New Forms of Land Grabbing Due to the Bioeconomy: The Case of Brazil
Abstract
:1. Introduction
2. Land Grabbing in a Global Context
3. The Growth of the Bioeconomy
4. The Bioeconomy and New Forms of Land Grabbing
5. The History and Present Situation of the Bioeconomy in Brazil
Environmental and Economic Consequences of Ethanol Production from Sugarcane
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Year | Ha | q (ethanol) c | q (sugar) c | γ (ethanol) c | γ (sugar) c | Q Equation (A1) | y Equation (A2) |
---|---|---|---|---|---|---|---|
(Mha) b | (L) | (kg) | (L/t) | (kg/t) | (Mt)b | (t/ha) | |
1961 | 1.37 | 456,302,000 | 3,260,920,000 | 12.48 | 89.22 | 36.55 | 26.74 |
1962 | 1.47 | 427,520,000 | 3,385,946,000 | 11.73 | 92.90 | 36.45 | 24.85 |
1963 | 1.51 | 343,717,000 | 3,064,701,000 | 10.32 | 91.99 | 33.32 | 22.08 |
1964 | 1.52 | 405,476,000 | 3,098,650,000 | 11.45 | 87.51 | 35.41 | 23.30 |
1965 | 1.71 | 386,962,000 | 3,565,239,000 | 9.69 | 89.29 | 39.93 | 23.42 |
1966 | 1.64 | 602,707,000 | 4,558,836,000 | 12.01 | 90.86 | 50.17 | 30.68 |
1967 | 1.68 | 727,478,000 | 4,115,837,000 | 15.36 | 86.93 | 47.35 | 28.17 |
1968 | 1.69 | 676,262,000 | 4,215,588,000 | 14.07 | 87.73 | 48.05 | 28.49 |
1969 | 1.67 | 473,645,000 | 4,111,744,000 | 10.86 | 94.30 | 43.60 | 26.08 |
1970 | 1.73 | 461,609,000 | 4,332,853,000 | 9.82 | 92.22 | 46.98 | 27.24 |
1971 | 1.73 | 637,150,000 | 5,119,866,000 | 11.16 | 89.70 | 57.08 | 33.03 |
1972 | 1.80 | 613,068,000 | 5,386,635,000 | 10.13 | 88.98 | 60.54 | 33.58 |
1973 | 1.96 | 680,972,000 | 5,932,698,000 | 10.03 | 87.41 | 67.87 | 34.65 |
1974 | 2.06 | 665,979,000 | 6,683,180,000 | 8.78 | 88.12 | 75.84 | 36.88 |
1975 | 1.97 | 594,985,000 | 6,720,846,000 | 7.99 | 90.20 | 74.51 | 37.84 |
1976 | 2.09 | 555,627,000 | 5,887,832,000 | 8.13 | 86.18 | 68.32 | 32.63 |
1977 | 2.27 | 664,322,000 | 7,208,502,000 | 7.56 | 82.08 | 87.82 | 38.69 |
1978 | 2.39 | 1,470,404,000 | 8,307,942,000 | 14.05 | 79.40 | 104.63 | 43.75 |
1979 | 2.54 | 2,490,603,000 | 7,342,718,000 | 23.14 | 68.22 | 107.63 | 42.43 |
1980 | 2.61 | 3,396,452,000 | 6,646,226,000 | 30.15 | 59.00 | 112.65 | 43.20 |
1981 | 2.83 | 3,706,375,000 | 8,100,269,000 | 29.97 | 65.49 | 123.69 | 43.77 |
1982 | 3.08 | 4,240,123,000 | 7,935,321,000 | 31.91 | 59.72 | 132.88 | 43.08 |
1983 | 3.48 | 5,823,039,000 | 8,857,127,000 | 35.04 | 53.30 | 166.17 | 47.77 |
1984 | 3.66 | 7,864,246,000 | 9,086,084,000 | 39.97 | 46.18 | 196.75 | 53.82 |
1985 | 3.91 | 9,192,329,000 | 8,818,155,000 | 45.31 | 43.47 | 202.86 | 51.85 |
1986 | 3.94 | 11,931,599,000 | 7,819,255,000 | 53.46 | 35.03 | 223.22 | 56.59 |
1987 | 4.31 | 10,506,712,000 | 8,157,204,000 | 46.11 | 35.80 | 227.85 | 52.88 |
1988 | 4.11 | 11,458,396,000 | 7,985,222,000 | 51.04 | 35.57 | 224.49 | 54.58 |
1989 | 4.07 | 11,644,882,000 | 8,070,184,000 | 52.91 | 36.67 | 220.08 | 54.10 |
1990 | 4.27 | 11,920,475,000 | 7,214,049,000 | 53.48 | 32.36 | 222.93 | 52.18 |
1991 | 4.21 | 11,515,151,000 | 7,365,341,000 | 51.77 | 33.11 | 222.45 | 52.83 |
1992 | 4.20 | 12,722,233,000 | 8,530,462,000 | 55.50 | 37.21 | 229.25 | 54.55 |
1993 | 3.86 | 11,729,491,000 | 9,264,149,000 | 52.49 | 41.46 | 223.45 | 57.83 |
1994 | 4.35 | 11,292,185,000 | 9,162,135,000 | 54.67 | 44.36 | 206.54 | 47.53 |
1995 | 4.56 | 12,765,910,000 | 11,700,465,000 | 53.00 | 48.58 | 240.85 | 52.83 |
1996 | 4.75 | 12,716,759,000 | 12,651,084,000 | 50.89 | 50.63 | 249.87 | 52.60 |
