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Abstract: Many catchments in northern Algeria, including the coastal Mitidja Basin in the north
central part of the country have been negatively affected by the deterioration of water quality in
recent years. This study aims to discover the relationship between land use change and its impact
on water quality in the coastal Mitidja river basin. Based on the data of land use and water quality
in 2000, 2010 and 2017, the relationship between land use change and surface water quality index
in the Mitidja Watershed was discussed through GIS and statistical analysis. The results show that
the physical and chemical properties of the Mitidja river basin have obvious spatial heterogeneity.
The water quality of upstream was better than that of downstream. There was a significant spatial
relationship between the eight water quality indicators and three land use types, including urban
residential land, agricultural land and vegetation. In most cases, settlements and agricultural land
are the dominant factors leading to river pollution, and higher vegetation coverage helps to improve
water quality. The regression model revealed that percentage of urban settlement area was a predictor
for NH4-N, BOD5, COD, SS, PO4-P, DO and pH, while vegetation was a predictor for NO3-N. The
analysis also showed that during this period, urban settlement areas increased sharply, which has
a significant impact on water quality variables. Agricultural land only had a significant positive
correlation with PO4-P. The results provide an effective way to evaluate river water quality, control
water pollution and land use management by landscape pattern.

Keywords: water quality; land use change; Mitidja Basin; GIS; regression analysis

1. Introduction

Land use cover change (LUCC) and biosphere aspects of hydrological cycle (BAHC) are two
core types of research of the International Geosphere-Biosphere Program (IGBP). Research on the
environmental effect of LUCC has become the breakthrough point of regional sustainable development.
Due to the accelerating process of urbanization and the unrestricted spread of urban boundaries, land
use has changed greatly, which has attracted people’s attention to the impact of natural resources,
especially the quality and quantity of water resources [1–3]. The land use change tends to strengthen
the soil erosion and affect all the links of the hydrological cycle to aggravate the non-point source

Sustainability 2020, 12, 3510; doi:10.3390/su12093510 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-9185-9747
https://orcid.org/0000-0002-8971-4952
http://dx.doi.org/10.3390/su12093510
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/9/3510?type=check_update&version=2


Sustainability 2020, 12, 3510 2 of 20

pollution in the watershed [1,4,5]. Therefore, revealing the relationship between land use change and
water quality is of great significance to watershed protection.

Relevant studies have shown that there is a significant correlation between land use and water
quality [6–8]. The land use related to human activities and economic conditions are positively correlated
with the concentration of water pollutants. Water quality is better in undeveloped areas, such as natural
woodlands. However, the impacts of land use type on water quality are not completely uniform [9].
The complex interaction of land use type, landform and social culture in the study area may jointly
affect the local water quality. In general, nitrogen, phosphorus and other pollutants in river water are
mainly affected by agricultural land. Organic and heavy metal pollution is mainly affected by industry
and urban land use [8,10–12]. Especially in developing countries of Africa, due to backward economy
and treatment facilities, improper land use practice is more likely to lead to deterioration of water
quality and threaten local sustainable development. Therefore, assessment of the relationship between
land use and water quality is critical, as it helps in the formulation of comprehensive management
strategies and policies to reduce the adverse effects of land use on water quality.

The combination of water quality assessment method and spatial analysis tool greatly enhanced
the visualization of the research results [6,13]. Therefore, more and more scholars have studied the
correlation and scale effect between land use and water quality using geospatial information technology
such as remote sensing (RS), geographical information system (GIS) and multivariate analysis methods
to construct regression models [10–12]. However, there are lack research on the relationship between
land use and water quality based on multi-scale and different time phases. In the study, monitoring
datasets between 2000 and 2017 were used, concerning 10 water quality parameters collected by the
National Agency of Hydrological Resources (ANRH) of Algeria in the 7 water quality monitoring
stations, which cover the main rivers and reservoirs in Mitidja watershed including 7 catchments.
Simultaneously, the present research utilized medium resolution Landsat-5 Thematic Mapper (TM)
2000, Landsat-7 Enhanced Thematic Matter (ETM+) 2010 and Landsat 8 OLI 2017 images for preparing
land use analysis, obtained from the United State Geological Survey (USGS) website. The objective of
this study is to explore the relationship between land use change and water quality between 2000 and
2017, via GIS, RS and other spatial analysis tools and statistical tools such as SPSS, and to determine
the main sources of pollutants at the sub-catchment scale in the Mitidja Basin.

