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Abstract: Measuring exact obesity rates is challenging because the existing measures, such as body
mass index (BMI) and waist-to-height ratio (WHtR), do not account for various body metrics and
types. Therefore, these measures are insufficient for use as health indices. This study presents a model
that accurately classifies abdominal obesity, or muscular obesity, which cannot be diagnosed with
BMI. Using the model, a web-based calculator was created, which provides information on obesity
by predicting healthy ranges, and obesity, underweight, and overweight values. For this study,
musculoskeletal mass and body composition mass data were obtained from Size Korea. The groups
were divided into four groups, and six body circumference values were used to classify the obesity
levels. Of the four learning models, the random forest model was used and had the highest accuracy
(99%). This enabled us to build a web-based tool that can be accessed from anywhere and can
measure obesity information in real-time. Therefore, users can quickly receive and update their
own obesity information without using existing high-cost equipment (e.g., an Inbody machine or a
body-composition analyzer), thereby making self-diagnosis convenient. With this model, it was easy
to recognize and manage health conditions by quickly receiving and updating information on obesity
without using traditional, expensive equipment, and by providing accurate information on obesity,
according to body types, rather than information such as BMI, which are identified based on specific
body characteristics.

Keywords: deep learning; data mining; analysis; body index; healthcare; big data; body mass index;
deep neural network; classification; variable selection; regression; self-obesity diagnosis; web service;
random forest

1. Introduction

According to the first-year data from the 7th National Health and Nutrition Survey (2016), Korea’s
obesity rate is increasing every year and accounts, as of 2016, for 34.8% of the total population.
The Organization for Economic Cooperation and Development (OECD) has predicted that Korea’s
already highly obese population will double by 2030 [1]. The cost of obesity in social losses, such
as medical costs, reached 9.2 trillion Korean won, as of 2015. This is more than just a problem of
excess weight; obesity also results in orthopedic problems, as well as diseases related to most organs,
such as asthma, diabetes, high blood pressure, cardiovascular disease, and depression, with short and
long-term consequences [2,3]. Most people are aware that obesity can cause physical problems, but
they do not know how badly their bodies are damaged or understand how to improve their condition.
In 2011, the authors conducted an investigation on the perception of body shape and subjective health
conditions, asking college students in the Seoul area to rate, on a five-point scale, their health-related
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habits, such as exercise, diet, and lifestyle. The study found that the difference between people who
subjectively considered themselves healthy versus those who did not was satisfaction with their
weight [4]. Many overweight or obese people have negative views about their health and are sensitive
to changes in their weight.

However, when people are sensitive about their weight they can easily measure and are less
sensitive about their body shape. The reason is that most people use the body mass index (BMI) and
body fat (BF) percentage indicators, which are thought of as the gold standard, when they measure
obesity. According to the World Health Organization (WHO), these obesity standards are defined as
follows: BMI is calculated as kg/m2 (weight in kilograms divided by height squared in meters) and has
four categories: underweight (BMI < 18.5 kg/m2); normal weight (18.5 kg/m2

≤ BMI < 23.0 kg/m2);
overweight (23.0 kg/m2

≤ BMI < 25.0 kg/m2); and obese (25.0 kg/m2
≤ BMI) [5]. Further, the BF

percentage is largely divided into four classes, and unlike BMI, which only measures obesity by
height and weight, the BF rate can be added to measure obesity more accurately. However, there are
difficulties in measuring the exact level of obesity because the BMI and BF values do not account for
differences in muscle mass or body shape [6].