1997 | 4.81 | 14,430,449,000 | 13,631,888,000 | 49.84 | 47.08 | 289.55 | 60.15 |
1998 | 4.99 | 15,422,253,000 | 14,847,044,000 | 51.03 | 49.13 | 302.20 | 60.61 |
1999 | 4.90 | 13,926,821,000 | 17,960,587,000 | 44.12 | 56.90 | 315.65 | 64.43 |
2000 | 4.80 | 13,077,765,000 | 19,380,197,000 | 42.17 | 62.49 | 310.13 | 64.55 |
2001 | 4.96 | 10,517,535,000 | 16,020,340,000 | 41.26 | 62.84 | 254.94 | 51.42 |
2002 | 5.10 | 11,467,795,000 | 18,994,363,000 | 39.23 | 64.98 | 292.31 | 57.31 |
2003 | 5.37 | 12,485,426,000 | 22,381,336,000 | 39.50 | 70.80 | 316.12 | 58.86 |
2004 | 5.63 | 14,639,923,000 | 24,944,434,000 | 41.00 | 69.85 | 357.11 | 63.41 |
2005 | 5.81 | 15,207,909,000 | 26,632,074,000 | 39.87 | 69.82 | 381.44 | 65.70 |
2006 | 6.36 | 15,808,184,000 | 26,214,391,000 | 41.33 | 68.54 | 382.47 | 60.18 |
2007 | 7.08 | — | 30,629,827,000 | 41.89 | 71.65 | 427.49 | 60.37 |
References
- Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Sec. 2015, 6, 34–42. [Google Scholar] [CrossRef]
- Lewandowski, I. (Ed.) Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Lauka, D.; Slisane, D.; Ievina, L.; Muizniece, I.; Blumberga, D. When Bioeconomy Development Becomes a Biomass Energy Competitor. Environ. Clim. Technol. 2019, 23, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Gawel, E.; Nadine Pannicke, N.; Hagemann, N. A Path Transition Towards a Bioeconomy—The Crucial Role of Sustainability. Sustainability 2019, 11, 3005. [Google Scholar] [CrossRef] [Green Version]
- Dietz, T.; Börner, J.; Förster, J.J.; Von Braun, J. Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies. Sustainability 2018, 10, 3190. [Google Scholar] [CrossRef] [Green Version]
- Heimann, T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earths Future 2018, 7, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Kitchen, L.; Marsden, T. Constructing sustainable communities: A theoretical exploration of the bio-economy and eco-economy paradigms. Local Environ. 2011, 16, 753–769. [Google Scholar] [CrossRef]
- McMichael, P. The land grab and corporate food regime restructuring. J. Peasant Stud. 2012, 39, 681–701. [Google Scholar] [CrossRef]
- Lazarus, E.D. Land grabbing as a driver of environmental change. Area 2014, 46, 74–82. [Google Scholar] [CrossRef] [Green Version]
- Carlini, M.; Mosconi, E.M.; Castellucci, S.; Villarini, M.; Colantoni, A. An economical evaluation of anaerobic digestion plants fed with organic agro-industrial waste. Energies 2017, 10, 1165. [Google Scholar] [CrossRef]
- Marucci, A.; Zambon, I.; Colantoni, A.; Monarca, D. A combination of agricultural and energy purposes: Evaluation of a prototype of photovoltaic greenhouse tunnel. Renew. Sustain. Energy Rev. 2018, 82, 1178–1186. [Google Scholar] [CrossRef]
- Monarca, D.; Cecchini, M.; Guerrieri, M.; Colantoni, A. Conventional and alternative use of biomasses derived by hazelnut cultivation and processing. Acta Hortic. 2009, 845, 627–634. [Google Scholar] [CrossRef]
- Sassen, S. Land grabs today: Feeding the Disassembling of National Territory. Globalizations 2013, 10, 25–46. [Google Scholar] [CrossRef]
- Peluso, N.L.; Lund, C. New frontiers of land control. J. Peasant Stud. 2011, 38, 667–681. [Google Scholar] [CrossRef]
- Wily, L.A. Looking back to see forward: The legal niceties of land theft in land rushes. J. Peasant Stud. 2012, 39, 751–775. [Google Scholar] [CrossRef]