2. Materials and Methods

2.1. Study Area

The Mitidja Basin covers metropolitan Algiers capital city and its surrounding areas in the
northern central part of the country (Figure 1). The northern border of the region is surrounded by
the Mediterranean Sea. The watershed has a total catchment area of approximately 5400 km2. The
Mitidja drainage basin locates 36◦33′47.89′′–36◦50′42.89′′ N latitude and 2◦57′58.75′′–2◦55′08.61′′ E
longitude. The district mainly consists of six cities: Algiers, Blida, Tipaza, Boumerdès, Médéa and Ain
Defla. Catchment area contains a mixed topography of steep and plain slopes, altitude ranges from
approximately 1650 m above mean sea level and decreases unevenly to the sea level at the estuary
mouth in the north, except for a large relatively flat area in the middle of the catchment. The study
area belongs to the Mediterranean climate, with oceanic influence, resulting in mild and wet winters
and warm and dry summers. The average annual rainfall in the Mitidja Basin between 2000 and
2012 was 825 mm, with 80% of the rainfall coming from the rainy season. The Mitidja Basin has a
dense drainage network system. Two main river courses originate from the steep mountain rainforests
of Atlas Blidien, El Harrach and Mazafran River. Municipal and rural wastewater, agricultural and
industrial water from the cities of Algiers and Brida is discharged into the sea through these rivers.
Rivers are loaded with pollution from both point and non-point sources as they flow into the sea. The
Bouroumi, Keddara and Boukourdane are three main reservoirs located in the upstream southern
section of the Mitidja river basin with capacities of 181.86, 142.81 and 105 million m3, respectively.
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Forest land area accounts for more than 28% of the total basin area, and is mainly distributed in the
higher elevation areas, while agricultural land is concentrated in the lower elevation areas. Urban areas
are mostly situated along the coastline. From the city of Algiers to the rest of the state, urbanization has
generally declined. Because of the fertile soil, the basin is an important agricultural production base.
Agricultural land occupies a relatively large area, reaching 30.1%, and the main agricultural products
are wheat, vegetables and oranges. Industries mainly include petrochemical and medicine-based. The
area is also a popular tourist destination, known for its beautiful planted cats and resorts.

Sustainability 2020, 12, x FOR PEER REVIEW 3 of 20 

 

m3, respectively. Forest land area accounts for more than 28% of the total basin area, and is mainly 
distributed in the higher elevation areas, while agricultural land is concentrated in the lower 
elevation areas. Urban areas are mostly situated along the coastline. From the city of Algiers to the 
rest of the state, urbanization has generally declined. Because of the fertile soil, the basin is an 
important agricultural production base. Agricultural land occupies a relatively large area, reaching 
30.1%, and the main agricultural products are wheat, vegetables and oranges. Industries mainly 
include petrochemical and medicine-based. The area is also a popular tourist destination, known for 
its beautiful planted cats and resorts. 

 
Figure 1. Map of the study area. 

Located in north-central Algeria, the Mitidja Basin is an important pillar of local economic 
development. In the past two decades, the region's rivers have been seriously polluted due to 
urbanization and industrialization. Water quality is an important index to evaluate regional 
sustainable development, which is mainly influenced by human activities and natural processes. The 
source of water pollution mainly depends on the land use type of the basin [11]. The main causes of 
water pollution in the Mitidja Basin include the lack of governance of industrial and domestic sewage, 
the improper location of factory construction, the excessive use of chemical fertilizers and the lack of 
integrated watershed management. This paper would explore the relationship between land use 
patterns and water quality of different catchments, hoping to provide a scientific basis for water 
pollution control and land resource management in the basin. 

2.2. Data Sources and Methodology 

2.2.1. Sample Sites and Water Quality 

Water quality data were obtained from ANRH, which collects surface water samples every 
month and analyzes them with standard methods. In this study, we only selected data from 7 
monitoring stations which comprises 10 water quality parameters. The network of monitoring 

Figure 1. Map of the study area.

Located in north-central Algeria, the Mitidja Basin is an important pillar of local economic
development. In the past two decades, the region’s rivers have been seriously polluted due to
urbanization and industrialization. Water quality is an important index to evaluate regional sustainable
development, which is mainly influenced by human activities and natural processes. The source of
water pollution mainly depends on the land use type of the basin [11]. The main causes of water
pollution in the Mitidja Basin include the lack of governance of industrial and domestic sewage, the
improper location of factory construction, the excessive use of chemical fertilizers and the lack of
integrated watershed management. This paper would explore the relationship between land use
patterns and water quality of different catchments, hoping to provide a scientific basis for water
pollution control and land resource management in the basin.

2.2. Data Sources and Methodology

2.2.1. Sample Sites and Water Quality

Water quality data were obtained from ANRH, which collects surface water samples every month
and analyzes them with standard methods. In this study, we only selected data from 7 monitoring
stations which comprises 10 water quality parameters. The network of monitoring stations covers
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a wide range of river basins and surface water types, including reservoirs and major rivers. These
seven water quality stations (Figure 2) were chosen based on the anthropogenic activities within
the sub-catchment like agriculture, settlements and industrial on the local water quality and to their
continuity in measurement at all selected water quality monitoring stations for years that correspond
with the land use/land cover classifications 2000, 2010 and 2017. Each of the land uses affect different
parameters, which may have potential impacts on both aquatic organisms and people, who depend on
the water.
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The ten water quality indicators selected include DO, BOD5, COD, pH, SS, CE, NH4-N, NO3-N,
NO2-N and PO4-P.

2.2.2. Image Data, Preprocessing and Classification

In this study, medium-resolution Landsat time-series data sets between 2000 and 2017 were
selected to extract land use and land cover change information in the Mitidja Basin. All data were
obtained through bulk order from the freely available Landsat Level 1 Data Products (USGS) website
(http://glovis.usgs.gov). Mainly depending on image quality [13] (ensuring consistency and error
minimization, the images, which had less than 10% cloud cover, etc. Generally, the quality of the image
is better in summer and autumn than spring and winter), the following images were captured on
Worldwide Reference System (WRS) flight paths 196/Row 34/35 through the satellite sensor (Table 1).
It is necessary to preprocess the remote sensing image before the land use information is extracted
by supervision and classification, which can more accurately obtain the relationship between image
data and biophysical phenomena [14,15]. Due to the difference of Sensor between Landsat 8 and
others, Pseudocolor synthesis plan was implemented in different band composite (Table 1). ERDAS
imagine 9.2 was used to preprocess the data and the image was geo-referencing, mask processing and
sub-setting based on Area of Interest (AOI). The steps of the training sample area are as follows:

(1) Choose a training area
a) From the ERDAS main interface, open the viewer window and the classification template editor.