There is a need to modify obesity values in order for them to be stricter than the international
obesity standard defined by the WHO [7]. Therefore, various research studies on obesity values or
body shape values that can supplement BMI have been conducted and new measures have been
proposed, including a body shape index (ABSI), which is an indicator to assess health effects through
height, weight, and waist circumference of a given human body that measures mortality based on the
correlation between height, weight, and waist circumference [8]. The Brugsch’s index is a measure
of physical health that uses weight and height [9]. The weight of Kaup’s index, and the presence of
height, is proportionally determined by body type, such as obesity [10]. While there are many different
methods of measurement, people usually use BMI, which is easy to calculate, because it is a simple
method derived from a single body size approximation. The BMI method has also been supplemented
with the anthropometric risk indicator (ARI) index [11]. However, it is difficult for people to judge the
body area that has the problem, especially compared to simply checking a chart to confirm a perception
about weight. Despite the abovementioned methods being effective in calculating obesity in specific
body parts, their calculation methods are complex. Therefore, many people judge their obesity levels
through BMI, which is easily calculated. Furthermore, the fact that obesity can be measured differently,
using various indices, may be a cause for confusion.

For example, myopic obesity (internal equipment only) often results in a convex form in the arm,
leg, and abdomen, which is either thin or normal in terms of BMI, but in reality, is abdominal obesity.
Another case of misclassifying obesity is muscular obesity. Musculoskeletal obesity can be concluded
in case of a very athletic person who has a lot of muscle mass, typically with broad shoulders and large
muscle presence in certain areas, which is judged by BMI standards to be overweight or obese, despite
actually being within the normal range.

This makes it difficult to find hidden obesity and muscular obesity. There is a hidden obesity
in judging obesity hidden obesity is a body type that appears when BMI values are 25% or less for
men and 35% for women, and BF values are 18.5–25%. Muscular obesity refers to body types that
are in fact obese, but appear normal or slim. If BMI is less than 10% for men, or less than 20% for
women, and more than 25% for the BF value, it may be considered normal but be obese. However,
the BMI may actually belong to a normal, muscular category, and not the obese category. For this
reason, people need to obtain accurate obesity information that reflects their body type. In addition,
the National Health and Nutrition Survey 2015 found that the data diagnosing obesity through BMI
was misdiagnosed about 7% of the time, as compared to the data of the population diagnosed with
obesity using BMI calculations based on expert advice.

Hence, it is necessary to create an accurate classification model. Information such as body
component analysis and skeletal muscle mass is required to accurately determine hidden obesity, or
musculature obesity. While BMI alone is not able to categorize obesity exactly, it is often used because
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it is easy to measure weight or height. However, in comparison, collecting information on body parts,
or skeletal muscle mass, is relatively difficult.

Therefore, this study aims to develop a model that easily measures and accurately classifies
obesity by body size, using input information such as weight, height skeletal muscle, and body fat, as
well as measuring the length and circumference of six body parts (chest, waist, hip, thigh, calf, and
arms). This method offered a new insight into obesity, and was compared to the existing BMI method.

Using this method, it was possible to diagnose obesity more accurately than when diagnosed
by the BMI [12] and WHtR methods [13]. This study divided the body parts into various age groups,
into six sections (i.e., chest, waist, hip, thigh, calf, and arm); measured the length and width of each
body part; used variables such as weight, height, skeletal muscle mass, and body-fat mass to check for
obesity; and examined whether the resulting prediction of likely/unlikely obesity, based on the learned
data, which leads to a more accurate evaluation in comparison the traditional BMI method. Further,
using the data gathered, we evaluated the subjects’ obesity using the lengths of the body parts.

This study determined complex body obesity conditions by only using body sizes that are
recognized and easily measurable by themselves, as opposed to measuring body conditions and
obesity using only one specific area. The purpose of this study is to use the length and circumference
information of major body parts to create a model that can accurately classify obesity conditions. In
summary, this study used information on the length and circumference of six major body parts to
categorize groups that had been incorrectly diagnosed as normal, when they are obese, and to develop
algorithms that can diagnose muscular obesity as normal.