- Deininger, K.; Byerlee, D.; Lindsay, J.; Norton, A.; Harris, S.; Stickler, M. Rising Global Interest in Farmland: Can it Yield Sustainable and Equitable Results? World Bank, U.S.: Washington, DC, USA, 2010; Available online: https://siteresources.worldbank.org/DEC/Resources/Rising-Global-Interest-in-Farmland.pdf (accessed on 13 March 2020).
- Oxfam. Land and Power: The Growing Scandal Surrounding the New Wave of Investments in Land, Available; Oxfam: Oxford, UK, 2012; Available online: https://oxfamilibrary.openrepository.com/bitstream/10546/142858/32/bp151-land-power-rights-acquisitions-220911-en.pdf (accessed on 13 March 2020).
- Franco, J.; Borras, S.; Fradejas, A.A.; Buxton, N.; Herre, R.; Kay, S.; Feodoroff, T. The Global Land Grab. A Primer, revised ed.; Transnational Institute (TNI) Agrarian Justice Programme: Amsterdam, The Netherlands, 2013; Available online: https://www.tni.org/files/download/landgrabbingprimer-feb2013.pdf (accessed on 10 May 2018).
- Borras, S.M., Jr.; Franco, J.C.; Gomez, S.; Kay, C.; Spoor, M. Land grabbing in Latin America and the Caribbean. J. Peasant Stud. 2012, 39, 845–872. [Google Scholar] [CrossRef]
- Borras, S.M., Jr.; Franco, J.C. Global Land Grabbing and Trajectories of Agrarian Change: A Preliminary Analysis. J. Agrar. Chang. 2012, 12, 34–59. [Google Scholar] [CrossRef]
- Fairhead, J.; Leach, M.; Scoones, I. Green Grabbing: A New Appropriation of Nature? J. Peasant Stud. 2012, 39, 237–261. [Google Scholar] [CrossRef] [Green Version]
- Anifantis, A.S.; Colantoni, A.; Pascuzzi, S.; Santoro, F. Photovoltaic and hydrogen plant integrated with a gas heat pump for greenhouse heating: A mathematical study. Sustainability 2018, 10, 378. [Google Scholar] [CrossRef] [Green Version]
- Boubaker, K.; Colantoni, A.; Marucci, A.; Longo, L.; Gambella, F.; Cividino, S.; Cecchini, M. Perspective and potential of CO2: A focus on potentials for renewable energy conversion in the Mediterranean basin. Renew. Energy 2016, 90, 248–256. [Google Scholar] [CrossRef]
- Cecchini, M.; Cossio, F.; Marucci, A.; Monarca, D.; Colantoni, A.; Petrelli, M.; Allegrini, E. Survey on the status of enforcement of European directives on health and safety at work in some Italian farms. J. Food Agric. Environ. 2013, 11, 595–600. [Google Scholar]
- Margulis, M.E.; McKeon, N.; Borras, S.M. Land grabbing and global governance: Critical perspectives. Globalizations 2013, 10, 1–23. [Google Scholar] [CrossRef] [Green Version]
- White, B.; Borras, S.M.; Hall, R.; Scoones, I.; Wolford, W. The new enclosures: Critical perspectives on corporate land deals. J. Peasant Stud. 2012, 39, 619–647. [Google Scholar] [CrossRef] [Green Version]
- Robertson, B.; Pinstrup-Andersen, P. Global land acquisition: Neo-colonialism or development opportunity? Food Secur. 2010, 2, 271–283. [Google Scholar] [CrossRef]
- Rosset, P. Food Sovereignty and alternative paradigms to confront land grabbing and the food and climate crises. Development 2011, 54, 21–30. [Google Scholar] [CrossRef]
- De Schutter, O. How not to think of land-grabbing: Three critiques of large-scale investments in farmland. J. Peasant Stud. 2011, 38, 249–279. [Google Scholar] [CrossRef]
- Friis, C.; Reenberg, A. Land Grab in Africa: Emerging Land System Drivers in a Teleconnected World. GLP Report No. 1; The Global Land Project (GLP-IPO): Copenhagen, Denmark, 2010; Available online: https://www.academia.edu/16977510/Land_Grab_in_Africa_Emerging_land_system_drivers_in_a_teleconnected_world (accessed on 20 January 2020).
