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Abstract: This paper presents an analysis of the effects of jet fuel taxes on air traffic, employment
and emissions using a difference-in-difference design. These findings are relevant, as US airports
identify how to respond to revenue shortfalls and support local employment in the recovery after
Covid-19. Jet fuel tax cuts are considered pro-growth by airlines and stakeholders, however, limited
research documents the impacts on airline operations, employment, and emissions, which is an
increasing issue given growing societal concerns about aviation sustainability. This study provides
an analysis of the effects of changes in jet fuel taxes on air travel, employment, and the environment,
using a difference-in-differences design based on data from major US airlines at several US hubs.
Results suggest that a jet fuel tax cut increases air traffic by 0.2% on average but fades within a
year. The direct effect on air transportation employment is insignificant, as is the effect on total
employment. The estimated effect on pollution is an increase of over 1% in CO2, CH4, and N2O
emissions. These findings illustrate the precarious balance between air transport growth, local
employment, and environmental concerns, and may aid policymakers as they consider potential
changes to jet fuel taxes.
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1. Introduction

As global air travel grew steadily in the last decade, and as policies will soon be developed to
support recovery after Covid-19, it is important to balance the need for air travel to support passenger
and cargo mobility with associated societal costs and benefits for airlines, airports, and the community.
Although airlines and airports strive for efficiency in operations, this efficiency is not a guarantee
for sustainability. Therefore, policy tools are useful to enhance the sustainability of the air transport
system. The effects of these policies are a constant topic of debate for all stakeholders. The most
widely accepted policy tools for policymakers concerned with sustainability in the air transport system
are aviation fuel taxes. Jet fuel tax cuts are considered pro-growth by airlines and policymakers
alike. These stakeholders often emphasize the potential benefits of increased airline operations
and employment, while overlooking the negative environmental and airport funding ramifications.
Conversely, some view a jet fuel tax increase as a detrimental policy to the air transport system and the
local economy. As these policy debates continue, the need for an accurate assessment of the effects of a
jet fuel tax change is apparent. This study contributes to the ongoing debate surrounding jet fuel taxes
by providing an analysis of a jet fuel tax policy change, specifically the effect on key societal metrics to
include air traffic, employment, and greenhouse gas emissions at a major US hub airport.

The value of assessing employment impacts is considerable, since the aviation industry directly
employs 10.2 million people globally [1] and provides more than 1.2 million jobs in the US, with a
payroll of more than USD 77 billion for workers at the 493 commercial airports in the US [2]. Moreover,
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airports are the largest employers in multiple states, not only at the nation’s largest airport in Georgia,
where Hartsfield-Jackson Atlanta International Airport employs more than 60,000 people [3], but also
in other states, such as Colorado, where Denver International Airport employs over 35,000 employees.
While airline direct employment is lower than it was before 2001, it does exceed values from before
the recession in 2008 [4]. Airline mergers, and the shift of some work to contract employees and
vendors, may contribute to relatively modest growth in airline employment relative to the growth
in the aviation sector. Growth in aviation has been steady, with increases in air cargo, as well as
passenger enplanements. Enplanements increased steadily from 2009 through early 2020 and exceeded
pre-recession levels by 2015 [5]. Enplanements are easy to measure and are widely reported for all
commercial airports in the US, and previous research has confirmed that enplanements are strongly
correlated with on-airport payroll and employment [2]. Aviation sector jobs reflect not only employees
at passenger airlines, but also cargo airlines, operations, suppliers, terminal business, airport operations,
and jobs associated with the construction of airport capital improvements. The inclusion of analysis
encompassing the impact of a jet fuel tax on employment supports a more comprehensive analysis of
aviation fuel tax policy, which is consistent with sustainability measures such as the Triple Bottom Line
approach, which accounts for social, economic, and environmental impacts of policies and actions [6].

From a global perspective, there has been significant discussion regarding aviation’s contribution to
global emissions. Although aviation contributes only about 2% of CO2 emissions [1], the environmental
impact of these emissions may be more significant than other sources, due to the chemical and physical
processes associated with combustion at high altitudes [7]. The US aviation market is a significant
contributor to these emissions and contributed 23.5% of the global aviation CO2 emissions in 2017 [8],
however, there has been less discussion and fewer incentives for US airlines to reduce their emissions.