This research is presented as follows: Section 2 presents the existing studies and studies on various
indexes for measuring obesity and obesity information related to obesity information and explains the
direction of this study. Section 3 presents methods for data definition, data pre-processing, and variable
selection to be used in the analysis of this study, and suggests criteria for obesity using the web service
presented in this study. Section 4 classifies obesity information through the proposed classification
method based on the selected variables, and builds a web service using the model with the highest
accuracy for obesity information based on the derived results. By building a web service, we provide a
service that can derive obesity information using only in vitro information that people can recognize.
In Section 5, the obesity information derivation system is tested through the experimental group, and
the final result is compared with the existing obesity information prediction model.

2. Literature Reviews

2.1. Obesity Measure

Obesity problems are becoming a serious social issue. Thus, several studies concerning obesity
measurements and studies identifying the relationship between obesity and various diseases are being
conducted. In 2003, Marita Dalton used the body mass index (BMI), waist circumference, and waist-hip
ratio (WHR) to identify the correlation between waist circumference, hip circumference, and BMI,
and explored the risk factors of cardiovascular diseases. This study used 11,247 Australian national
samples and a cross-sectional investigation of Australians in their 20 s in order to assess the relationship
between WHtR and cardiovascular disease. However, that study only measured body circumferences
and did not consider overall proportions, or muscle mass [14]. Because of hypertension, atherosclerosis,
and coronary artery disease (CAD) are found in both slim people and obese people; it was judged
that the clinical diagnosis of visceral fats might be more important than the obesity diagnosis using
BMI. Thus, in 2006, another analysis was conducted using waist circumference and WHR, focusing on
the accumulation of organ fats. Measurements were made using abdominal CT scans, and the results
showed a correlation between diseases and the total quantity of visceral fats [15]. In 2008, WHtR was
used to evaluate metabolic risks in children. That study used body measurements and fasting blood
samples drawn from the artery. The results showed that children with larger waist circumferences
had greater metabolic and cardiovascular risks, in comparison to children with smaller waists [16].
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In addition, research has been conducted to measure the health of people using electronic ultrasounds
and electrocardiograms [17]. In 2016, BMI is ideal for population-level research, but descriptions of
BMI obesity can lead to inaccurate results in local assessments. The reason is that BMI calculations do
not distinguish fat from fat muscle. In the study, cohort studies were conducted on 4293 patients who
underwent surgery to measure the link between BMI and post-operative mortality, and obese people
judged that there was a high incidence of post-op infections and to judge obesity. However, BMI did
not consider gender differences in fat or age-related muscle mass loss distributions and determined
that it was likely to be obese at normal weight. To address this, we compared the BMI and waist
circumference methods and verified by computer tomography and double-energy x-ray absorption,
and found that waist circumference had the greatest effect on obesity measurement [18]. In 2019, Garcia
et al. conducted BMI measurements on 218 low-income children in Mexico, and analyzed the link
between obesity and the food environment through a multivariate model that utilized the geolocation
of bone-convenience stores (CS), which were selected and embedded into a GIS database [19]. However,
none of these studies considered other factors, particularly the fact that patients cannot self-diagnose.

In our study, we defined six body parts: chest, waist, hip, thigh, calf, and arm. We used various
body variables such as volume, weight, height, skeletal muscle mass, and body-fat mass to calculate
whether a subject should be considered obese or not. Based on extracorporeal information, such as
the length and circumference of learned body parts and body moisture, the model was established to
classify obesity conditions. The model was designed to create an accurate obesity classification system
using only a few extracorporeal data points.