Click the classifier icon in the ERDAS icon panel toolbar, select the classification→ signature editor
menu, open the classification template editor signature editor to select samples and select the AOI
menu item→ select Tools menu to open the AOI tool panel.

http://glovis.usgs.gov
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b) Click on the Icon, observe remote sensing image.
Select the water area, draw a polygon AOI and add it to the training area sample. Select multiple

water bodies. In the signature Editor Dialog box, click Icon to load the AOI area of the polygon you
just created into the signature taxonomy. In the board, repeat this way to get the water body1 training
area below.

c) Merge classification templates. A few AOIs are collected and templates are generated,
respectively for water body. These templates are combined so that the classification template has
comprehensive characteristics of multiple areas. In the signature Editor Dialog box, select all the
signatures of this class, and then click the merge icon. The new template of the combination is
generated, and the original multiple signatures are deleted.

d) In the same way, find out agriculture land, forest land, urban settlement and other training areas.

Table 1. Satellite data specifications.

No. Scene Sensor Platform Pixel Size Acquisition Date

1 P196 R35 TM Landsat 5 30 m 19/08/2000
2 P196 R34 TM Landsat 5 30 m 19/08/2000
3 P196 R34 ETM+ Landsat 7 30 m 07/08/2010
4 P196 R35 ETM+ Landsat 7 30 m 07/08/2010
5 P196 R34 OLI Landsat 8 30 m 09/07/2017
6 P196 R35 OLI Landsat 8 30 m 07/06/2017

(2) Classification template evaluation: evaluate whether the selected training area samples are
typical and whether the discrimination function established by the training area samples is effective.
From the overall percentage of classification error, if the error matrix value > 85%, the accuracy of the
classification template meets the requirements.

The Maximum Likelihood (ML) method assumes that each statistical value is normally distributed
in each band, and calculates the probability that a given pixel belongs to a specific category. Each
pixel is classified into the category with the greatest possibility. This kind of classification algorithm is
more complex than others, but the effect is often better, so it is more general. Supervised classification
of ML was adopted using 5 land use/cover categories in terms of the information from field visits,
Google Earth images and available old maps of the area. The land cover categories were agriculture,
settlements, bare, vegetation, water bodies and soil/rocks. (Table 2 and Figure 3).

Table 2. Land use/land cover delineated based on supervised classification.

No. Class Name Description

1 Agriculture Crop fields and fallow lands
2 Settlements Residential, commercial, industrial, transportation, roads, mixed urban
3 Bare soil/rocks Land areas of exposed soil and barren area influenced by human influence
4 Vegetation Mixed forest lands
5 Water bodies River, open water, lakes, ponds and reservoirs

The uncertainty of land cover product data are unavoidable. At present, spatial analysis software,
such as ArcGIS and ERADS, has developed many technical methods to deal with uncertainty. Precision
assessment is the most important step in water resource modeling by integrating remote sensing data
into GIS. Since the period of this study is between 2000 and 2017, this paper makes comprehensive use
of global positioning system (GPS) and classified images of historical years, such as high-resolution
Google earth images and old maps, to ensure that the classified images of remote sensing images are
consistent with the field data of land use/land cover change.
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2.2.3. GIS Analysis

GIS spatial analysis was used to establish the relationship between the sampling point as the
water quality variable and the land use variable in the basin through watershed division; then the
relationship between land use and water quality index was quantitatively analyzed. The water quality
of the sampling site is mainly affected by the natural environment and human activities in the upstream
drainage area. The water quality data of the sampling points can be used to represent the water quality
of the basin, and the water flow characteristics of the basin can be obtained according to the digital
elevation model (DEM) [16].

It took six DEM files to cover the entire basin. The hydrology under spatial analyst tool was
used for hydroprocessing operations which included: First, the DEM data were processed with the
depressed-filling tool in the hydrological module of ArcGIS software. Secondly, calculate the flow
direction and water accumulation. Then, by setting different thresholds, the raster calculator is used to
extracting the river network. By comparing with the river system diagram, the most suitable threshold
size is determined to be 1500, which could generate the nearest approach to the actual river system;
followed by snapping of pour points operations. Each sampling point was used as a pour point for the
seven sub-catchment delineations and finally, watersheds were automatically delineated using the
Basin command found under hydrology tools. The ratios of land use types in the 7 sub-catchments
were also computed in the tools provided by the ArcGIS (Figure 3). For the main process of data
analysis, see Figure 4.
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2.2.4. Statistical Analysis

To quantify the relationship between land use and water quality indexes, this paper establishes
the relationship between water quality variables for point locations and land use variables for areas
through watershed division based on the GIS platform. According to the percentages of five land use
types and the annual average concentration of water quality indicators in 2017, the Pearson correlation
coefficient was used to test the correlation between land use types and water quality parameters.
p < 0.01 and p < 0.05 were considered statistically significant differences (2-tailed).

For there is a certain relationship between pollution loading and composition of the land uses in
the sub-catchment zone, if we know the role of different land use combinations, it is possible to improve
water quality by taking corresponding measures. Considering this, the paper uses a regression analysis
method to predict the impact of land use types on water quality variables. In order to determine
the land use combination of water quality assessment, the reverse step-by-step method and p values
stepwise regression method is used to gradually remove the unimportant independent variables from
the model [17].
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In addition, in order to calculate the temporal change relationship between water quality and
land use, we also studied the temporal change of water quality parameter concentration between
2000 and 2017. The mean change percentage of land use area in the basin between 2000 and 2017 was
analyzed by the Pearson correlation coefficient and the mean water quality index, and the intensity
and significance of the relationship between land use and water quality parameters were tested. All
statistics were performed by SPSS.

