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Abstract: In this paper on the analysis of the vertical distribution of different-diameter dust aerosols
and the potential impacts on East Asia, the sensitivity simulation tests of dust aerosols during 2002–03
were conducted by changing the underlying surface on the Qinghai-Tibet Plateau in the global
atmospheric circulation model Community Atmosphere Model (CAM) 3.1. The results show that
dust aerosol particles in East Asia are mainly distributed in the diameters of 0.64–5.12 µm. The high
concentrations of dust aerosols are centered on the surface in the source areas and gradually raised
during the eastward transport across East Asia, reaching a height of 4 km at 120◦ E. The small dust
particles with diameters less than 1.28 µm are transported higher and farther driven by the midlatitude
westerlies. The Qinghai-Tibet Plateau desertification leads to increasing concentrations of dust aerosols
in all size bins and raisesthe transport height of dust aerosols in East Asia. The long-range transport
in the East Asian troposphere is dominated by dust aerosols particles of diameters 0.64–2.56 µm, as
well as a large contribution of dust aerosols with diameters larger than 1.28 µm.

Keywords: climate model; desertification of Qinghai-Tibet Plateau; dust aerosol; particle diameter

1. Introduction

Dust aerosol is a major type of natural atmospheric aerosols. The amount of dust aerosol emitted
into the atmosphere is estimated up to 1000–3000 Tg every year, accounting for about half of the
total tropospheric aerosol amount [1–3]. Dust aerosols significantly influence local, even global,
ecological environment, as well as influence climate change [4–6]. Dust aerosols can directly change
the global radiation balance through reflecting, absorbing and scattering the solar short-wave radiation
and the ground long-wave radiation. The direct effect of aerosol depends on the scattering and
absorption capacities of particles, which are mainly decided by the composition, size and shape of
particles. As cloud-condensation nuclei or ice nuclei, dust aerosols can also indirectly change the cloud
microphysical structure and the rainfall development. The indirect effect depends on the ability of
particles to act as cloud-condensation nuclei or ice nuclei [7], which is mainly decided by the activation
height of cloud droplets, the hygroscopicity and the size distribution of particles. Hence, constraining
the size distribution of dust aerosols is necessary (albeit insufficient) to limit both the direct and indirect
aerosol forcing. In particular, the vertical distribution of dust aerosols can affect the magnitude of both
effects [8,9].
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As the “roof of the world”, the Earth’s “third pole” [10] and the “world water tower” [11], the
Qinghai–Tibet Plateau (referred to as the plateau) has an average altitude of more than 4000 m, covering
an area of about 250×104 km2. The plateau is located at middle and upper levels of the troposphere
with intense and frequent atmospheric activities [12], providing enough power for dust to enter the
atmosphere and travel by a long distance. The large area of shifting sand dunes and desertification land
on the plateau also provide sufficient sources for dust storms. According to the investigation results of
the “Remote Sensing Investigation and Detection of Eco-Geological Environment on the Qinghai-Tibet
Plateau” project carried out by the China Aero Geological Survey and Remote Sensing Center for Land
and Resources (AGRS), the desertification area of the plateau exceeded the area sum of the four deserts
in northern China in 2003 (the Taklamakan Desert for 33.7×104 km2; the Gurbantünggüt Desert for
48.8×104 km2; the Badain Jaran Desert for 44.3×104 km2; and the Tengger Desert for 42.7×104 km2).
Different from the continuous areas of deserts in northern China, the dunes on the plateau are mainly
distributed as points, strips and blocks in the central and western parts of the plateau. In the past
40 years, warming of the regional climate, more frequent and intense human activities and rampant
activities of rats have exacerbated the freezing and thawing of permafrost in the shallow layer of the
plateau, thus forming the frozen and thawed desertification land [13]. At present, the desertification
land covers 50.6 × 104 km2, accounting for 19.5% of the total area of the plateau, with a net increase of
0.38 × 104 km2 compared with that in the 1970s. Furthermore, it is predicted that in the next 20–30 years
the frozen and thawed desertification will continue developing and aggravating with a significantly
increasing severity [14].