2.2. Body Index

In healthcare, obesity and health condition improvements are being frequently highlighted and
studied. In 2004, Kim and Kang studied the effect that the walking pace of obese women had on their
BMI and body-fat ratios. In that study, data were collected for two months from 20 obese women.
The results showed that an exercise program of fast walking had the effect of lowering the body-fat
ratio of the obese women. However, this was significantly relevant because the relationship between
the exercise level and body mass has long since been clearly supported [20]. In 2017, Japar et al.
determined that there is a limit to measuring obesity through BMI and in evaluating abdominal obesity.
Underweight, normal, overweight, and obese subjects were analyzed in four categories, and 3% were
classified as abdominal obese, which could not be measured by the actual BMI index [21]. In the
same year, although BMI is an indicator used for everyone, obesity information was determined by
comparing body fat index of body type by height in estimating BMI level of young people in order to
be accurate in diagnosing obesity of young people. The participants used 2285 participants between
the ages of 8 and 28 to compare TMI = mass with BMI through the height cubes (kilometers cubes).
Verification was validated with dual-energy x-ray absorptiometry and anthropometric data, resulting in
TMI being more accurate in classification for overweight and normal weight conditions than BMI [22].
The BMI index was determined to be different depending on the lifestyle of each country, and a new
BMI standard was proposed. In presenting the new BMI standard, this study analyzed the patterns of
obesity in the United States and South Asia, which have different environments, and proposed a new
obesity index in South Asia using the difference in environmental conditions. In presenting the obesity
index, a total of 1076,824 data points were analyzed for children in each country, and the BMI pattern
was adjusted using these data. As a result, the number of overweight and obese people increased by
0.5% [23]. In 2019, difficulties were reported in measuring BMI through the body mass index and
height when a patient is admitted to hospital. The survey was conducted on 750 patients through
a cohort study and was used to identify patients at risk of malnutrition [24]. A link was identified
between obesity and complications, and obesity of the abdomen was the leading cause of complications.
Therefore, because obesity diagnosis methods, such as BMI, WHR, and WHtR, do not accurately
determine the amount of fat in the abdomen, and new biomarkers have been used to determine obesity
risk groups [25]. These are just a few examples of the prevalence, focus, and methodologies that are
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related to research on obesity and health condition improvements, and the information they have
contributed has provided an invaluable background to this study. However, as the extant literature
suggests, there are many variables that cannot be controlled by the subjects themselves. Furthermore,
lay people may face difficulties in accessing or using data collected through institutions. Therefore, in
this study, we used physical size values that can be self-measured, so that subjects can evaluate their
own level of obesity and identify their bodies’ problem areas more accurately than using just BMI.
In addition, even if existing internal and extracorporeal information are used to learn, and only the
extracorporeal information of the measurers is known, the information previously learned is used to
predict the extracorporeal information and to measure obesity. We identified body-part issues that
contribute to obesity and built a web-based application that anyone can use for real-time self-diagnosis
in order to predict and manage their obesity.

3. Materials and Methods

This study incorporated internal and extracorporeal information when only extracorporeal
information was input. It was able to derive similar body information when only extracorporeal
information (such as body size) was input, and combined previously learned body information with
the obesity diagnosis. Analyses were conducted using anthropometric data from Size Korea [1].
In examining the data structure used in the analysis, the data collected in 2015 was used to analyze 148
variables from 6413 subjects (3192 men and 3221 women), in ages ranging from 20s to 60s. KS A7003
was selected by the Korea Institute of Standards and Science (KRISS) as the measurement item for
120 anthropometric measurement items and established Korean standards (see the Supplementary
Material). The data were collected in a total of 28 regions in Korea, and bodies were measured by
direct measurement, which was verified by KS A7003 [26]. Body composition analysis is also a group
of detailed measurements of a single human body, along with detailed human dimensional data, such
as the whole body, feet, head, and hands by digital technology. For our measurement investigation
protocol for data collection, the authors considered the statistical method for deciding measurement
subjects based on ISO 15,535 in order to calculate the minimum number of measurement subjects with
relative accuracy (1–3%), using the maximum variation value of data by body type.