- Wolford, W.; Borras, S.M.; Hall, R.; Scoones, I.; White, B. Governing global land deals: The role of the state in the rush for land. Dev. Chang. 2013, 44, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Mehta, L.; van Veldwisch, G.; Franco, J.C. Introduction to the special issue: Water grabbing? Focus on the (re)approriation of finite water resources. Water Altern. 2012, 5, 193–207. [Google Scholar]
- Araghi, F.; Karides, M. Land dispossession and global crisis: Introduction to the special section on land rights in the world-system. J. World-Syst. Res. 2012, 18, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Støen, M.A. Beyond Transnational Corporations, Foodand Biofuels: The Role of Extractivism and Agribusiness in Land Grabbing in Central America. Forum Dev. Stud. 2016, 43, 155–175. [Google Scholar] [CrossRef]
- OECD. The Bioeconomy to 2030: Designing a Policy Agenda; OECD Publishing: Paris, France, 2009; Available online: http://www.oecd.org/futures/long-termtechnologicalsocietalchallenges/thebioeconomyto2030designingapolicyagenda.htm (accessed on 13 March 2020).
- European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe (COM(2012) 60 final); European Commission: Brussels, Belgium, 2012; Available online: https://ec.europa.eu/research/bioeconomy/pdf/official-strategy_en.pdf (accessed on 13 March 2020).
- Salvati, L.; Zitti, M. Regional convergence of environmental variables: Empirical evidences from land degradation. Ecol. Econ. 2008, 68, 162–168. [Google Scholar] [CrossRef]
- Salvati, L.; Perini, L.; Sabbi, A.; Bajocco, S. Climate Aridity and Land Use Changes: A Regional-Scale Analysis. Geogr. Res. 2012, 50, 193–203. [Google Scholar] [CrossRef]
- Ferrara, A.; Salvati, L.; Sabbi, A.; Colantoni, A. Soil resources, land cover changes and rural areas: Towards a spatial mismatch? Sci. Total Environ. 2014, 478, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Colantoni, A.; Ferrara, C.; Perini, L.; Salvati, L. Assessing trends in climate aridity and vulnerability to soil degradation in Italy. Ecol. Indic. 2015, 48, 599–604. [Google Scholar] [CrossRef]
- BECOTEPS. The European Bioeconomy in 2030. Delivering Sustainable Growth by Addressing the Grand Societal Challenges; BECOTEPS—Bio-Economy Technology Platforms: Brussels, Belgium, 2011; Available online: http://www.epsoweb.org/file/560 (accessed on 13 March 2020).
- OECD. Biomass for a Sustainable Bioeconomy: Technology and Governance (No.DSTI/STP/BNCT(2016)7/FINAL); Organisation for Economic Co-operation and Development, OECD: Paris, France, 2016; Available online: https://one.oecd.org/document/DSTI/STP/BNCT(2016)7/en/pdf (accessed on 7 February 2020).
- Leipold, S.; Petit-Boix, A. The circular economy and the bio-based sector: Perspectives of European and German stakeholders. J. Clean. Prod. 2018, 201, 1125–1137. [Google Scholar] [CrossRef]
- D’Amato, D.; Korhonen, J.; Toppinen, A. Circular, Green, and Bio economy: Ow do companies in land-use intensive sectors align with sustainability concepts? Ecol. Econ. 2019, 158, 116–133. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppala, J. Circular economy: The concept and its limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Maciejczak, M.; Hofreiter, K. How to define bioeconomy? Rozczniki Nauk. 2013, 15, 243–248. Available online: http://maciejczak.pl/download/15-4-Maciejczak.pdf (accessed on 7 February 2020).