3. Results

3.1. Variation of Land Use pattern between 2000 and 2017

Land use variables showed great variability over the 7 sub-catchments and the most dominant
land use types were agriculture, vegetation or forest and urban settlement land (Figure 5).
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Figure 5. The composition of land use/cover in the sub-catchments. (a) 2000 (b) 2010 (c) 2017.

Agricultural land coverage was the main landscape type in the watershed, for instance, in
Catchment 1(43.1%), −6(40.1%), −7(44.2%) in 2000 (Table 3). Agriculture in catchments -2, -3, -4 and -7
increased by 187.4, 4426.6, 5767.90 and 3737.6 ha, respectively, 2000–2010 (Table 4). However, 2010–2017,
agricultural land use in all sub-catchments showed a downward trend, most of it was converted into
woodland (catchments 1 and 5) and urban area (catchments -4 and -5).

Table 3. Land use types for the Watershed, 2000–2017.

Year Catchment
Settlement Agriculture Vegetation Water Bare Soil

Area/ha Per/% Area/ha Per/% Area/ha Per/% Area/ha Per/% Area/ha Per/%

2000

Catchment -1 289 1.8 6748.3 43.1 6426.7 41 319.1 2 1890.5 12.1
Catchment -2 569.1 3.8 2014.7 13.4 2283.3 15.1 159.2 1.1 10,050 66.7
Catchment -3 5014.7 11.7 5687 13.3 20,833.6 48.6 4.1 0 11,305 26.4
Catchment -4 5498.3 13.8 3111.2 7.8 27,850.8 69.9 0 0 3383.6 8.5
Catchment -5 778.1 8.4 3629.2 39 4367.8 47 241 2.6 280.7 3
Catchment -6 10,705 20.3 21,158 40.1 16,355.4 31 0 0 4491 8.5
Catchment -7 15,845 10.9 64,282 44.2 31,008.4 21.3 0.9 0 34,214 23.5

2010

Catchment -1 657.8 4.2 5239.4 33.4 6965.1 44.4 257.7 1.6 2553.6 16.3
Catchment -2 697.8 4.6 2202.1 14.6 1939.5 12.9 293.2 1.9 9943.1 66
Catchment -3 3059.7 7.1 10,114 23.6 19,531.4 45.6 0.8 0 10,139 23.7
Catchment -4 2257.5 5.7 8879.1 22.3 24,849 62.4 0.1 0 3858.1 9.7
Catchment -5 1246.9 13.4 2181.7 23.5 4725.5 50.8 413.1 4.4 729.5 7.8
Catchment -6 13,615 25.8 20,138 38.2 15,643.9 29.7 0 0 3312.8 6.3
Catchment -7 13,519 9.3 68,020 50.3 20,231.9 14.9 3.8 0 33,577 24.8

2017

Catchment -1 2590.7 13.1 4830.2 34.3 6958.9 44.4 329.8 2.1 964 6.2
Catchment -2 797.9 5.3 2079.8 13.8 2124.9 14.1 385.8 2.6 9687.2 64.3
Catchment -3 5948.5 13.9 6296.7 14.7 20,899.1 48.8 11.7 0 9688.2 22.6
Catchment -4 3204.9 8 5958 15 26,908.7 67.5 0.8 0 3771.5 9.5
Catchment -5 1717.4 10.4 2155.9 31.3 4623.4 49.7 413.6 4.4 386.4 4.2
Catchment -6 15,550 29.9 20,048 38.4 15,660 29.7 3.7 0 1048.1 2
Catchment -7 32,703 22.5 65,326 44.9 25,650.7 17.6 196.8 0.1 21,475 14.8

Woodland was also another dominant land use type in the watershed; forests were mainly
distributed in southern parts of the study area occupying more than 44% in catchments -1, -3, -4 and
-5 in 2000. There was a tendency of the woodland area to increase 2010–2017, mainly based on the
increment of high altitude mountains.
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Table 4. Land use/land cover change, 2000–2017 (ha).

Catchment
2000–2010 2010–2017

Settlement Agriculture Vegetation Water Bare
Soil Settlement Agriculture Vegetation Water Bare

Soil

1 368.8 −1508.9 538.4 −61.4 663.1 1932.9 −409.2 532.2 72.1 −1589.6
2 128.7 187.4 −343.8 134 −106.4 100.1 −122.3 −158.4 92.6 −255.9
3 −1955 4426.6 −1302.2 −3.3 −1166.1 2888.8 −3816.9 65.5 10.9 −450.4
4 −3240.8 5767.9 −3001.8 0.1 474.5 947.4 −2921.1 −942.1 0.7 −86.6
5 468.8 −1447.5 357.7 172.1 448.8 470.5 −25.8 255.6 0.5 −343.1
6 2909.6 −1019.8 −711.5 0 −1178.2 1934.8 −90 −695.4 3.7 −2264.7
7 −2326 3737.6 −10,776.5 2.9 −637.9 19,184 −2693.9 −5357.7 193 −12,102

Bare soil/rock was distributed almost everywhere in the basin, accounting for 66.7% (in catchment-
2), 26.4% (in catchment- 3) and 23.5% (in catchment -7) of land cover, respectively in 2000. Bare soil/rock
in the drainage basin decreased 2010–2017, particularly in catchments -1, -6 and -7 (Table 4).