Globally, the aviation community has taken the issue of emissions seriously, which is reflected
by ambitious goals, such as carbon-neutral growth for international aviation after 2020, and net
reductions for international aviation by 2050; it is expected that these goals will be met through
improved technologies, increased efficiencies, modernized air traffic management, and a global
market-based system to offset CO2 emissions from international aviation activities [9]. The future
offset scheme, CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation), would
stabilize emissions at 2020 levels by using an emission offset program. There are some limitations
to offset schemes, for example, although CORSIA is a program of the International Civil Aviation
Organization (ICAO), the proposed credits under CORSIA are not compatible with the allowances
currently used by the ICAO member states in the European Union (EU) under the Emissions Trading
System (ETS) [10]. In 2012, the EU expanded the original ETS program (which began in 2005) to
address CO2 emissions for all flights within the EU for participating countries [11]. Although previous
researchers (e.g., [12]), have noted that there are important differences between the trading systems,
such as the ETS and aviation fuel taxes, the ETS is worth acknowledgement, because it presents a
clear connection between financial transactions and aviation emissions, and also because it serves
as evidence of greater environmental awareness in Europe. Greater environmental awareness in
Europe is also evidenced by the concept of flygskam, or flight shaming, which began in Sweden
in 2018 [13]. Flygskam promotes activism to encourage travelers to use rail and modes other than
air travel; flygskam was gaining traction in a number of European countries (e.g., Germany) until
the Covid-19 pandemic in 2020 sidelined discussion of the topic. Another important distinction
between a trading system or offset program and a fuel tax is intent. The intent of the ETS or an offset
program is to reduce emissions, whereas the intent of an aviation fuel tax, such as the US fuel tax we
analyze, is typically to raise revenue. There has been significantly less interest and attention to aviation
emissions in the US by US air carriers, although a number of US airports have developed sustainability
plans and participated in sustainability programs, such as the Airport Carbon Accreditation program
by the Airports Council International (ACI).

Previous research has addressed the utility of an aviation fuel tax to monetize the negative
externalities associated with aeronautical activities. Research conducted using data for Heathrow
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Airport in London, England, suggested that taxes of 0.5% for a short haul flight and 2% for a long-haul
flight and would compensate not only for CO2 and other air borne emissions but also noise [14].
Other research with a more global perspective found that taxes may not have a significant impact on
consumption due to low elasticity. A statistical time-series analysis of 29 years of data (reflecting world
crude oil prices, bunker jet fuel, and global GDP from 1966 to 1995) suggested that, although tax on jet
fuel is proposed to control emissions, the findings suggest that, since the price elasticity of demand
is low, a jet fuel tax would not significantly reduce CO2 emissions [15]. The findings of this research
(which may be somewhat limited since they are based on price data for crude oil, rather than jet fuel)
suggest limitations for the usefulness of an aviation fuel tax to reduce CO2 emissions, however, it does
substantiate the value of an aviation fuel tax as a mechanism to raise revenue.

More recently, analysis of US data from 1995 to 2013 using simultaneous quantile regression
suggests that jet fuel taxes would reduce fuel consumption and CO2 emissions in the short term
with elasticities of 0.14% to 0.18% in the first year, decreasing to 0.008% to 0.01% in the longer term
(3 years after the tax increase) [16]. In the first year, this suggests a 4.3 cent fuel tax would reduce fuel
consumption by 698 million gallons and CO2 emissions by 6.8 to 8.3 million metric tons for domestic
flights in the US [16]. To provide context for this reduction, a 7.5 million metric ton reduction would
represent about 4% of the 184 million metric tons of CO2 emissions contributed by the US aviation
sector in 2018 [8], although these reductions would be expected to diminish in the longer term.

These findings are consistent with the analysis of data from other countries. A 30% reduction in the
Aviation Fuel Tax of Japan in 2011 provided the opportunity to evaluate the impact of the tax reduction
on aviation fuel consumption and emissions using a Bayesian time series analysis of domestic flights
in Japan, which utilized monthly data from January 2004 through December 2013 [17]. The analysis
results suggest that the cumulative impact of the tax cut was about 246 million gallons (converted from
930,123 Kl) and 2.4 million metric tons of CO2 [17]. Recognizing the complex environment that policy
effects, the authors acknowledge that although there would be significant environmental benefits to an
increased aviation fuel taxation, it may not be feasible, since it would result in increased costs to aviation
businesses, including the regional and low-cost aviation carriers, which have experienced significant
growth [17]. Given the business implications of any tax change, often an incremental approach is
recommended, a perspective which has been substantiated by previous research (e.g., [18]). Aviation’s
critical role in the local, national, and global economies is critical and uncontested. This is reflected by
the exclusion of aviation emissions from the Kyoto Treaty [19], the 2015 Paris Agreement [20], and,
historically, the prohibition on international aviation taxes per the Chicago Convention that founded
ICAO [21].