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef] [Green Version]
- Levidow, L. EU criteria for sustainable biofuels: Accounting for carbon, depoliticising plunder. Geoforum 2013, 44, 211–223. [Google Scholar] [CrossRef]
- Bioeconomy World Summit. Innovation, Growth and Sustainable Development: Bioeconomy World Summit 2018; Federal Ministry of Education and Research: Berlin, Germany, 2018; Available online: http://gbs2018.com/home/ (accessed on 12 October 2018).
- Salvati, L.; Carlucci, M. The economic and environmental performances of rural districts in Italy: Are competitiveness and sustainability compatible targets? Ecol. Econ. 2011, 70, 2446–2453. [Google Scholar] [CrossRef]
- Tanksale, A.; Beltramini, J.N.; Lu, G.M. A review of catalytic hydrogen production processes from biomass. Renew. Sustain. Energy Rev. 2010, 14, 166–182. [Google Scholar] [CrossRef]
- Bruins, M.E.; Sanders, J.P.M. Small-scale processing of biomass for biorefinery. Biofuels Bioprod. Biorefin. 2012, 6, 135–145. [Google Scholar] [CrossRef]
- Navia, R.; Mohanty, A.K. Resources and waste management in a bio-based economy. Waste Manag. Res. 2012, 30, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Pfau, S.F.; Hagens, J.E.; Dankbaar, B.; Smits, A.J.M. Visions of Sustainability in Bioeconomy Research. Sustainability 2014, 6, 1222–1249. [Google Scholar] [CrossRef] [Green Version]
- Salvati, L.; Carlucci, M. A composite index of sustainable development at the local scale: Italy as a case study. Ecol. Indic. 2014, 43, 162–171. [Google Scholar] [CrossRef]
- GRAIN. Seized: The 2008 Land Grab for Food and Financial Security; GRAIN: Barcelona, Spain, 2008; Available online: https://www.grain.org/article/entries/93-seized-the-2008-landgrab-for-food-and-financial-security (accessed on 13 March 2020).
- Cudlínová, E.; Lapka, M.; Vávra, J. Bioeconomy as a New Perspective for Solving Climate Change? In The Role of Integrity in the Governance of the Commons: Governance, Ecology, Law, Ethics; Westra, L., Gray, J., Gottwald, F.T., Eds.; Springer: Cham, Switzerland, 2017; pp. 155–166. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, J. Rural geography III: Do we really have a choice? The bioeconomy and future rural pathways. Prog. Hum. Geogr. 2014, 39, 658–665. [Google Scholar] [CrossRef]
- Petrick, M.; Wandel, J.; Karsten, K. Rediscovering the virgin lands: Agricultural investment and rural livelihoods in a Eurasian frontier area. World Dev. 2013, 43, 164–179. [Google Scholar] [CrossRef] [Green Version]
- Cudlínová, E.; Giacomelli Sobrinho, V.; Lapka, M.; Vávra, J. Bioeconomy as a New Phenomenon in Land Grabbing: The Case of Brazil. In Ecological Integrity and Land Uses: Sovereignty, Governance, Displacements and Land Grabs; Westra, L., Bosselmann, K., Zambrano, V., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2019. [Google Scholar]
- Assunção, J.; Chiavari, J. Towards Efficient Land Use in Brazil. Climate Policy Initiative, the New Climate Economy, the Global Commission on Climate and Economy. 2015, pp. 1–27. Available online: http://newclimateeconomy.report/2015/wp-content/uploads/sites/3/2015/09/Towards-Efficient-Land-Use-Brazil.pdf (accessed on 13 March 2020).
- German Bioeconomy Council. Bioeconomy in Brazil; German Bioeconomy Council, Bioökonomie.de: Berlin, Germany, 2015; Available online: https://biooekonomie.de/en/article-map (accessed on 27 September 2018).