Table 1 shows the demographics of obesity information in the National Health and Nutrition
Survey data. Looking at Table 1, we can see the value of obesity from teenagers to people in their 60s
for the four types of obesity information. The data provided in Table 1 are the body data provided by
the 2015 National Health and Nutrition Survey (NHNS). It provides accurate information about obesity
information through a thorough investigation of the data. Therefore, we used the obesity information
provided in this data as a reference. Table 2 shows a total of 6413 obesity-related data received from
NHNS in 2015 that were used to measure obesity on a variety of obesity information. NHNS’s data
are those that contain body information measured through the KS A7003. Using this data, values for
various body parts were derived for BMI, body fat percentage, WHR, and WHtR. The NHNS also
represents specialized statistics, which are shown for 6413 obesity information derived from human
body measurement and obesity examination by experts at NHNS agencies. Thus, the error rate was
presented to indicate the error compared to the previously derived estimates of obesity information.
Compared to Table 2, it shows the difference between the degree of obesity and the error rate for obesity,
measured by the existing obesity index. A total of four measures of obesity were used to compare
the differences, with the obesity indices measured by specialized institutions. The data measured
by the specialized institutions were made into four clusters for men and women (normal weight,
underweight, overweight, and obese), and were compared to the existing obesity index; each criterion
was underweight (BMI < 18.5 kg/m2); normal weight (18.5 kg/m2 < BMI < 23.0 kg/m2); overweight
(23.0 kg/m2 < BMI < 25.0 kg/m2); and obese (25.0 kg/m2

≤ BMI). WHtR (obese over 0.63, overweight
over 0.63, overweight under 0.63, normal weight over 0.43, under 0.53, underweight for women over
0.63, overweight over 0.63, under 0.63 over 0.63, underweight under 0.43 over 0.42), WHR (obese over
1, 0.9, overweight, under 0.95, normal weight, under 0.85, underweight women under 0.92, obese,
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over 0.9, over 0.92, overweight, 0.76, and under 0.9, underweight, under 0.76). Body fat percentage is
based on males over 25 obese, over 20 over 25, overweight, over 14 over 20 normal weight, under 14
underweight, over 27 over obese, over 23 over 27, over 17 over 23 normal weight, under 17. As shown
in the table below, as a result of judging obesity through various indices of obesity, there are a lot of
errors with the diagnosis of obesity that are derived from body information, such as body composition
at a specialized institution. It can be seen that the reason for the error is that the obesity index is used
to predict obesity based on only one part of the body. Therefore, in this study, by learning various
internal and external information measurements by a specialized institution, when only the body
size information is input, the service provides a service to determine obesity based on the previously
learned information. Not only can you receive knowledge, you can easily diagnose your obesity
without the use of machines, such as body composition and muscle mass analysis.

Table 1. Survey data demographics (National Health and Nutrition).

Man

Age/Obesity Index Normal Weight Underweight Overweight Obese Total

10~20 651 139 274 220 1284
30 414 129 74 55 672
40 374 86 53 57 570
50 267 55 46 52 420
60 149 32 25 37 243

Woman

Age/Obesity Index Normal Weight Underweight Overweight Obese Total

10~20 554 180 136 296 1166
30 302 114 69 57 542
40 389 113 63 60 625
50 232 87 74 66 459
60 275 67 34 54 430

Table 2. Error comparison of obesity information measurement with specialized institutions.

BMI Body Fat (%) WHR WHtR NHNS

Normal weight(man) Error rate 1887 (1.73) 1407 (24.15) 802 (56.76) 1833 (1.18) 1855
Normal weight(woman) Error rate 2302 (31.39) 1365 (22.09) 1836 (4.79) 1958 (11.76) 1752

Underweight(man) Error rate 164 (62.81) 163 (63.04) 1571 (256.24) 795 (80.27) 441
Underweight (woman) Error rate 266 (52.59) 263 (53.12) 955 (70.23) 628 (11.94) 561

Overweight(man) Error rate 1126 (138.56) 714 (51.27) 749 (58.69) 537 (13.77) 472
Overweight(woman) Error rate 635 (68.88) 975 (159.31) 108 (71.28) 484 (28.72) 376