In recent years, concerns regarding aviation emissions, as well as a compelling need for a more
robust understanding of the interconnectedness of aviation fuel taxes, emissions, and employment,
provide a motivation for our research. This motivation has been energized by the need for public policies
that will support the aviation sector as it rebounds from Covid-19, and support local employment,
while minimizing the negative environmental effects due to aviation emissions. The current literature
lacks research that provides analysis of the impact of aviation fuel tax on employment and emissions.
This paper will fill that gap and contribute to the literature surrounding jet fuel taxes by moving
beyond typical jet fuel price elasticity analyses, and investigating the effect of a jet fuel tax policy
change on key societal metrics to include air traffic, employment, and greenhouse gas emissions by
using quasi-experimental techniques.

The remainder of the paper is organized as follows: Section 2 provides a description of the data
used and a thorough development of the difference-in-differences model used to estimate the effects of
a jet fuel tax change. Section 3 discusses the results of the estimation of the effects of the tax cut on air
traffic, employment, and emissions. Finally, Section 4 provides a discussion of the policy implications
and paths for future research.
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2. Data and Methodology

The empirical analysis begins with an investigation into the effects of a jet fuel tax on airline
operations into and out of the studied airport. The airlines are assumed to allocate flights to maximize
profits. As states decrease the costs to airlines of conducting operations, then supply should increase
ceteris paribus. Therefore, a state could incentivize an airline to increase operations at their local
airport by lowering the input costs for that airline. Economic theory provides us with an expectation
that there will be an increase in flight operations following a jet fuel tax cut. Georgia is a unique
state with one of the busiest airports in the world, and, as previously mentioned, the airport is the
largest employer in the state, with an airport-based payroll of over USD 17 billion; the total economic
impact of the airport activities contributes more than USD 82 billion when the indirect and induced
impacts are also considered [3]. Another unique attribute of Georgia is that they are one of only a
few states to institute a tax cut for jet fuel purchases in recent history. The passage of the tax cut
provides a unique opportunity to study the effects of this policy change in relation to large hub airports
not experiencing similar cuts. This study examines three of the busiest hub airports in the nation:
Hartsfield-Jackson Atlanta International Airport (ATL), Dallas/Fort Worth International Airport (DFW),
and Los Angeles International Airport (LAX). These airports were chosen given their comparable
enplanements, geographical heterogeneity, and economic significance. These airports are large hub
airports per the Federal Aviation Administration’s National Plan of Integrated Airport Systems [22].
Based on data for 2018, ATL ranks first in the US for enplanements and 13th in cargo (with 51.9 million
enplanements and 3.0 billion lbs of landed weight); LAX ranks second in enplanements and 5th in
cargo (with 42.6 million enplanements and 7.3 billion lbs landed weight), and DFW ranks 4th in
enplanements and 9th in cargo (32.8 million enplanements and 4.3 billion lbs landed weight) [23].
Further, both DFW and LAX did not experience a jet fuel tax change during the periods studied. Using
two geographically separated comparison airports of comparable size and traffic reduces the likelihood
of biases created by selecting only one control group.

The framework for the jet fuel tax at ATL changed briefly in on July 1, 2018 [24]. On March 1, 2018,
the state legislature voted to remove the sales tax exemption on jet fuel in response to a change
in Delta Airline’s policy related to a discount for members of the National Rifle Association
(NRA) [25]. The catalyst for Delta’s policy change was a shooting at a Florida high school in February
2018 [25]. The sales tax exemption on jet fuel was reinstated in an executive order by the governor on
July 31, 2018 [26]. Although this illustrates the political environment that affects aviation tax policy,
due to the brevity of the interval and fact that airline schedules are set months in advance and are
relatively slow to respond to changes such as a USD 0.04/gal tax, it is assumed that this change in
policy did not have a significant effect on the results of this analysis.