- Ohashi, F.H. The Adevent, Growing, Crisis and Abandonnment from Proalcool; Unicamp: Campinas, SP, Brazil, 2008. [Google Scholar]
- De Moraes, M.L.; Rumenos, M.; Bacchi, P. Ethanol: From the Beginning to the Production Starting Stage. Rev. Polit. Agric. 2014, 23, 5–22. [Google Scholar]
- Scheiterle, L.; Ulmer, A.; Birner, R.; Pyka, A. From Commodity-Based Value Chains to Biomass-Based Value Webs: The Case of Sugarcane in Brazil’s Economy. J. Clean. Prod. 2018, 172, 3851–3863. [Google Scholar] [CrossRef]
- Organization of the Petroleum Exporting Countries (OPEC). OPEC Annual Statistical Bulletin 2017; OPEC: Vienna, Austria, 2017; Available online: https://www.opec.org/opec_web/static_files_project/media/downloads/publications/ASB2017_13062017.pdf (accessed on 10 September 2018).
- Organization of the Petroleum Exporting Countries (OPEC). OPEC Annual Statistical Bulletin 2013; OPEC: Vienna, Austria, 2013; Available online: https://www.opec.org/opec_web/static_files_project/media/downloads/publications/ASB2013.pdf (accessed on 10 September 2018).
- Organization of the Petroleum Exporting Countries (OPEC). OPEC Annual Statistical Bulletin 2005; OPEC: Vienna, Austria, 2006; Available online: https://www.opec.org/opec_web/static_files_project/media/downloads/publications/ASB2005.pdf (accessed on 10 September 2018).
- HBR Brasil, (Harvard Business Review Analytical Services) HBR. Bioeconomy: An Agenda for Brazil; National Confederation of Industry (CNI): São Paulo, Brazil, 2013; Available online: http://arquivos.portaldaindustria.com.br/app/conteudo_24/2013/10/18/411/20131018135824537392u.pdf (accessed on 13 March 2020).
- Gazzoni, D.L. The Impact of Using the Soil in the Sustainability of Biofuel; Embrapa Soya: Londrina, PR, Brazil, 2014; Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/976599/1/Doc347.pdf (accessed on 13 March 2020).
- Assunção, J.; Pietracci, B.; Souza, P. Fueling Development: Sugarcane Expansion Impacts in Brazil; INPUT (Land Use Initiative), Climate Policy Initiative: Rio de Janeiro, Brazil, 2016; pp. 1–55. [Google Scholar]
- EPE, Brazilian Energy Research Office. Brazilian Energy Balance 2017: Year 2016; EPE, Energetical Research Enterprise: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Sant’Anna, M. How Green Is Sugarcane Ethanol? Department of Economics, Yale University: New Haven, CT, USA, 2015; Available online: https://economics.yale.edu/sites/default/files/santanna-how_green_is_sugarcane_ethanol.pdf (accessed on 25 September 2018).
- De Arruda, M.R.; Giller, K.E.; Slingerland, M. Where Is Sugarcane Cropping Expanding in the Brazilian Cerrado, and Why? A Case Study. An. Acad. Bras. Ciênc. 2017, 89. [Google Scholar] [CrossRef] [Green Version]
- MMA, Environment Department. Brazil. Savanna Using and Cover Mapping: TerraClass Project Savanna 2013; MMA/Secretaria de Biodiversidade e Florestas (SBF): Brasília, DF, Brazil, 2015. [Google Scholar]
- Goldemberg, J.; Coelho, S.T.; Guardabassi, P. The Sustainability of Ethanol Production from Sugarcane. Energy Policy 2008, 36, 2086–2097. [Google Scholar] [CrossRef]
- Macedo, Isaias de Carvalho (org.). The Sugar Cane’s Energy: Twelve studies on Brazilian Sugar Cane Agribusiness and Its Sustainability; UNICA, Sugar Cane Agroindustry Union: São Paulo, Brazil, 2007; Available online: https://sugarcane.org/wp-content/uploads/2018/04/Sugar-Canes-Energy-Full-book.pdf (accessed on 13 March 2020).
- SEEG/OC, System of Greenhouse Gases Estimates of the Observatory of Climate. MapBiomas. Coleção 4.1. 2020. Available online: https://plataforma.mapbiomas.org/stats (accessed on 20 March 2020).
