResultSet . return
6: end if
7: fi = FieldList[CurStep].len
8: for p = 1 to MIN( fi, log2

CurRuleSet.num
n ) do

9: for rule in CurRuleSet do
10: if no wildcard in rule[1 : p] then
11: Add rule to HASHp[rule[1 : p]]
12: end if
13: end for
14: if HASHp has empty item then
15: if CurRuleSet.num� CurMax then
16: Add PList+[0] to G_ResultSet . return
17: else
18: SelectBits(CurRuleSet, CurStep + 1, CurMax, PList + [−1]) . return
19: end if
20: else
21: Remove HASHp.allrules in CurRuleSet
22: CurMax = MAX(CurMax, HASHp.max)
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23: SelectBits(CurRuleSet, CurStep + 1, CurMax, PList + [p])
24: end if
25: end for
26: end function

4.4. A Example

Table 1 gives an example of a ruleset that contains 12 rules for two matching fields, with the
cluster parameter n. First, we calculate Dis(Field1) = 3

4 and Dis(Field2) = 1
2 . The selection order

of matching field is [Field1, Field2]. First, the ruleset is divided on the Field1. According to line 8
of the SelectBits algorithm, the optional range of p1 is 1 and 2. When p1 = 1, the ruleset is divided
into sub− ruleset1 = {0 : {R0, R3, R6, R8}, 1 : {R1, R2, R5, R10, R11}} and sub− ruleset2 = {R4, R7, R9}.
Then the remaining sub − ruleset2 is divided on Field2, and the search will be stopped since the
number of remaining rules is less than 2 × n = 6. Therefore, the bit position selection scheme
Cb1 = [1, 0] for p1=1 (0 meaning that the remaining rules are not split in Field2 after the Field1

selection), and dMax(N(i,j))

n e = d 5
3e = 2. In the same way, the bit location selection scheme Cb2 = [2, 0] for

pendant 2 is divided into sub− ruleset1={00 : {R0, R3}, 01 : {R6, R8}, 10 : {R1, R5, R11}, 11 : {R2, R10},
sub− ruleset2 = {R4, R7, R9}, and dMax(N(i,j))

n e=d 3
3e = 1. It can be seen that Cb2 has less propagation

time than Cb1. However, 4 horizontal pipelines will be used for Cb1 with the given parameter n, while 5
horizontal pipelines will be used for Cb2. It is necessary to make a trade-off between propagation time
and increasing memory consumption caused by pipeline expansion.

Table 1. An example of ruleset with two fields for n = 3.

RID Field1 Field2

R0 0010 11
R1 1001 0 *
R2 1110 10
R3 0000 **
R4 **** 1 *
R5 1001 10
R6 0101 1 *
R7 **** 00
R8 0100 0 *
R9 **** 00
R10 1101 0 *
R11 1011 1 *

* denotes the wildcard bit.

5. Hardware Design

5.1. Hybrid SplitHP

We propose a hybrid two-dimensional pipeline to implement SplitBV, named SplitHP on FPGA.
The SplitHP consists of two stages, the first stage is composed of the splitting elements (SEs),
and the second stage is composed of several horizontal two-dimensional pipelines composed of
PEs and PrEncs.

Figure 5 shows an example of the hardware framework of SplitHP for Figure 3b. In the first
stage, each SE-pi corresponds to a sub-ruleset, obtained by splitting on f ieldi with pi bits. SE-pi
associates different rules corresponding to 2pi items of the HASH table to different horizontal pipelines
subsequently. In the second stage, the rules in each table item are matched using a two-dimensional
pipeline implemented by TPBV. Note that, partitioning the ruleset changes the original order of
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rules, but does not affect the correctness of the final match results. PrEnc [23] reports a local highest
priority match, which does not limit the order in which rules are arranged. The final match result
is collected by the vertical pipeline of the priority encoders. The input packet header will be sent
to all SE-pis in the first stage in parallel, while the entire ruleset is matched to obtain the correct
result. The two-dimensional pipelines corresponding to a SE-pi are isolated and independent, that is,
the packet header will only enter one of the two-dimensional pipelines and only one PrEnc will output
a valid matching result. We use a multiplexer (MUX) to integrate the matching results of the SE-pi
and send it to PrEnc in the bottom horizontal pipeline. As mentioned in Section 3.1, the worst-case
propagation time of SplitHP depends on Max(N(i,j)). In Figure 5, PrEnc[4] executes one clock cycle
ahead of PrEnc[1]. We adopt a simple strategy that the PrEnc in the bottom horizontal pipeline waits
until all the matching results are received.
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Figure 5. Hardware framework of SplitHP for Figure 3b.