At present, the research of dust aerosols is limited in regards to analyses of surface observations and
satellite remote sensing data [15,16]. A ground laser radar can get the vertical distribution characteristic
of aerosols [17]. It is urgently necessary to simulate and study the plateau desertification and the
impacts of dust aerosols with different particle sizes. The existing dust model simply parameterizes
many elements, such as the underlying surface of the plateau, so it cannot accurately simulate the dust
on the plateau. To understand the effects of dust aerosols and the serious plateau desertification, the
dust aerosols in East Asia during 2002–03 were simulated by the global atmospheric circulation model
Community Atmosphere Model (CAM) 3.1 in this paper. The underlying surface of the plateau was
changed for the sensitivity tests. The vertical distribution characteristics of dust aerosols with different
diameters in East Asia were analyzed, and the maximum probable contributions of differently size
dust aerosols generated by the plateau desertification to the atmospheric aerosols in East Asia were
also discussed.

2. Model Description and Simulation Settings

CAM 3.1 is an advanced atmospheric circulation model jointly developed by the National Center
for Atmospheric Research/University Corporation for Atmospheric Research (NCAR/UCAR) as the
atmosphere component of the community climate system model 3.0 (CCSM3.0). There are three optional
dynamic cores in CAM 3.1: the Eulerian spectral transform method (EUL); the semi-Lagrangian scheme
(SLD); and the finite volume approach (FV). The spectrum model CAM3.1 can run simulations in
the horizontal spectrum resolutions of triangle truncated wave numbers 85, 63, 42 and 31, naming
respectively T85, T63, T42and T31 resolutions. T42 was selected in this paper. In the model, the hybrid
σ-P (sigmapressure) vertical coordinate was used. The hybrid σ-P vertical coordinate focused on
properties of the vertical derivative of the terrain-following coefficient, which affected the smoothness
and shape of layer-thickness profiles and determined the coordinate’s monotonicity over variable
terrain [18]. This coordinate can take the functional form η = h

(
p, ps

)
, where ps is the surface pressure

and h
(
p, ps

)
is a monotonic function of p, such that there is a one-to-one mapping between p and η

for a given ps. The functional dependence on ps permitsterrain-following coordinates. The standard
convention is to define η to be normalized and dimensionless, satisfying the lower- and upper-boundary
conditions: h

(
ps, ps

)
= 1, h

(
ptop, ps

)
= 0, respectively, where ptop is the pressure at the top model

half-layer. The σ coordinate was used at the surface layer; the σ-P transition coordinate was used in
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the middle layer; and the pure P coordinate was used in the upper layer. The atmosphere was divided
into 26 layers vertically, with the top of about 3.5 hPa.

Five main atmospheric aerosols, including black carbon, organic carbon, sulfate, sea salt and
sand dust, were taken into account in the CAM [19–21].According to the physical setting of CAM3.1,
12 diameter classes from 0.01 to 40.96mm can be only given to represent the size distribution of
soil dust (Table 1).All atmospheric aerosol processes, including dust emission fluxes, concentrations
and deposition, were calculated in 12 size bins. A size-distributed soil-dust scheme [22–24] in the
model was modified and driven with a Chinese soil-texture scheme that inferred the size distribution
with 12 categories and up-to-date desert distribution in China [19].Combined data sets for the desert
distribution/texture, satellite land-use/roughness length and observed soil moisture provided a coherent
input parameter set for the soil-dust emission scheme for deserts in East Asia.

Table 1. All 12 size bins and corresponding aerosol sizes in the Community Atmosphere Model
(CAM3.1).