- IBGE, Brazilian Institute of Geography and Statistics. The Changes in the Cover and in the Use of The Brazilian Soil 2000–2010–2012–2014; IBGE/Coordination of Natural Resources and Environmental Studies: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Prist, P.R.; Uriarte, M.; Fernandes, K.; Metzger, J.P. Climate Change and Sugarcane Expansion Increase Hantavirus Infection Risk. PLoS Neglect. Trop. D 2017, 11, e0005705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzatto, C.V.; Assad, E.D.; Bacca, J.F.M.; Zaroni, M.J.; Pereira, S.E.M. Agroecological from Sugarcane: Expand the Production, Preserve Life, Ensure the Future; Technical Report 110; Documentos. Embrapa Solos: Rio de Janeiro, Brazil, 2009; Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/579169/zoneamento-agroecologico-da-cana-de-acucar-expandir-a-producao-preservar-a-vida-garantir-o-futuro. (accessed on 13 March 2020).
- Lambin, E.F.; Meyfroidt, P. Global Land Use Change, Economic Globalization, and the Looming Land Scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelman, M.; Oya, C.; Borras, S.M., Jr. Global Land Grabs: Historical Processes, Theoretical and Methodological Implications and Current Trajectories. Third World Q. 2013, 9, 1517–1531. [Google Scholar] [CrossRef]
- CONAB, Brazilian National Company of Agriculture, Livestock and Supply. Agriculture and Animal Raising Information—Historical Collection about the Harvest: Sugarcane; CONAB: Brasilia, Brazil, 2018. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=30 (accessed on 26 September 2018).
- United Nations Food and Agriculture Organisation (FAO). FAOSTAT; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/faostat/en/ (accessed on 26 September 2018).
- MAPA, Agriculture, Livestock and and Supply Department Brazil. Sugarcane and Agroenergy National Balance; MAPA/SPAE Production and Agroenery Secretariat: Brasília, DF, Brazil, 2007. [Google Scholar]
- Nogueira, L.A.H.; Moreira, J.R.; Schuchardt, U.; Goldemberg, J. The Rationality of Biofuels. Energy Policy 2013, 61, 595–598. [Google Scholar] [CrossRef]
- Pili, S.; Grigoriadis, E.; Carlucci, M.; Clemente, M.; Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Indic. 2017, 76, 71–80. [Google Scholar] [CrossRef]
- Arezki, R.; Deininger, K.; Selod, H. What Drives the Global “Land Rush”? Working paper WPS 5864. Policy Research Working Paper; World Bank: Washington, DC, USA, 2011; Available online: https://openknowledge.worldbank.org/handle/10986/3630 (accessed on 29 March 2020).
- Souza, G.M.; Victoria, R.L.; Joly, C.A.; Verdade, L.M. Bioenergy and Sustainability: Bridging the Gaps; FAPESP, SCOPE: São Paulo, Brazil, 2015. [Google Scholar]
Year | Land Use Class | Total * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Farmland | Forests | Grassland and Savannah (Cerrado) | Urban Land, Wetlands, and Others | |||||||
Area | Share | Area | Share | Area | Share | Area | Share | Area | Share | |
(Mha) | % | (Mha) | % | (Mha) | % | (Mha) | % | (Mha) | % | |
1985 | 177 | 20.9 | 467 | 55.1 | 169 | 19.9 | 34 | 4.0 | 848 | 100 |
1986 | 177 | 20.9 | 467 | 55.0 | 170 | 20.1 | 34 | 4.0 | 848 | 100 |
1987 | 182 | 21.5 | 464 | 54.7 | 168 | 19.9 | 34 | 4.0 | 848 | 100 |