Data used in this analysis are monthly data for the years 2001 to 2019. Air traffic data are from the
Bureau of Transportation Statistics’ T-100 database. Air traffic data include domestic and international
air traffic operations categorized into major, low-cost, and regional airline operations. Airport cost
data are from the Federal Aviation Administration (FAA) from 2013 to 2019, and are supplemented
with Department of Transportation Form 41 airline financials provided by the vendor Cirium for the
years 2001 to 2012. These figures are estimates based on average airline cost and operations data
at each airport exclusive of fuel. Tax data are provided by each individual state’s Department of
Revenue. The jet fuel tax is not as straightforward as other fuel related taxes. Jet fuel can be taxed
by a state’s excise tax, sales tax, franchise tax, and/or local tax [27], although there are restrictions on
the use of the tax revenue per FAA Grant Assurance 25 Airport Revenues [28]. Some states afford
exemptions to airlines purchasing over certain minimum gallons of jet fuel, or if the airline has a
large personnel/business presence in the state. For example, Minnesota exempts airlines from a
USD 0.15/gal excise tax after purchasing 200,000 gallons. An airline operating Airbus A320 aircraft,
one of the most common commercial aircraft, would need to fill fewer than 30 aircraft to reach this
threshold [29]. Therefore, we use effective tax rates which take into account sales tax, excise tax, and
exemptions to determine the existence of a tax cut. Employment data are from the Bureau of Labor
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Statistics’ Metropolitan Statistical Area database and population data are from the Census Bureau [30].
Air transportation related employment data are used to ascertain the direct employment effects from
the policy change. Indirect effects require micro-level data and suffer from issues related to causality.
Therefore, our analysis focuses on direct employment related to air transportation, but also uses total
employment in the MSA for checks of robustness.
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Figure 1. Monthly flights during the period of October 2001 to December 2019: (a) Atlanta-Hartsfield
(ATL) airport and Dallas/Fort Worth (DFW) airport; (b) Atlanta-Hartsfield (ATL) airport and Los Angeles
International (LAX) airport. Vertical line represents jet fuel tax cut occurring in Georgia. Source: Cirium
Diio Mi.
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Figure 1 provides a time series of the monthly flights for the treatment (ATL) and control airports
(DFW and LAX). The tax policy change is highlighted by the vertical line on the graph. The cyclical
nature of flight data is apparent from visual inspection of the data. Our analysis will use a variety
of techniques to account for this seasonality to include seasonally adjusting the data, using monthly
dummy variables as well as a time fixed effect. Figure 2 displays the total employment and air
transportation related employment in the treatment MSA (ATL). Both variables will be used in the
analysis, but the main focus will be placed on air transportation related employment to truly capture
the direct effects from changes in air carrier operations. The two series appear to follow a common
trend, and both experienced a downturn during the Great Recession. A recession dummy variable will
be added to control for these contractionary shocks.
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Figure 2. Total employment and air transportation related direct employment in the Atlanta
Metropolitan Statistical Area (MSA). Source: Bureau of Labor Statistics.

The main model for estimating the effect of the tax change is the difference-in-differences (DD)
model. The DD model provides for a quasi-experiment, with the control group being the airport not
experiencing a tax change, and the treatment group being the airport experiencing a jet fuel tax change.
The DD model also provides an avenue for policy analysis, beyond models relying solely on dummy
variables [31]. One key identifying assumption of the DD model is that the trends would be the same
for each individual airport without the tax change. Therefore, the treatment (tax cut) prompts the
deviation from the common trend we would observe without the treatment [32]. The common trend
should be established pre-policy change with sufficient past observations to verify the assumed trend.
Examining the data in Figure 1a,b, we notice a clear trend for the pre-policy months from 2001 to
2005, which will be verified by statistical analyses. In later specifications, we control for both time and
regional fixed effects. The model will be estimated with individual airline data to remove impacts
related to bankruptcies, mergers, and other major events. Further, appropriate controls are added to
the model to account for factors impacting the dependent variable of interest. The basic DD model is
given by:

yirt = γ + δATr + ωdt + ρ(ATr · dt) + X’
irtβ + εirt, (1)
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where yirt is the endogenous variable examined (i.e., flights and employment) for airport i in region
r at time t. ATr is a dummy for airports, where the tax has changed and dt is a time dummy that
indicates the periods after the policy have been changed. The effect of the tax change is captured by
ρ, which represents the difference in flights or employment due to the tax cut with seasonal effects
removed (ATr · dt). This interaction term is the policy variable and set equal to Drt. X is a matrix of
covariates to increase the precision of our estimates and includes income per capita, population, trade
in the region (exports and imports), airport facilities costs, number of runways, recession indicator,
and airline market concentration in that region calculated by the Herfindahl-Hirschman Index (HHI).
This model implicitly assumes that the region not observing the tax change is an appropriate control
for the region that does experience the tax change. The region without a tax change should serve as
an appropriate counterfactual to illustrate what would have happened to the treatment region in the
absence of the tax cut.