Size Bin Number Diameter Ranges, µm

01 0.01–0.02
02 0.02–0.04
03 0.04–0.08
04 0.08–0.16
05 0.16–0.32
06 0.32–0.64
07 0.64–1.28
08 1.28–2.56
09 2.56–5.12
10 5.12–10.24
11 10.24–20.48
12 20.48–40.96

The transport model used the physics package from the Canadian global climate model
(GCM) and a semi-Lagrangian and semi-implicit transport scheme for dynamics and passive
tracers [25].The CAM3.1involved the main aerosol processes, such as aerosol emission, transport,
chemical transformation, dry deposition and wet deposition, and dealt with the interaction between
aerosol and cloud precipitation through working with the cloud module of microphysics. The mass
conservation equation of aerosol is expressed as follows [26]:

∂xip
∂t =

∂xip
∂t

∣∣∣∣SOURCES +
∂xip
∂t

∣∣∣∣TRANSPORT +
∂xip
∂t

∣∣∣∣CLEAR−AIR +
∂xip
∂t

∣∣∣∣DRY +
∂xip
∂t

∣∣∣∣IN−CLOUD +
∂xip
∂t

∣∣∣∣
BELOW−CLOUDS

(1)

In the equation, xip is the aerosol mass, in which p is the variation rate of five different dry-particle
mass mixing ratios and i represents the 12 bins of aerosol particle size. Local changes of aerosol mass
were determined by the aerosol emission, transport, chemical transformation, wet growth, collision
growth, dry deposition, incloud scavenging and wash-out. The advective and convective transport
and subgrid turbulent diffusion were considered in the aerosol transport. The emission sources
contain both natural and artificial aerosol emissions from the surface to the atmosphere. The chemical
transformation produces secondary aerosol particles, and the wet growth and collision growth affect
the internal and external mixing of aerosols. During the dry removal, aerosol particles are absorbed by
vegetation or subsided to the ground by gravity. The aerosols are also removed by incloud scavenging
and wash-out under the cloud caused by cloud precipitation, named as wet removal for aerosols, both
resulting in the wet deposition of aerosols.

The Asian monsoon is considered as one of the major components of the atmospheric
circulation over the northern hemisphere and the globe [27]. The plateau is important for the
Asian monsoon, and the variation of the Asian monsoon can also affect the weather and climate
of the plateau [28,29]. Moreover, the Asian monsoon is closely related to dust storms and dust
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aerosols [30,31]. Therefore, to comprehensively illustrate the general situation, the weak (2002) and
strong (2003) South-Asian-monsoon years were chosen to carry out the simulation and analyses in this
study. A series of contrast sensitivity experiments were carried out by using the model. Experiment 1
set the global desert distribution as the underlying surface of the model (Figure 1), and the simulation
experiment of dust aerosols in 2002–03 was carried out as A1. As there is no available data reflecting
the desert distribution of the plateau’s underlying surface, the sensitivity simulation, which changed
the land type of the plateau (polygonal frame area in Figure 1) into deserts, was conducted for two
years of 2002–03 in the experiment A2, with the properties of the ground soil modified correspondingly
(that is, the desert proportion of the region was changed to 1.0). After expanding the plateau desert
area, the potential impact in East Asia of dust aerosols with different particle sizes could be studied.
In this paper, the average result of simulations in 2002 and 2003 was analyzed based on experiments
A1 and A2.

Figure 1. The distribution of desert proportion of the underlying surface for the CAM3.1
dust-emission modeling.

3. Results and Discussion

3.1. Dust Aerosol Emission Verification

The annual total emissions simulated by CAM3.1 in the global main region of dust aerosol
emission, as well as its proportion to global emissions and its comparison with other simulation results,
are shown in Table 2. The results of global and regional dust aerosols during 2002–03 simulated by
CAM3.1 are reasonable and can be used for further analyses. However, it should be noted that the
simulation results of dust-emission amount from the desert region in North Africa (71%) was slightly
more than that in other studies, while that from the desert areas in Central Asia was slightly less (4.5%),
which maybe attributed to the two-year simulation with the different resolution of desert areas in
this study.

Table 2. Comparisons of global dust aerosol emissions simulated by different models.