1988 | 187 | 22.1 | 461 | 54.3 | 167 | 19.7 | 33 | 3.9 | 848 | 100 |
1989 | 191 | 22.5 | 459 | 54.1 | 165 | 19.4 | 34 | 4.0 | 848 | 100 |
1990 | 193 | 22.8 | 458 | 54.0 | 163 | 19.2 | 34 | 4.0 | 848 | 100 |
1991 | 196 | 23.1 | 457 | 53.9 | 162 | 19.1 | 34 | 4.0 | 848 | 100 |
1992 | 199 | 23.5 | 455 | 53.7 | 160 | 18.9 | 33 | 3.9 | 848 | 100 |
1993 | 202 | 23.8 | 453 | 53.4 | 159 | 18.8 | 34 | 4.0 | 848 | 100 |
1994 | 205 | 24.2 | 451 | 53.1 | 158 | 18.7 | 34 | 4.0 | 848 | 100 |
1995 | 209 | 24.7 | 448 | 52.8 | 157 | 18.5 | 34 | 4.0 | 848 | 100 |
1996 | 213 | 25.1 | 446 | 52.6 | 156 | 18.4 | 34 | 4.0 | 848 | 100 |
1997 | 216 | 25.5 | 443 | 52.3 | 155 | 18.3 | 34 | 4.0 | 848 | 100 |
1998 | 219 | 25.8 | 441 | 52.1 | 154 | 18.2 | 33 | 3.9 | 848 | 100 |
1999 | 221 | 26.1 | 439 | 51.8 | 153 | 18.1 | 34 | 4.0 | 848 | 100 |
2000 | 224 | 26.4 | 437 | 51.6 | 153 | 18.0 | 34 | 4.0 | 848 | 100 |
2001 | 226 | 26.6 | 436 | 51.4 | 152 | 17.9 | 34 | 4.0 | 848 | 100 |
2002 | 229 | 27.0 | 434 | 51.2 | 151 | 17.8 | 34 | 4.0 | 848 | 100 |
2003 | 233 | 27.5 | 430 | 50.7 | 150 | 17.7 | 34 | 4.0 | 848 | 100 |
2004 | 237 | 28.0 | 428 | 50.4 | 148 | 17.5 | 34 | 4.1 | 848 | 100 |
2005 | 240 | 28.3 | 426 | 50.2 | 147 | 17.4 | 34 | 4.1 | 848 | 100 |
2006 | 242 | 28.6 | 424 | 50.0 | 147 | 17.3 | 35 | 4.1 | 848 | 100 |
2007 | 244 | 28.7 | 423 | 49.9 | 146 | 17.3 | 35 | 4.1 | 848 | 100 |
2008 | 245 | 28.9 | 422 | 49.8 | 146 | 17.2 | 35 | 4.1 | 848 | 100 |
2009 | 246 | 29.0 | 422 | 49.7 | 146 | 17.2 | 35 | 4.1 | 848 | 100 |
2010 | 246 | 29.0 | 422 | 49.8 | 145 | 17.1 | 34 | 4.0 | 847 | 100 |
2011 | 247 | 29.1 | 422 | 49.7 | 144 | 17.0 | 35 | 4.1 | 847 | 100 |
2012 | 248 | 29.2 | 422 | 49.7 | 143 | 16.9 | 34 | 4.1 | 847 | 100 |
2013 | 249 | 29.4 | 421 | 49.7 | 142 | 16.8 | 34 | 4.1 | 847 | 100 |
2014 | 251 | 29.6 | 421 | 49.6 | 141 | 16.6 | 35 | 4.1 | 847 | 100 |
2015 | 253 | 29.8 | 420 | 49.5 | 140 | 16.5 | 35 | 4.1 | 847 | 100 |
2016 | 255 | 30.1 | 419 | 49.4 | 138 | 16.3 | 34 | 4.1 | 847 | 100 |
2017 | 257 | 30.3 | 418 | 49.3 | 137 | 16.2 | 35 | 4.1 | 847 | 100 |
2018 | 261 | 30.7 | 417 | 49.1 | 134 | 15.8 | 35 | 4.1 | 846 | 100 |
Functions/Variables | Sugar Cane Crop for Either Ethanol (Biofuel) or Sugar (Food) | Equation |
---|---|---|
(1) | ||
(2) | ||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cudlínová, E.; Giacomelli Sobrinho, V.; Lapka, M.; Salvati, L. New Forms of Land Grabbing Due to the Bioeconomy: The Case of Brazil. Sustainability 2020, 12, 3395. https://doi.org/10.3390/su12083395
Cudlínová E, Giacomelli Sobrinho V, Lapka M, Salvati L. New Forms of Land Grabbing Due to the Bioeconomy: The Case of Brazil. Sustainability. 2020; 12(8):3395. https://doi.org/10.3390/su12083395
Chicago/Turabian StyleCudlínová, Eva, Valny Giacomelli Sobrinho, Miloslav Lapka, and Luca Salvati. 2020. "New Forms of Land Grabbing Due to the Bioeconomy: The Case of Brazil" Sustainability 12, no. 8: 3395. https://doi.org/10.3390/su12083395
APA StyleCudlínová, E., Giacomelli Sobrinho, V., Lapka, M., & Salvati, L. (2020). New Forms of Land Grabbing Due to the Bioeconomy: The Case of Brazil. Sustainability, 12(8), 3395. https://doi.org/10.3390/su12083395