Obese(man) Error rate 14 (96.67) 907 (115.44) 69 (83.61) 24 (94.3) 421
Obese(woman) Error rate 19 (96.44) 619 (16.13) 323 (39.4) 152 (71.48) 533

3.1. Data Definition

Original body data were gathered for various body parts using basic measuring tools: rulers
and a body-composition analyzer. The variables were divided into two large groups: intracorporeal
data and extracorporeal data. Intracorporeal data are body information obtained by taking internal
measurements using various machines; in our study, the variables were skeletal-muscle mass, body-fat
mass, body water, minerals, body-fat ratio, and basal metabolism variables. Extracorporeal data are
external information; we processed the data from Size Korea for the length and width of each of the six
body parts. In measuring the length and width, we divided the areas in order to obtain no overlapping
lengths between any of the six parts. All body-part measurements were in millimeters (mm). The total
number of variables acquired was 30. The data were all human measurement data provided by Korean
Size 2015. It consisted of a total of 148 variables, including gender, height, weight, and length of each
body part. Of the 148 variables, the remaining variables were removed from the analysis, except those
included in Table 3. Unlike the traditional methods of using BMI and (WHtR), the information on the
values of the body parts given in Table 3 were disaggregated and used to perform obesity prediction
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analyses. The obesity information defined was based on this standard by learning the intracorporeal
and extracorporeal information, and was evaluated using the difference from the deduction of obesity
using the existing obesity measurement methods when information about body shape was input. The
variables selected are listed in Table 3.

Table 3. Selected body-part variables for analysis.

Area of Analysis Selected Variables

Chest chest breadth, chest circumference, chest height, chest girth
Waist waist breadth, waist circumference, waist height, waist girth
Hip hip breadth, hip circumference, hip height, hip girth
Arm arm length

Thigh sitting thigh height, thigh circumference, thigh length
Calf calf circumference, knee height

3.2. Data Processing

Figure 1 shows the overall process of this research, which comprises three stages: data
preprocessing, data analysis, and web servicing. In the data preprocessing stage, the intracorporeal
data were divided from the extracorporeal data (from Size Korea) into chest, waist, hip, arm, thigh, and
calf, and the variables were selected using the variable selection model. We drew the final variables
selected from the results of the variable selection. In the data analysis stage, we used the selected
variables to create a total of four types of classification methods in order to find the model with the
highest accuracy. After finding the model with the highest accuracy, in the web service stage, we built
a web-based application that used body-part measurements and BMI information to show the obesity
information. In the web services phase, information about obesity was derived from the models that
were built in the data analysis phase and were configured based on the best model found.
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3.3. Data Description and Feature Selection

As shown in Figure 1, the information input identifies obesity based on the Size Korea data.
The relationship between BMI and the BF percentage was identified, and a standard for obesity was
established through WHO standards in that relationship [27]. As shown in Figure 2, we defined
the BF ratio separately for men and women. Using the defined BF ratio information and BMI, we
created five classes: slim, normal, hidden obesity, muscular obesity, and obesity. The drawn obesity
information was converted to the following patterns: slim→underweight, normal→healthy range,
hidden obesity→overweight, muscular obesity→obese, and obesity→obese, which were identical to
the standard variables of BMI and WHtR, and were in line with the class values of BMI and WHtR to
be compared.

We chose variables that affect obesity through a regression model, which is one of the ways in
which we select variables. Since the regression model is the most widely used model to identify the
relationships between the various numerical categorical independent variables for a single dependent
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variable, a variable selection was made using it. Therefore, a regression model was used to conduct
variable selection, extracting variables from among 30 extracorporeal and intracorporeal variables
that influence obesity. For the variable selection method, a stepwise regression, which is a multiple
regression model, was used. In variable selection, we found the section with the highest adjusted
R− Squared value, and the section with the lowest Cp value, to select the number of variables. Data
preprocessing was completed by selecting the variables using the regression analysis.
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The coefficient of determination in R − Squared is an increasing function that also increases in
size if the number of independent variables increases; thus, it has the disadvantage of the coefficient
of determination increasing, regardless of significance, if the number of independent variables
increases [28]. In adjusted R− Squared, the unexplained variation coefficient decreases and n− p− 1
also decreases when the sum-of-square error increases, and is neither an increasing nor decreasing
function, as shown in Equation (1); therefore, it is shown that adjusted R − Squared is not an
increasing function.