Dust Aerosol Emission /Mt
Resources

North Africa Arabian Peninsula Central Asia East Asia Australian Global

1095(71%) 202(7.4%) 69(4.5%) 79(5.1%) 57(3.7%) 1538 This study
693(65%) 101(9.5%) 96(9.0%) 52(4.9%) 1060 Werner et al., 2002 [32]
980(66%) 415(28%) 37(2.5%) 1490 Zender et al., 2004 [3]
1430(69%) 496(24%) 61(2.9%) 2073 Ginoux et al., 2001 [33]
1114(67%) 119(7.2%) 54(3.2%) 132(8.0%) 1654 Luo et al., 2003 [34]
517(51%) 43(4.2%) 163(16%) 50(4.9%) 148(15%) 1019 Miller et al., 2004 [35]
1087(58%) 221(11.8%) 140(7.5%) 214(11.4%) 106(5.7%) 1887 Tanaka et al., 2006 [36]

Note: the global proportion is in brackets.
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3.2. Simulations and Analyses of the Characteristics of Dust Aerosols with Different Particle Sizes in East Asia

3.2.1. Concentration Distribution of Dust Aerosols with Different Particle Sizes

There were no dust aerosol particles with the diameter of 0.01–0.02 µm or 0.02–0.04 µm. Therefore,
the concentration characteristics of the dust aerosols with the diameter of 0.04–40.96 µm are discussed
in this paper after being divided into 10 bins. Figure 2 shows the concentration of dust aerosols in
each size bin and the distribution of their proportions to the total dust concentration in East Asia.
The size bins of 0.04–0.08 µm (Figure 2a), 0.08–0.16 µm (Figure 2b), 10.24–20.48 µm (Figure 2i) and
20.48–40.96 µm (Figure 2j) correspond to the lowest-level surface dust aerosol concentration in East
Asia. Their concentrations were all less than 0.5 µg/kg (the unit of mass concentration µg/kg represents
the mass of aerosol per kilogram of air) in the source area. Meanwhile the proportions were all below
0.01. Among them, the concentration corresponding to the size bin of 0.04–0.08 µm was the lowest.
The diffusion of dust aerosols with the diameter of 0.04–0.08 µm and 0.08–0.16 µm affected the whole
East Asia, while those with the diameter of 10.24–20.48 µm and 20.48–40.96 µm concentrated in the
source area without diffusion. The concentrations of dust aerosols with the diameter of 0.16–0.32 µm
(Figure 2c) and 5.12–10.24 µm (Figure 2h) were the second lowest in East Asia. The proportion of
dust aerosols corresponding to the size bin of 0.16–0.32 µm accounted for 0.035–0.04 in the source
area, and gradually increased while spreading away from the source area, finally reaching 0.1 at
the high latitudes over the Pacific Ocean. The concentration of dust aerosols corresponding to the
size bin of 5.12–10.24 µm mainly concentrated in the source area and the surrounding areas, with
its proportion decreasing from the maximum of 0.01 in the source area to 0.005 in the surrounding
areas. The concentrations of surface dust aerosols with the diameter of 0.32–0.64 µm (Figure 2d) and
2.56–5.12 µm (Figure 2g) corresponded to the second highest in East Asia. The proportion of dust
aerosols with the diameter of 0.32–0.64 µm accounted for 0.15 in the source area and increased while
spreading away from the source area, while that of 2.56–5.12 µm in the source area accounted for 0.18
and decreased while spreading away from the source area. The concentrations of surface dust aerosols
corresponding to the size bins of 0.64–1.28 µm (Figure 2e) and 1.28–2.56 µm (Figure 2f) were the highest
in East Asia, and their proportions both accounted for 0.3 in the source area. The one for the size bin of
0.64–1.28 µm increased while spreading away from the source area, while the other decreased.