The settlement is mainly scattered in the riverside area, typically in catchments -6, -7 (29.9%, 22.5%,
respectively in 2017). The settlement area in these catchments sprawled rapidly in the past 17 years,
with an increment of 4844.4 and 16,858 ha, respectively. Moreover, little change in the water area.

In a word, the land use structure in this watershed has changed dramatically between 2000 and
2017 in detail, agriculture and barren land decreased significantly, meanwhile, urban settlement areas
in sub-catchments increased quickly and such changes led to many pollutant loads.

3.2. Characteristics of Physicochemical Water Quality in the Mitidja Watershed

Variations of physicochemical parameters of 2000, 2010 and 2017 are presented Figure 4 each
catchment in the Mitidja watershed. The results of statistical analyses revealed that most of the water
quality parameters (WQP), except pH, showed greatly spatial differences among the -7 sub-catchments.
The highest values of (pH = 8.22) slightly alkaline was observed in catchment -4 (2010). The maximum
of DO occurred in catchment -5 and was higher in forest areas. The low concentration of DO and
maximum volume of COD, NH4-N, NO2-N, PO4-P, BOD5 and SS were recorded in the lower part of
the study area, for example, catchment 6 (Figure 6), usually affected by point source pollution. The
highest concentration of NO3-N is found in catchment -7.

Spatial variation of water quality during 2000, 2010 and 2007, COD concentration increased from
the upstream to downstream. The largest increment rate of COD occurred in sub-catchment 6 between
2010 and 2017. The most severe pollution of NO3-N existed in the middle and downstream. The
upper part Mitidja tended to have more DO concentrations, but DO status decreased to Grade IV in
catchment -6 and -7.

Sustainability 2020, 12, x FOR PEER REVIEW 10 of 20 

 

Catchment -2 697.8 4.6 2202.1 14.6 1939.5 12.9 293.2 1.9 9943.1 66 
Catchment -3 3059.7 7.1 10,114 23.6 19,531.4 45.6 0.8 0 10,139 23.7 
Catchment -4 2257.5 5.7 8879.1 22.3 24,849 62.4 0.1 0 3858.1 9.7 
Catchment -5 1246.9 13.4 2181.7 23.5 4725.5 50.8 413.1 4.4 729.5 7.8 
Catchment -6 13,615 25.8 20,138 38.2 15,643.9 29.7 0 0 3312.8 6.3 
Catchment -7 13,519 9.3 68,020 50.3 20,231.9 14.9 3.8 0 33,577 24.8 

2017 

Catchment -1 2590.7 13.1 4830.2 34.3 6958.9 44.4 329.8 2.1 964 6.2 
Catchment -2 797.9 5.3 2079.8 13.8 2124.9 14.1 385.8 2.6 9687.2 64.3 
Catchment -3 5948.5 13.9 6296.7 14.7 20,899.1 48.8 11.7 0 9688.2 22.6 
Catchment -4 3204.9 8 5958 15 26,908.7 67.5 0.8 0 3771.5 9.5 
Catchment -5 1717.4 10.4 2155.9 31.3 4623.4 49.7 413.6 4.4 386.4 4.2 
Catchment -6 15,550 29.9 20,048 38.4 15,660 29.7 3.7 0 1048.1 2 
Catchment -7 32,703 22.5 65,326 44.9 25,650.7 17.6 196.8 0.1 21,475 14.8 

Table 4. Land use/land cover change, 2000–2017 (ha). 

Catchment 2000–2010 2010–2017 
Settlement Agriculture Vegetation Water Bare soil Settlement Agriculture Vegetation Water Bare soil 

1 368.8 –1508.9 538.4 –61.4 663.1 1932.9 –409.2 532.2 72.1 –1589.6 
2 128.7 187.4 –343.8 134 –106.4 100.1 –122.3 –158.4 92.6 –255.9 
3 −1955 4426.6 –1302.2 –3.3 –1166.1 2888.8 –3816.9 65.5 10.9 –450.4 
4 –3240.8 5767.9 –3001.8 0.1 474.5 947.4 –2921.1 –942.1 0.7 –86.6 
5 468.8 –1447.5 357.7 172.1 448.8 470.5 –25.8 255.6 0.5 –343.1 
6 2909.6 –1019.8 –711.5 0 –1178.2 1934.8 –90 –695.4 3.7 –2264.7 
7 –2326 3737.6 –10,776.5 2.9 –637.9 19,184 –2693.9 –5357.7 193 –12,102 

3.2. Characteristics of Physicochemical Water Quality in the Mitidja Watershed 

Variations of physicochemical parameters of 2000, 2010 and 2017 are presented Figure 4 each 
catchment in the Mitidja watershed. The results of statistical analyses revealed that most of the water 
quality parameters (WQP), except pH, showed greatly spatial differences among the -7 sub-
catchments. The highest values of (pH = 8.22) slightly alkaline was observed in catchment -4 (2010). 
The maximum of DO occurred in catchment -5 and was higher in forest areas. The low concentration 
of DO and maximum volume of COD, NH4-N, NO2-N, PO4-P, BOD5 and SS were recorded in the 
lower part of the study area, for example, catchment 6 (Figure 6.), usually affected by point source 
pollution. The highest concentration of NO3-N is found in catchment -7. 