Since the DD model is a version of the fixed effects (FE) model with aggregate data, we formulate
an alternate specification using the FE and interaction term, Drt. We control for the time and regional
fixed effects in the model to exploit the regional variations in our data. This model provides an
additional check for robustness and is given by:

yirt = γr + γt + ρ(Drt) + X’
irtβ + εirt, (2)

where the region specific and time fixed effects are given by γr and γt, respectively. The possibility that
weather data may play a role in air traffic is considered a second order concern, given the inclusion of
the region and time fixed effects. We also conduct an alternative check on our identification strategy
by adding a region-specific time trend. This allows for different trends for the control and treatment
regions. A minimum of three periods prior to the tax change are necessary, and a greater number of
periods increases the robustness of the model’s estimates [33]. The availability of data prior to the
tax change allows for a clear trend to be established and extrapolated in periods after the tax change.
This time trend provides a more complete control for confounding influences on air traffic over time.
This region-specific time trend DD model is given by:

yirt = γ1r + γt + γ2rt + ρ(Drt) + X’
irtβ + εirt, (3)

where γ1r and γ2r are the region-specific fixed effect and region-specific trend coefficient, respectively.
The time trend is given by t, and the associated coefficient provides an estimate of the region’s trajectory
over the period studied due to unobserved factors. Models (2) and (3) provide tests for the robustness
of our estimates of the effect of a jet fuel tax change. Another area of concern regarding the estimation
and inference with respect to DD models (as well as with air travel and employment) is causality.
To provide increased confidence beyond intuition of the causal relationship, we provide evidence
related to the causal nature of the estimates.

Our dataset provides the opportunity to conduct further tests related to causality. A Granger-style
test can be conducted on the DD model, allowing for additional confidence of the causal nature of the
data as well as an examination of the pattern of lagged effects [34]. This type of model includes both
lags and leads to understand if the effects are sustained or reduced over time. We test whether past
interaction terms, Drt, predict Yist, while future Drt do not, conditional on time and regional effects
using this Granger-style testing. This Granger test specification for the DD model is given by:

yirt = γr + γt +
n∑

j=0
ρ− jDr,t− j +

m∑
j=1

ρ+ jDr,t+ j + X′irtβ+ εirt (4)

where the see the addition of the sum of the n lags effects and m lead effects. The lag effects are post
tax change effects, and the lead effects are viewed as the anticipatory effects. Testing for causality,
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we would anticipate that the dummy variables related to future tax changes will have no impact on
our model.

To estimate the change in emissions related to changes in air traffic, we use a procedure that
examines the landing and takeoff (LTO) phases of flight. The LTO sequence is assumed to be most
related to local airport operations’ emissions [35]. This estimation technique uses the LTO cycles
conducted at an airport in a given period of time to estimate the fuel burn and emissions from those
operations. Data related to aircraft type and size are unavailable; however, given our data are divided
into domestic and international operations as well as major, low-cost, and regional carrier operations
we can assign a generic aircraft type to each category. The most ubiquitous aircraft for each type of
operations are used as a guideline and fuel burn during the LTO phase for each aircraft are from
derived from previous studies [36,37]. The aircraft used are listed in Table 1, and the estimates of fuel
burn are based on these individual aircraft operating characteristics. The emissions estimates will be
based on the US Environmental Protection Agency’s Emission Factors for Greenhouse Gas Inventories
database [38].

Table 1. Aircraft type and landing and takeoff (LTO) fuel burn by airline category.

Airline Category Aircraft Average Fuel Burn (LTO)

Major (Domestic) Airbus A320 1830 lbs
Major (International) Boeing 767 3705 lbs

Low Cost Carrier Boeing 737 2165 lbs
Regional Bombardier CRJ 995 lbs

3. Results

The descriptive statistics of the variables used are displayed in Table 2. The average of the air
traffic variable (departures) shows a pre- and post-tax cut difference in means for the treatment airport.
The average employment was higher in the control airport regions, but the mean did increase for the
treatment airport in the post-tax cut period. The treatment airport has a slightly higher mean level of
departures pre-tax but has a fairly larger post-tax mean. The average of most the control variables
are fairly similar across control and treatment airports. Trade and airport cost controls are higher on
average at the control airports, but the HHI is larger at the treatment airport given the high market
concentration. The summary of the controls suggests no large difference between the treatment and
control airports.