3.2.2. Vertical Distributions of Dust Aerosols with Different Particle Sizes

Five sites along 36◦ N, i.e., A (36◦ N, 100◦ E), B (36◦ N, 120◦ E), C (36◦ N, 140◦ E), D (36◦ N,
180◦ E) and E (36◦ N, 140◦ W), were selected to represent the source area of dust on the plateau,
the eastern coastal area of East Asia, the western Pacific, the central Pacific and the eastern Pacific,
respectively. The annual average concentrations of dust aerosols in different size bins were calculated
at each site and at different heights above ground layer (AGL). The vertical profiles are shown in
Figure 3. The concentrations of dust aerosols at sites A, B, C, D and E decreased in turn. Meanwhile,
the dust aerosol high-concentration center in the source area was on the surface and was gradually
raised when being transported eastward, maintaining a height of 4 km when it arrived at 120◦ E.
The dust aerosols were transported across the Eurasian continent. First, the dust was lifted into the air
from the surface over the dust-source region and then transported in the troposphere, before finally
sinking in the surface of the sink region. As a result, the concentrations of dust aerosols and air were
changed [37,38]. The concentration of dust aerosol particles with the diameter of 1.28–2.56 µm was
higher than that of 0.64–1.28 µm under the height of 1 km at site A. However, the concentrations of
dust aerosols with the diameter of 0.64–1.28 µm at other sites and site A above 1 km were the largest.
At sites A and B, the dust-aerosol concentration of 1.28–2.56 µm was higher than that of 0.32–0.64 µm
under 9 km, while it is opposite above 9 km. The dust-aerosol concentration difference between
the two size bins of 0.32–0.64 µm and 1.28–2.56 µm gradually decreased at sites C and D, and the
dust-aerosol concentration of 0.32–0.64 µm was higher than that of 1.28–2.56 µm at site E. The second
highest concentration level corresponded to the size bins of 2.56–5.12 µm and 0.16–0.32 µm, and the
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concentrations corresponding to other bins were lower. The dust aerosol particles in the atmosphere
were mainly distributed in the size bins 6, 7 and 8 with the diameters ranging from 0.32 to 2.56 µm
(Table 1). The dust particles with the diameter less than 1.28 µm could be transported higher and
farther by the atmospheric movement, while those with the diameter greater than 1.28 µm were more
likely to be raised and settled. The concentration was higher in the source area and near the surface,
and decreased faster in the transport.

Figure 2. Distribution of surface dust aerosol concentrations (shadow, unit: µg kg–1) in the size bins of
(a) 0.04–0.08 µm, (b) 0.08–0.16 µm, (c) 0.16–0.32 µm, (d) 0.32–0.64 µm, (e) 0.64–1.28 µm, (f) 1.28–2.56 µm,
(g) 2.56–5.12 µm, (h) 5.12–10.24 µm, (i) 10.24–20.48 µm, (j) 20.48–40.96 µm, and their proportions to the
total concentration (isoline) in East Asia.

Figure 3. Vertical profiles of annual mean concentration of dust aerosols in various size bins at five
sites of A, B, C, D and E along 36◦ N.
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3.3. Sensitivity Analysis on the Contribution of Plateau Desertification to Dust Aerosols in East Asia

3.3.1. Variation of Dust Aerosol Concentration in East Asia

The annual average difference of dust aerosol concentration between experiments A1 and A2 in
East Asia is shown in Figure 4 for the heights of 0, 1500 and 6000 m, indicating the impacts of the
plateau desertification on the regional dust aerosols. The concentration difference between A1 and
A2waspositive in East Asia. The high-value area of ground concentration difference was located in
the dust-source areas of the western plateau, the Qaidam Basin, the southern Qinghai Plateau and
southern Tibet. The high-value center of concentration difference in the lower troposphere (1500m) was
located in the plateau and the surrounding areas, and the concentration difference gradually decreased
eastward and southward. The high value of concentration difference in the middle troposphere (6000m)
is shaped like a band, one extending from Xinjiang to central and western Inner Mongolia, to Qinghai,
to the Sichuan Basin, to the north of the middle and lower reaches of the Yangtze River, and then
directly to the Yellow Sea, South Korea and the southern Japan peninsula. The mean altitude of the
Tibetan Plateau is above 4000 m. The emitted dust aerosols from the plateau are easily transported
into the high levels of the middle troposphere over the downstream areas. The dust source on the
plateau mainly affects the low level and the surface in the near-source area, i.e., the plateau and its
surrounding areas, while it mainly affects the upper level in areas far away from the source, such as
the sea area to the south of Japan Island and the central Pacific.