Spatial variation of water quality during 2000, 2010 and 2007, COD concentration increased from 
the upstream to downstream. The largest increment rate of COD occurred in sub-catchment 6 
between 2010 and 2017. The most severe pollution of NO3-N existed in the middle and downstream. 
The upper part Mitidja tended to have more DO concentrations, but DO status decreased to Grade 
IV in catchment -6 and -7. 

  

(a) (b) 

Figure 6. Cont.



Sustainability 2020, 12, 3510 11 of 20

Sustainability 2020, 12, x FOR PEER REVIEW 11 of 20 

 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 6. Values (mean ± S.E.) of physicochemical parameters in the Mitidja River basin, Algeria. (a) 
pH (b) DO (c) BOD5 (d) COD (e) NH4-N (f) NO2-N (g) NO3-N (h) PO4-P (i) CE (j) SS. 

Figure 6. Values (mean ± S.E.) of physicochemical parameters in the Mitidja River basin, Algeria.
(a) pH (b) DO (c) BOD5 (d) COD (e) NH4-N (f) NO2-N (g) NO3-N (h) PO4-P (i) CE (j) SS.

Briefly, water quality characteristics in the Mitidja Basin have strong geographical division.
Upstream areas of the basin (catchment -1, -2, -3, -4 and -5) receive least water pollution, the water
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quality of this mountainous region of the basin is slightly polluted with all sites recorded an average of
category II, but their downstream areas are highly polluted (catchment- 6 and -7) which is related to
point sources and non-point pollution sources pollution, such as agricultural runoff, domestic waste
and industrial discharge. Water in downstream of the two rivers is mostly within the worse IV category.
And obviously, most water quality variables have deteriorated during the period of 2000–2017.

3.3. Multivariate Correlation Analysis between Land Use and Water Quality

3.3.1. Single Factor Correlation Analysis

In order to quantify the relationship between land use and water quality, the Pearson correlation
in SPSS was used to establish the relationship between water quality and land use variables. The
area proportion of five land use types and the annual average concentration of ten water quality
indicators in 2017 were used. Based on the significance level, independent variables NO2-N, CE were
eliminated, other eight water quality parameters passed the test (Table 5). For example, settlement
land (SL) was positively correlated with BOD5, SS, NH4-N, COD and PO4-P (r = 0.956, 0.927, 0.905,
0.904 and 0.885, p < 0.01) and negatively correlated with DO (r = −0.896, p < 0.01) and pH(r = −0.893,
p < 0.05). Agriculture land (AL) was positively correlated with PO4-P (r = 0.765, p < 0.05) and
negatively correlated with pH(r = −0.780, p < 0.01). There was a significant negative correlation
between vegetation (Veg) land and NO3-N (r = −0.933, p < 0.01). The other land use indicators, water
bodies and bare soil, have no significant correlations with water quality indicators.

Table 5. Pearson correlation coefficients between Land use cover change and water quality parameters
in the Mitidja watershed, 2017.

WQP (mg/L) Settlement (%) Agriculture (%) Vegetation (%) Water (%) Bare Soil (%)

pH1 −0.893 * −0.780 ** 0.638 0.407 0.220
CE2 −0.054 0.239 0.351 0.031 −0.148
DO −0.896 ** −0.541 0.588 0.504 0.116

NH4-N 0.905 ** 0.563 −0.363 −0.431 −0.337
NO2-N 0.595 0.745 −0.591 −0.288 −0.132
NO3-N 0.178 0.320 −0.933 ** 0.026 0.562
PO4-P 0.885 ** 0.765 * −0.547 −0.494 −0.282
BOD5 0.956 ** 0.654 −0.429 −0.519 −0.347
COD 0.904 ** 0.521 −0.359 −0.452 −0.313

SS 0.927 ** 0.522 −0.435 −0.613 −0.245

*. Significance at 0.05 probability level. (2-tailed). **. Significance at 0.01 probability level. (2-tailed). 1 Dimensionless,
the same below. 2 Unit: µs/cm, the same below.

3.3.2. Multiple Linear Regression Analysis

Based on the significant correlations between the water quality and land use change, multiple
stepwise linear regression (MLR) of each water quality variables with three land use variables (SL, AL
and Veg) was done in 7 sub-catchments. The results show that a particular type of land use cannot
describe the overall water quality indicators, but most of the water physical and chemical indicators can
be accurately predicted by one or two land use types (Table 6). Significance probability level, tolerance
and variance inflation factor (VIF), which are characteristic parameters of the collinearity diagnostics
indicating that there was no collinearity among the independent variables. However, for the significance
level is too low, AL was excluded from three land use variables for the development of the MLR model.
Probably the impact of agricultural land on water quality is masked by urbanization factors.

We can see that the significant independent variables are SL and Veg in the MLR model in Table 6.
For most of water quality parameters (DO, NH4-N, PO4-P, BOD5, COD, SS), SL can be looked at
as predictors (R2 = 0.802, 0.818, 0.783, 0.915, 0.818, 0.859). Similarly, for NO3-N, Veg can be looked
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as predictors (R2 = 0.870). For pH, the non-standardized partial regression coefficients of the two
independent variables are provided in Table 7. The MLR model was as follows:

pH = 8.116 − 0.032 SL + 0.007 Veg

Table 6. MLR model between land use and water quality in the Mitidja watershed, Algeria, 2017.