Table 2. Descriptive statistics of the variables.

Mean of Variable Control Airports Treatment Airport

Pre-Tax Cut Post-Tax Cut

Log of departures 12.619 12.787 12.997
Log of air transport employment 10.472 10.206 10.265

Log of Income per capita 10.681 10.469 10.664
Log of population 15.890 15.329 15.515

Log of trade 5.025 4.761 4.832
Log of airport costs 2.943 1.021 2.195
Number of runways 5.894 4.000 5.000

Log of Herfindahl-Hirschman Index 6.621 9.094 8.982

The DD models were estimated using the difference-in-differences procedure in STATA. Tables 3
and 4 provide the estimates of the effect of the jet fuel tax change on the dependent variables for the
main model (1), both with and without covariates. Tables 3 and 4 provide the estimates using DFW and
LAX as the control groups, respectively. We cluster the standard errors by airport, given the possibility
of group level random effects. The pre-tax trends are statistically significant for departures using either
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comparison group. The jet fuel tax cut is estimated to increase the level of aircraft operations when
using either DFW or LAX as a comparison. The estimated effect on departures are found to be positive
and statistically significant, ranging from 0.011 to 0.217. This finding aligns with economic theory,
which assumes a reduction in taxes would incentivize an agent or business to increase the level of
the activity being taxed. The inclusion of the covariates to increase precision also increased the effect
size by over 20%. The results with respect to employment are not as promising. The pre-tax trend in
employment is statistically significant in all estimations; however, post-tax differences fail to provide
strong evidence of an increase (or decrease) in air transportation related employment resulting from
a jet fuel tax cut (this insignificance was also found when examining all employment in the MSA).
The results indicate that we have insufficient evidence to suggest that such a policy would directly
benefit employment in the MSA. This conclusion is found regardless of control group used.

Table 3. Estimation results for ATL—DFW.

Difference-in-Differences Models

Dependent Variable

Departures Employment

Before Tax 0.171 **
(0.028)

0.156 **
(0.069)

−0.452 **
(0.047)

−0.563 **
(0.080)

After Tax 0.341 **
(0.014)

0.373 **
(0.052)

−0.450 **
(0.024)

−0.363 **
(0.042)

Difference 0.170 **
(0.031)

0.217 **
(0.050)

0.001
(0.053)

0.200
(0.601)

Covariates No Yes No Yes
R-Squared 0.95 0.97 0.93 0.98

Note: Robust Std Errors in parenthesis. ** indicates statistical significance at the 5% level.

Table 4. Estimation results for ATL—LAX.

Difference-in-Differences Models

Dependent Variable

Departures Employment

Before Tax 0.438 **
(0.021)

0.116 **
(0.031)

−0.260 **
(0.071)

−1.271 **
(0.330)

After Tax 0.449 **
(0.040)

0.161 **
(0.029)

0.030
(0.064)

−0.783 **
(0.251)

Difference 0.011 **
(0.004)

0.044 **
(0.020)

0.290
(0.331)

0.488
(0.341)

Covariates No Yes No Yes
R-Squared 0.94 0.96 0.32 0.65

Note: Robust Std Errors in parenthesis. ** indicates statistical significance at the 5% level .

To test the robustness of these estimates, we conduct the additional analyses, as discussed in
Section 3 . The estimates of the alternative specifications are displayed in Tables 5 and 6. The fixed effects
model using both time and regional fixed effects provide estimates of the effect on departures that were
comparable in magnitude to the DD estimations. The effect of a jet fuel tax cut on aircraft operations is
estimated to be positive and statistically significant. The policy effects are estimated to increase aircraft
operations by 1 to 12 percentage points, depending upon the specification. These estimates provide
further evidence of the results in Tables 3 and 4. We also estimated the effects of the jet fuel tax cut on
available seat miles, which resulted in similar estimates. With respect to employment, the alternative
specification estimates are unable to provide evidence of a statistically significant effect from a jet fuel
tax cut. The exception are the estimation results from the fixed effects model (2), but when the time
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trend is added to the model the effect is no longer significant. Again, these results hold when we
estimate the effect on all employment in the MSA.

Table 5. Robustness checks ATL—DFW.