Figure 4. Difference of dust aerosol concentrations (unit:µgkg–1)between experiments A1 and A2 in
East Asia at (a) surface, (b) 1500 m and (c) 6000 m.
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3.3.2. Vertical Contributions of Dust Aerosols with Different Particle Sizes

Figure 5 shows the concentration difference of dust aerosols in each size bin at sites A, B, C, D
and E in East Asia simulated in experiments A1 and A2. In general, the difference of dust aerosol
concentrations between A1 and A2in each size bin at each site was larger than 0, indicating that
the plateau desertification increased the concentration of dust aerosols in each size bin. At site A,
the larger difference of dust aerosol concentrations corresponded to the size bins of 0.16–0.32 µm,
0.32–0.64 µm, 0.64–1.28 µm, 1.28–2.56 µm and 2.56–5.12 µm from the surface to the height of 10 km,
and the high-value difference concentrated in the size bins of 0.64–1.28 µm and 1.28–2.56 µm from
the surface to the height of 3 km. At site B, the larger difference corresponded to the size bins of
0.32–0.64 µm, 0.64–1.28 µm, 1.28–2.56 µm and 2.56–5.12 µm from the surface to the height of 11 km.
There were high-value centers: the size bin of 1.28–2.56 µm at the height of 0.4–2 km and the size bins
of 0.64–1.28 µm and 1.28–2.56 µm at the height of 4–8 km. At site C, the larger difference corresponded
to the size bins of 0.32–0.64 µm, 0.64–1.28 µm, 1.28–2.56 µm and 2.56–5.12 µm at the height of 3–11 km,
while the high values concentrated in the size bins of 0.64–1.28 µm and 1.28–2.56 µm at the height
of 5–8 km. The difference of dust concentrations at site D and E was similar to that at site C, and
the difference became more and more concentrated. The plateau desertification raised the transport
height of dust aerosols in East Asia. The main contributing size bins in the source area of plateau
desertification were 0.64–1.28 µm, 1.28–2.56µm, 0.32–0.64 µm, 2.56–5.12 µm and 0.16–0.32 µm in that
order, and the long-distance transport was mainly contributed by the dust aerosols in size bins of
0.64–1.28 µm and 1.28–2.56 µm. At site A in the source area, the high-value center of the concentration
difference between dust concentrations of 0.64–1.28 µm and 1.28–2.56 µm was near the surface, and it
was lifted to 5–8 km while being transported eastward. It was further confirmed that the particles in
different size bins mainly affect the low level and surface in the near-source area, i.e. The plateau and
its surrounding areas, while they mainly affect the high level in the areas away from the source.

Figure 5. The difference of dust aerosol concentrations (unit: µg kg–1) in different size bins at sites A, B,
C, D and E in East Asia, as simulated in experiments A1 and A2.

To more directly reflect the contribution of plateau desertification to dust aerosols in different
size bins in East Asia, and to compare the proportion variations of dust aerosols in different size bins,
Figure 6 gives the proportion difference of the dust aerosols in different size bins at sites A, B, C, D
and E in East Asia as simulated in experiments A1 and A2. At the height of 1.5 km, the proportions
of dust particles in size bins of 0.64–1.28 µm and 1.28–2.56 µm increased, while those in size bins of
2.56–5.12 µm and 5.12–10.24 µm decreased. Above 1.5 km, the proportions of dust particles in size bins
of 0.16–0.32 µm, 0.32–0.64 µm and 0.64–1.28 µm decreased, while those of 1.28–2.56 µm, 2.56–5.12 µm
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and 5.12–10.24 µm increased. The large difference of proportions concentrated at the height of 4–10
km. At sites B and C, the proportions of dust particles in size bins of 0.16–0.32 µm, 0.32–0.64 µm and
0.64–1.28 µm decreased, while those of 1.28–2.56 µm and 2.56–5.12 µm increased. The large difference
concentrated in the surface layer and at the low level and the height of 9–11 km. At sites D and E,
the large difference concentrated in the height of 5–10 km. The proportion difference between dust
particles with a diameter smaller and greater than 1.28 µm was negative and positive, respectively.
It indicates that the plateau desertification contributes more to dust aerosols with a diameter more
than1.28 µm than those with a diameter smaller than1.28 µm in East Asia.