Dependent Variables Independent Variables Regression R2 Adjusted R2 p

DO SL 9.458 − 0.287 SL 0.802 0.762 0.006
NH4-N SL −6.272 + 0.634 SL 0.818 0.782 0.005
NO3-N Veg 8.813 − 0.148 Veg 0.870 0.844 0.002
PO4-P SL −2.123 + 0.252 SL 0.783 0.740 0.008
BOD5 SL −17.513 + 2.184 SL 0.915 0.898 0.001
COD SL −83.003 + 10.231 SL 0.818 0.781 0.005

SS SL 1.054 + 4.158 SL 0.859 0.831 0.003

pH SL 8.116 − 0.032
SL + 0.007 Veg 0.931 0.896

0.005
Veg 0.050

Table 7. Multiple regression results for pH and the results of collinearity tests.

Variable
Unstandardized Coefficients

T P
Collinearity Statistics

B Standard Error Tolerance VIF

Constant 8.116 0.158 51.266 0.000 - -
SL −0.032 0.006 −5.490 0.005 0.892 1.122

Veg 0.007 0.003 2.765 0.050 0.892 1.122

From the perspective of regression analysis, DO, BOD5, NH4-N, PO4-P, COD, SS and pH showed
sensitivity on changing settlement land, whereas NO3-N was only sensitive on changing vegetation
and pH could be well explained by settlement land and vegetation. Hence urban settlement land has
the greatest impact on water quality.

Meanwhile, residuals analysis showed the good fitting of the regression model (Figure 7), the
independent variables (i.e., urban settlement area) are a good predictor for dependent variables
(i.e., water quality parameters), for gauging the relationship between land use and water quality.
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In a word, in Mitidja watershed, the urban settlement is sensitive on almost all water quality
parameters, while vegetation on NO3-N only and Agricultural land on both pH and PO4-P. Therefore,
the residential area is the most relevant predictor of water quality parameters, for example, in the
regression equation of DO, although the coefficient of independent variable settlement land is negative,
it also shows that the increase of settlement land will cause water pollution in the basin, which is
consistent with the “source-sink” theory.

3.4. Time Correlation between Water Quality and Land Use Index

As shown in Table 8, as time passes, the increase of urban land is related to the increase of
PO4-P, BOD5 and NH4-N concentration. A decrease of bare soil over time is related to increasing
concentrations of PO4-P and NH4-N. This result may be the reason why bare soil is more transformed
into agricultural land and settlement land in sub-catchments where bare soil accounts for more, such
as catchment -6 and -7. There was no significant correlation between other water quality indexes
and land use. This result shows that in the past 17 years, in addition to land use, more natural and
anthropogenic variables may change dramatically. These variables include climate change, stream
flow, population growth, water use, fertilizer application, pollution control technology and national
policies. All these factors affect water quality together. Previous studies have also discovered that
there are no significant relationships between water quality and land use indicators over time [18].

Table 8. Pearson correlation coefficients between lands use change and the water quality parameters
(WQP) in the Mitidja watershed, Algeria, 2000–2017.

WQP (mg/L) Settlement (%) Agriculture (%) Vegetation (%) Water (%) Bare Soil (%)

pH −0.75 0.286 0.25 −0.393 0.714
DO −0.464 −0.536 0.571 0.286 0.643

NH4-N 0.857 * −0.179 −0.143 −0.036 −0.929 **
NO2-N −0.071 −0.607 0.679 0.75 0.107
NO3-N 0.071 0.464 −0.643 0.429 −0.429
PO4-P 0.991 ** −0.274 −0.126 0.18 −0.883 **
BOD5 0.857 * −0.25 −0.143 0.071 −0.75
COD 0.571 −0.071 −0.143 0 −0.075
CE −0.321 −0.143 0.429 −0.143 0.036
SS 0.394 0.236 −0.256 −0.256 −0.749

4. Discussions

4.1. Correlation Analysis between Land Use and Water Quality in the Mitidja Basin

4.1.1. Based on Watershed Scale

In terms of the correlation analysis above, land use structure plays an important role in affecting
major water quality parameter variability. Settlement, agriculture land and vegetation are the main
land use types among them.

First, the analysis shows that percentage of urban settlement land has a significant negative
correlation with the concentration of DO, but has a significant positive relationships with almost all
other water quality indicators. A similar conclusion is given by Sliva and Liu et al. [19,20]. With the
increase of settlement land, water quality gradually deteriorates. The increase of urban settlement
land means increased impervious surface and pollutants are easily washed into the water by rainfall,
bringing out more pollutant loads [18,21,22]. Various human and economic activities related to urban
residential land, including the discharge of residential, municipal and industrial sewage, the use of
fertilizers and pesticides on lawn, street and road runoff and other non-point sources, all contribute to
the concentration of water pollutants. Therefore, the water quality of the whole basin becomes worse
and worse.
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Second, agricultural activities will increase the risk of soil erosion, while fertilizers [23] and
pesticides will input large amounts of nutrients into rivers along with rainfall-runoff, resulting in
the decline of river water quality, especially nitrate nitrogen, ammonia nitrogen and phosphate,
etc. [19,24,25]. However, in this study, agricultural land is only positively correlated with PO4-P. It is
again proved that the relationship between agricultural activities and water quality is uncertain [18,19],
to better explain water quality change, comprehensive analysis coupled with urban land use and river
basin factors is necessary [20,26,27].

By comparison, a significant negative correlation exists between percentages of vegetation
and NO3-N. Previous studies also drew a similar conclusion, the forest dominated region had low
concentrations of most nutrient variables [26], Forest land appeared important in mitigating water
quality pollution [19], and natural grassland land can slow down water pollution [25].