Dependent Variable

Departures Employment

Model: (2) (3) (2) (3)

Difference Term 0.169 **
(0.067)

0.128 **
(0.062)

0.183 **
(0.058)

0.054
(0.047)

Income 0.552 **
(0.203)

0.387 **
(0.181)

0.022
(0.022)

0.066
(0.238)

Population 0.236
(0.278)

0.144 **
(0.043)

0.365
(0.312)

0.683
(0.571)

Trade 0.021 **
(0.008)

0.016 **
(0.007)

0.225 **
(0.096)

0.211 **
(0.099)

Airport Costs −0.010
(0.014)

−0.017
(0.012)

−0.003
(0.015)

−0.001
(0.016)

Runways 0.005
(0.004)

0.044
(0.031)

−0.081
(0.401)

0.077
(0.041)

HHI −0.066
(0.081)

−0.026 **
(0.009)

0.153 *
(0.081)

0.101
(0.120)

R-Squared 0.97 0.94 0.93 0.29
F-Stat (p-value) 12.46 (0.00) 10.70 (0.00) 15.64 (0.00) 9.77 (0.00)

Note: Robust Std Errors in parenthesis. ** indicates statistical significance at the 5% level .

Table 6. Robustness checks ATL—LAX.

Dependent Variable

Departures Employment

Model: (2) (3) (2) (3)

Difference Term 0.048 **
(0.003)

0.012 **
(0.004)

0.120
(0.151)

0.162
(0.128)

Income 0.387 **
(0.129)

0.616 *
(0.325)

0.563 **
(0.264)

0.894
(0.676)

Population 0.220
(0.351)

0.079
(0.527)

−0.452
(0.718)

0.131
(1.079)

Trade 0.015 **
(0.006)

0.049
(0.078)

0.284 **
(0.132)

0.350 **
(0.161)

Airport Costs −0.024
(0.014)

−0.021
(0.065)

−0.124
(0.340)

−0.118
(0.330)

Runways 0.009
(0.063)

0.021
(0.068)

0.082
(0.130)

0.059
(0.135)

HHI 0.431 **
(0.161)

0.421 **
(0.163)

0.263
(0.329)

0.244
(0.333)

R-Squared 0.96 0.97 0.02 0.07
F-Stat (p-value) 8.94 (0.00) 7.95 (0.00) 5.95 (0.03) 0.24 (0.62)

Note: Robust Std Errors in parenthesis. ** indicates statistical significance at the 5% level .

The coefficients of the covariates are similar across all specifications. The income per capita
coefficient is found to positively affect flights, likely due to the higher fares associated with air travel
versus train or bus travel. This coefficient is surprisingly not strongly related to the air transportation
employment variable. This finding could be due to the lower wages of the fixed based operations
personnel of an airline versus. For flight crews, pay scales are non-location specific and therefore
would not provide cost of living adjustments according to domicile. The coefficient on population
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is only found to be significant in one specification, while the coefficient on trade is significant in
most specifications. The combination of exports and imports provide a reasonable signal of the
interconnectedness of the region. As the region becomes more economically interconnected with the
world, then air travel should increase in that region. The coefficients on airport costs and number of
runways were both found to be insignificant. Airport costs are quite low relative to other intermediate
and fixed costs of an air carrier. Furthermore, an airline ticket tax transfers some of the user fee to
the flying public. The relatively few changes in number of runways or runway length during the
time period studied would likely not impact capacity much. Larger expansions or closures could
cause more extreme changes in air traffic, due to those capacity changes; however, this example is
not the situation for the time period studied. The HHI was significant for a few of the specifications,
but insignificant for most of the specifications. As air carriers increase their market share and other
firms exit due to inability to compete or greener markets, then we could expect flights to decline.
Conversely, air carriers may increase their frequency with increases in market share. The estimates
suggest that the relationship between air traffic and HHI is much more complicated than the theoretical
relationship proposes.

The estimation of the Granger-style causality model (4) resulted in insignificant estimates of the
lead policy effect variables. The coefficients on the lagged policy effect variables provide some detail
about the effects over time. The coefficients of the first five lagged policy variables are displayed in
Table 7. These coefficients are all positive, with the remaining coefficients being nonnegative until the
tenth to twelfth lag, depending on the region. These results suggest a reduction in the positive effects
on flights over time. The estimates suggest the peak effect occurs in the second period (month) with
diminishing positive effects as time passes. These results align with the graphical evidence in Figure 1,
showing the eventual reduction in flights occurring after the policy generate boost in air traffic

Table 7. Granger-style checks.