The detailed design of the main elements in SplitHP is described below and shown in Figure 6.

5.1.1. Splitting Element (SE)

There are two types of SE: SE-0 and SE-pi. SE-0 is usually used only in the bottom horizontal
pipeline and is responsible for matching the remaining sub-ruleset (the number of rules is less than
2× n). SE-pi is used to find the corresponding item of the HASH table for the packet header. The SE-pi
contains the following components: (1) Controller, is responsible for extracting split-bits from packet
header; (2) DMUX, one or multi-level demultiplexer for outputting packet header to the corresponding
pipeline. Figure 6b,c show the SE with pi equals 1 and 2, respectively. When pi is greater than 1,
multi-level DMUX is used to satisfy 2p

i table items. Research has shown that multi-level small DMUX
can provide higher performance than a large DMUX [38].
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Figure 6. Various elements of SplitHP. (a) SE-0; (b) SE-1; (c) SE-2; (d) PE in [26].

5.1.2. Process Element (PE)

Considering the simplicity of implementation, we reused the PE in [26]. In particular, for the
two-dimensional pipeline corresponding to each item of the SE, the packet header is transmitted in the
horizontal direction in sequence only in the uppermost horizontal pipeline. Then, the packet header is
propagated to the next horizontal pipeline at the same time every other clock cycle.

5.2. Update Strategy

Rule update can be seen as three operations: modification, insertion, and deletion. The controller
component in PE can automatically configure the writable memory according to update commands.
In addition, valid-bit is used to support fast deletion [24]. We follow the strategy of reuse, where
inserts are processed at the location of invalid rules.

Delete and Modify. To delete a rule is to set the valid-bit of the rule to 0. The BV that PE fetches
from memory will be ANDed with valid-bits, and invalid rules will not be matched. A modification
can be divided into a deletion and an insertion at the same location.

Insert. For inserts, the controller component of PE can convert the new rules into the entire BV
table and rewrite the memory component. The main difficulty is whether an invalid rule can be found
in the corresponding table item. Plenty of short streams in SDN also means frequent invalidation of
rules, which generates increasing deletion operations. Therefore, finding an invalid rule is easy. In the
worst case, SE may need to be refactored, which can be quickly resolved by using FPGA technology
DPR(Dynamic Partial Reconfiguration) [39,40].
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6. Evaluation

6.1. Experimental Setup

Synthetic classifiers: To test the performance of our scheme and prior art, we generate the 5-tuple
rules by the well-known ClassBench [30] and the OpenFlow1.0(OF) rules (with 12 fields) by the
inherited ClassBench-ng [31]. In our experiments, the 5-tuple rules we have used contain Accesses
Control List (ACL), Firewall (FW) and IP Chain (IPC). The seed files from real-life 5-tuple rules and a
data-center can make the performance as close to practice as possible.

Implementation platform: We implement the SplitHP with an Intel Arria II GX
EP2AGX65DF25C4 FPGA, which consists of 4.35Mb Block RAM, 50,600 Combinational ALUTs,
and 51336 logic registers. The splitting algorithm is implemented by software and runs on a machine
with Intel Xeon E5-3650 CPU and Ubuntu 16.04 LTS operation system.

Parameter selection: There are two key parameters s and n in TPBV, which will affect the update
delay of the hardware pipeline and the memory footprint of the BV vector table. In order to make a
fair comparison with TPBV, we choose the best parameter given in [24], that is, swatches 4 and 8.

6.2. Split-Bits Trade-Off

As mentioned in Section 4.3, SplitBV will lead to the expansion of the hardware pipeline when
choosing the location of dividing bits. This is because the selection bit length p is increased so that
the propagation time reduces the number of items in the HASH table and increases at the same time.
Because each table item corresponds to at least one horizontal pipeline, the total number of pipelines
implemented by SplitBV hardware increases. We used 12 different seed files (5 kinds of ACL,5, 5 kinds
of FW, 2 kinds of IPC, 2 kinds of OF) to generate 10 K rules for evaluation.
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Figure 7. Tradeoff of SelectBits for the different rulesets.
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Due to limited space, Figure 7 shows the tradeoff of running split-algorithm only on rule sets
generated by four different types of representative seed files. In terms of a clock cycle, we give the
expansion multiple of the number of horizontal pipelines of the combined scheme represented by
propagation time, pipeline expend compared with the number of horizontal pipelines of the original
TPBV. We arrange all the alternatives in the ascending order of the propagation clock cycle.