4.1.2. Based on Seven Catchments

As shown in Figure 8, cluster analysis is carried out, according to the water quality index. All
sub-catchments can be divided into two groups, catchments -1, -2, -3, -4 and -5 as the first group,
catchments 6 and 7 as the second group.Sustainability 2020, 12, x FOR PEER REVIEW 17 of 20 
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The first group of sub-catchments is located in the upper of the Mitidja Basin, with high vegetation
coverage, fast purification, interception and dilution, fewer human activities and good overall
environmental conditions. In the regression model, vegetation is an important negative correlation
parameter of water quality index. Most studies [18,25,26] believe that forest land plays an important
role in reducing soil erosion rate, intercepting solid pollutants and diluting pollutant concentration.
To improve river water quality, we must strengthen the protection and management of forest and
grassland. Hence, water quality is better in upstream of the basin (catchments -1, -2, -3, -4 and -5) and
the quality in some areas can reach category II and III.

The second group (catchments -6 and -7) is located downstream of the Mitidja Basin. According
to the results of multivariate correlation analysis of land use and water quality, the sub-catchment with
a large proportion of settlement land has the most serious water pollution, which is consistent with
the previous research results [18–22], such as the second group (catchments -6 and -7). It is consistent
with the actual situation. These areas are industrial bases. Rapid industrialization leads to many
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organic pollutants discharged into rivers, which seriously affects water quality. At the same time,
agricultural land in catchments 6 and 7 accounts for 80% of the entire basin. Previous studies have
shown that the total amount of nitrogen and phosphorus in agricultural areas is the highest [21,28],
and agricultural land is generally considered as an important non-point source pollution source in the
basin, especially in the basin dominated by agriculture. Therefore, there is often a significant positive
correlation between the proportion of agricultural land and the water quality indicators, especially the
concentration of nutrients [23,29]. In this study, the results of the correlation analysis between land
use and water quality also prove that agricultural land is positively correlated with nutrients such
as NO3-N.

Therefore, the sub-catchments dominated by both agricultural and settlement land tend to have
poor water quality in the Mitidja Basin. High amount BOD5 and COD concentration in the catchment -6
of Elharrach river, where cities such as Baba Ali, Sidi Moussa and Baraki are located, the concentration
of NH4-N and PO4-P is also high. The water qualities of these two sub-catchments are generally
evaluated as category IV and most of the physical and chemical indexes can reach the level inferior to
category IV in the mainstream area, which is the most polluted area in the Mitidja Basin.

4.2. Relationship between Land Urbanization and Water Quality

The whole Mitidja Basin has shown a rapid development trend between 2000 and 2017. With the
acceleration of urbanization process, the urban settlement area of Mitidja Basin increased rapidly in
this period. The analysis shows that their impact on water quality variables was obvious. Through
the analysis of land use change, water quality change and their relationship, the main culprit of
water quality deterioration is the transformation mode from agricultural land to the urban land. In
watersheds with slow urbanization, such as catchments -1, -2, -3, -4 and -5, the land use did not change
much during this period.

Agricultural activities are still important sources of water pollution, so the proportion of
agricultural land is positively related to the concentration of water pollutants. On the other hand,
in fast urbanizing watersheds, agricultural activities may be a negligible pollution source [18,21,22].
In this case, urban land may produce many non-point source pollution, which is the main pollution
source. Therefore, it is found that the change of the settlement proportion is the main factor leading to
the deterioration of water quality in Mitidja Basin.

At the same time, another non-negligible cause of water pollution in this study was the reduction
of bare soil. The development of bare soil into agricultural land and settlement land has also led to
further deterioration of water quality and more loads on the environment.

5. Conclusions

The main research purpose was to examine LUCC evaluation and water quality fluctuation, and
the relationship between these two sides between 2000 and 2017 on a sub-catchment scale using GIS,
RS and statistic tools. The land use structure in the study area has changed dramatically between 2000
and 2017: There is a notable decrease of agriculture and barren land, whereas marked increment of
urban settlement land. Most water quality variables have degraded between 2000 and 2017, and the
water quality of upstream areas (catchments -1, -2, -3, -4 and -5) was better than that of downstream
areas (catchments -6 and -7); Urban residential land is the most significant independent variable to
predict water quality, which is sensitive to six water quality parameters (BOD5, COD, SS, NH4-N,
PO4–P, DO and pH), while vegetation is sensitive to NO3-N.

Surface water quality depends on both natural and anthropological factors. In this study, only
the dominant land use types of settlement, agriculture and vegetation showed significant correlation
with water quality parameters. Among them, land settlement and agricultural land had significant
negative effects on water quality; vegetation was the opposite. This was related to the increase in the
impervious surface of the settlement land, high-intensity of human activities inside the land and the
spatial distribution of settlement land in the Mitidja watershed. Non-point source pollution caused
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by agricultural production is also an important factor in water pollution [20,21]. Vegetation is very
important for water conservation and regulation of water quality. The protection and management of
vegetation should be emphasized. At the same time, the conversion and development of bare soil into
agricultural land and settlement land is also an important reason for the deterioration of water quality.
Relevant departments and staff should pay attention to this issue.

This study shows that the fluctuation of water quality is closely related not only to land use
patterns on the watershed scale, but also to the superimposition influence of the urbanization process
and the difference of topography and geomorphology. There is certain spatial heterogeneity among
sub-catchments. Of course, due to limited datasets of both water quality and LUCC, the uncertainty of
image interpretation, scale effect [19,20,24,25,30–32] and complexity of water quality impacts [20,28],
the relationship between land use and water quality is non-unique. Further studies should introduce
more water quality parameters and other possible influence parameters and conduct longer time series
data analysis [33–37].
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