Figure 6. The proportion difference (unit: %) of dust aerosol concentrations in different size bins at
sites A, B, C, D and E in East Asia, as simulated in experiments A1 and A2.

The size distribution of dust particles along transport may result from a combination of the
gravitational removal of larger particles and the re-entrainment of smaller particles, because the
removal rate of dust aerosols during transport is size dependent [39].The main contributing size
bins of dust aerosols in the source area of plateau desertification were0.64–1.28 µm, 1.28–2.56 µm,
0.32–0.64 µm, 2.56–5.12 µm and 0.16–0.32 µm in that order, and the long-distance transport was
mainly contributed by the dust aerosols in size bins of 0.64–1.28 µm and 1.28–2.56 µm. The high-value
center of the concentration difference between dust concentrations of 0.64–1.28 µm and 1.28–2.56 µm
was near the surface in source region, and it was lifted to 5–8 km while being transported eastward.
It was further confirmed that the particles in different size bins mainly affected the low level and
surface in the near-source area, i.e. The plateau and its surrounding areas, while they mainly affected
the high level in the areas away from the source. The dust aerosol on the plateau can be easily
ascended to westerlies, which could become the world’s highest efficiency dust-distance transport
source. The plateau desertification not only increases the concentration of dust aerosols in each size
bin, but also raises the transport height of dust aerosols in East Asia. The regional transport of dust
aerosols from the Qinghai-Tibet plateau modifies the size distribution of aerosols in East Asia, which
could affect the scattering and absorption capacities of aerosols, for the radiation balance during
regional transport. Moreover, dust aerosols as cloud-condensation nuclei and ice nuclei alter cloud
microphysical structure and the rainfall, depending on the size distribution of dust particles.

4. Conclusions

Based on the simulation of dust aerosols in East Asia during 2002–03 by using the global
atmospheric circulation model CAM3.1, the vertical distribution characteristics of dust aerosols in
different size bins in East Asia were analyzed. Moreover, the potential impact of dust aerosols with
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different particle sizes on East Asia was analyzed by the sensitivity simulation test of changing the
underlying surface on the plateau. The main conclusions are as follows.

First, the concentrations of surface dust aerosol particles in the size bins of 0.04–0.08 µm,
0.08–0.16 µm, 10.24–20.48 µm and 20.48–40.96 µm were the lowest (less than 0.5 µg/kg) in East Asia, and
the corresponding proportions were below 0.01. They were followed by the size bins of 0.16–0.32 µm
and 5.12–10.24 µm. The concentrations of surface dust aerosol particles with a diameter of 0.32–0.64 µm
and 2.56–5.12 µm were the second highest, while those of 0.64–1.28 µm and 1.28–2.56 µm were
the highest.

Second, in East Asia, the high-concentration center of the dust aerosols in the source area was
on the surface, and the center was gradually uplifted while dust aerosols were transported eastward,
maintaining at the height of 4 km when reaching 120◦ E. The dust aerosol particles in the atmosphere
were mainly distributed in diameters ranging from 0.32 to 2.56 µm. The dust particles with diameters
smaller than 1.28 µm could be transported higher and farther by the atmospheric movement, while
the dust particles with diameters greater than 1.28 µm were more likely to be raised and settle.
Meanwhile, the concentration was higher in the source area and near the surface, and decreased faster
in the transport.

Last, the plateau desertification not only increased the concentration of dust aerosols in each
size bin, but also raised the transport height of dust aerosols in East Asia. Dust particles in different
size bins mainly affected the low level and the surface in the near-source area, i.e., the plateau and
its surrounding areas, while they mainly affected the high level in areas far away from the source.
In the source area, the main contributing size bins were 0.64–1.28 µm, 1.28–2.56 µm, 0.32–0.64 µm,
2.56–5.12µm and 0.16–0.32 µm in that order. The long-distance transport was mainly contributed by
the size bins of 0.64–1.28 µm and 1.28–2.56 µm. The plateau desertification contributed more to dust
aerosols with diameters greater than1.28 µm than those smaller than1.28 µm in East Asia.
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