As can be seen from Figure 7, both metrics are generally in line with an exponential rise (or
decline). Because the SelectBits algorithm allows you to skip a field, where two propagation clock
cycles are close to each other, there may also be a big difference in pipeline expend. The best solution
is near the intersection of the trend curves of the two metrics.

6.3. Update Latency

We measured the worst-case update latency for TPBV and SplitBV, respectively. The update
delay in the worst case is an important index to evaluate the performance and reliability of the SDN
switch. We assume that the clock rate of the FPGA implementation is the usual 100 MHz, then the
clock cycle is 10ns. Figure 8 shows the update delay comparison between SplitBV and TPBV. SplitBV
reduces update latency by an average of 73%, 74%, 65% and 36% for ACL, FW, IPC, and OpenFlow1.0,
respectively. In particular, it is an accepted fact that SDN can achieve 42,000 rules updates per
second [34]. This means that the update delay must be controlled at a subtle level of 20. The results in
Figure 8 show that SplitBV meets the update latency requirements under SDN for various rulesets of
the order of magnitude of 10 K.
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Figure 8. Comparison of latency and memory for the different rulesets.
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6.4. Memory Consumption

We also measured the memory footprint of SplitBV and TPBV. The limited Block Memory on FPGA
severely limits the scalability of BV-based approaches. A large number of BV tables must be stored to
support fast parallel matching on the hardware pipeline. Considering that our implementation of PE
is not consistent with the details in the original text, we only compare the memory footprint of the BV
table. Figure 8 also shows the comparison of SplitBV’s best scheme with the original TPBV. The data
on the red column is a multiple of memory expansion. SplitBV increases memory consumption
by an average of 1.00137, 1.00149, 1.00266 and 1.00385 times for ACL, FW, IPC, and OpenFlow1.0,
respectively. That is because SplitBV requires more pipelines than the original TPBV. In other words,
the cost of reducing update latency is the expansion of memory consumption. Fortunately, the increase
of memory is acceptable.

6.5. Resource and Throughput

Limited by hardware resources, we tested an additional simple prototype system on FPGA for
36 rules. The size of the Block Memory of the FPGA we use is m9K, which is equal to 9× 1024 =

9× 29 bits. Therefore, we set parameter s = 9 and n = 36 so that each PE has two memory blocks. In this
way, TPBV only needs one horizontal pipeline, and SplitBV has a maximum of 2 SEs. Table 2 shows
the resource consumption and performance of TPBV and SplitBV, and there are three schemes for
SplitBV to be tested. Scheme Cb1, Cb2 and Cb3 represent the first SE with 1, 2 and 3 levels of DMUXs,
respectively. For level i, SE− i connects 2i horizontal pipelines. Considering that a small number of
rules can lead to wasted memory, we are more concerned with logical resource overhead. We use Clock
Rate to reflect throughput. SplitBV increases the number of horizontal pipelines, so logical resources
increase accordingly. Table 2 shows that the increase in the number of DMUX series in SE results in
linear growth of logical resources without significantly compromising performance.

Table 2. Resource consumption and performance for s = 9 and n = 36.

ALUTs Registers Clock Rate
Number Number (MHz)

TPBV [24] 848 2501 158.63
SplitBV Cb = 1 1512 4421 152.0
SplitBV Cb = 2 1979 5873 145.45
SplitBV Cb = 3 3200 9379 145.33

7. Conclusions

In this paper, we present a scheme named SplitBV to support diminutive update latency of
SDN switch while ensuring high throughput processing performance. SplitBV splits the ruleset
into independent sub-rulesets without rule replication by several distinguishable exact-bits. SplitBV
then utilizes BV-based pipelines to parallelly match these sub-rulesets. Besides, SplitBV utilizes a
constrained recursive algorithm, which is used to determine the near-optimal bit-position combination
schemes. A two-stage hybrid pipeline called SplitHP is proposed to implement SplitBV on FPGA.
SplitHP uses the DMUX to send packet header to different pipelines and uses MUX to integrate
the final matching results. Experimental results show that SplitBV has an excellent update latency
reduction on both 5-tuple and OpenFlow rulesets. Moreover, SplitBV brings negligible memory growth
but maintain comparable high performance. As our future work, we will improve SplitBV from the
following aspects: (1) test MUX and DMUX model for large-scale ruleset; (2) improve splitting element
with DPR technology.
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