Dependent Variable

Departures Employment

ATL-DFW ATL-LAX ATL-DFW ATL-LAX

L1.Policy 0.014 **
(0.004)

0.019 **
(0.008)

−0.019
(0.050)

0.074
(0.067)

L2.Policy 0.242 **
(0.074)

0.042 **
(0.017)

0.014
(0.051)

0.058
(0.068)

L3.Policy 0.130 **
(0.081)

0.032 **
(0.009)

−0.027
(0.291)

0.093
(0.059)

L4.Policy 0.020 **
(0.001)

0.001 **
(0.000)

−0.004
(0.050)

0.003
(0.139)

L5.Policy 0.013 **
(0.005)

0.012
(0.062)

−0.104
(0.291)

0.006
(0.083)

R-Squared 0.95 0.97 0.96 0.07

Note: ** indicates statistical significance at the 5% level. Only the first five lagged variables coefficients are displayed.
All lags (L.) beyond five periods were statistically insignificant. All lead estimated lead coefficients were found to be
statistically insignificant but have been omitted to save space.

The effects of the policy on emissions are estimated by examining the flight data at ATL.
The composition of the aircraft operating during the period that the tax changed is used as a baseline
for measuring the change in emissions at the peak of the policy impacts. In Figure 3, the range of
estimates are provided for the additional emissions generated by the policy change. The baseline
values represent an increase in emissions of approximately 1.4% from the policy change. Using the
standard errors, we estimated the range of emissions around that central level. Overall, we see an
increase in emissions to a level of between 1.2% to 1.7% versus pre-tax change levels. These increases
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were estimated for all greenhouse gas emissions related to jet fuel consumption to include CO2 (carbon
dioxide), CH4 (methane), and N2O (nitrous oxide).Sustainability 2020, 12, x FOR PEER REVIEW 12 of 15 
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4. Discussion

Jet fuel taxation has been a recent topic of discussion as airports and governments have adapted to
changing federal regulations with respect to use of those collected funds. In the shadow of these debates
are the continually touted societal benefits of reducing an air carriers’ tax burden. The pro-business
policy of reducing, exempting, or eliminating a commercial carrier’s jet fuel tax has repeatedly
passed through legislative wickets. These policies claim to increase air traffic and bring jobs to local
communities surrounding the airport. The results of this study test those assertions with respect to
three primary metrics. First, the effects on air traffic are found to be positive as airlines respond to
the new costs associated with operating at that particular airport. The policy change increases traffic
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by over 0.2%, but the increase is not sustained and eventually fades over the period of 10–12 months.
This type of fading effect is akin to an announcement effect in the economics literature [39].

Another important metric related to these policy impacts are employment. When examining
direct air transportation related employment, the results suggests an insignificant change occurs.
The policy does not significantly affect air transportation employment, despite the fact that air traffic in
the area increases. It appears air carriers do not increase employment significantly in coordination
with increased air traffic operations. The effect on total employment in the MSA was also estimated
to be insignificant. A jet fuel tax cut may increase air traffic, but it does not necessarily incentivize
airlines to increase personnel in that location. These findings are counter to the narrative regarding the
employment benefits associated with these policies.

The final metric examined was the change in emissions from the tax cut. As air carriers increase
their operations at an airport, they perform more landing and takeoff sequences in the terminal area.
These sequences are the main drivers of locally produced air transport pollution. The results suggest
that the jet fuel tax cut increased greenhouse gas emissions of CO2, CH4, and N2O by over 1%. The tax
cut reduces the internalization of the cost of emissions for the airline. This condition leads to increased
emissions and accelerated environmental degradation. Furthermore, as airports and governments
collect fewer tax revenue from the airlines, then the funds available to mitigate or correct for these
externalities is reduced. Additionally, these results add to the scant body of literature discussing the
environmental effects from changes in jet fuel taxes, and complements the research surrounding carbon
taxation [40,41].

The results suggest that policymakers and individuals should create a broader evaluation method
to determine the efficacy and net societal benefits of policy changes related to jet fuel taxation.
The pro-economy mantra of jet fuel tax cuts hinges on the status quo versus data driven evidence.
Closer examination into the effects could benefit airports, local economies, the local environment,
and tax coffers. These findings could be especially relevant as policy makers seek to support aviation
and aviation employment without unduly impacting the environment during the recovery from
Covid-19. Future work could focus on a spatial analysis of jet fuel tax effects as well as the indirect
effects on air carriers and employment. Additionally, a true costing of the tax cut would greatly aid
any state, local, or federal government in decision making with respect to jet fuel taxation.
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