R2
a = 1−

(n− 1)
(
1−R2

)
n− p− 1

(1)

The Cp statistic value is a measure of how close the regression model of p regressors is to the target
model. We selected the model in which Cp had the value closest to p and had few variables in the
p-regressor regression model [29].

Cp =
SSEp

MSE
− n + 2p (2)

Therefore, the graphs of the Cp statistic and the adjusted R-squared were each generated.
Equation (2), which shows the sum of the residual squares (SSE) and the residual square mean (MSE),
represents the sum of the residual squares of the model with each selected explanatory variable—the
p − value is the number of explanatory variables selected and the n value is the total number of
explanatory variables. Therefore, this represents the estimator of the sum of the residual squares.
Moreover, the minimum value of the Cp statistic in this graph is 16, and the maximum value of
the adjusted R − Squared in this graph is also 16, as shown in Figure 3. Therefore, based on the
above-mentioned two values, we performed optimal variable selection using the p − value in the
regression analysis method. As a result, the following variables were selected for obesity analysis:
gender, body-fat mass, body water, minerals, BMI, body-fat ratio, height, weight, waist circumference,
hip breadth, hip vertical length, chest breadth, chest circumference, chest girth, thigh circumference,
and calf circumference.
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For the classification model, we used the following machine-learning methods to select the model
with the highest accuracy as the final model: multiclass random forest, multiclass decision jungle,
multiclass neural network, and multiclass logistic regression.

Table 4 shows that there are variables that have p − values that are not significant. However,
because the optimal variable from the adjusted R− Squared value and the Cp statistic value were 16,
we conducted the analysis using the variables drawn from variable selection.

Table 4. Values of selected variables.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) 0.1269347 0.8901940 0.143 0.886617
gender 1.0835835 0.0544733 19.892 <2 × 10−16

body-fat mass −0.0135137 0.0075575 −1.788 0.073803
body water −0.0253866 0.0081065 −3.132 0.001746

minerals −0.0106529 0.0072712 −1.465 0.142945
BMI 0.1203787 0.0215231 5.593 2.32 × 10−8

body-fat ratio −0.1133425 0.0045573 −24.870 2 × 10−16

height 0.0033897 0.0005686 5.961 2.64 × 10−9

weight −0.0071550 0.0013629 −5.250 1.57 × 10−7

waist circumference −0.0018812 0.0003692 −5.096 3.58 × 10−17

hip breadth −0.0039953 0.0011944 −3.345 0.000828
Hip vertical length −0.0014413 0.0006580 −2.190 0.028532

chest breadth 0.0016500 0.0010945 1.508 0.131721
chest circumference −0.0011993 0.0004875 −2.460 0.013913

chest girth 0.0034860 0.0011075 3.148 0.001654
thigh circumference −0.0009568 0.0006407 −1.493 0.135360
calf circumference 0.0012441 0.0008620 1.443 0.148994

3.4. Compare Methods

Random forest, one of the classification models, is an ensemble learning method. It outputs
the classification, or mean predicted value, from the multiple decision trees that are built during the
training process. One tree comprises a collection of nodes and edges in a hierarchical structure. Nodes
are divided into internal nodes and terminal nodes. Therefore, it is a method to find the optimal model
by using tree models that have different characteristics. When producing the first tree, the model
measured the degree of inequality using the Gini coefficient in order to decide how many nodes were
made. As the Gini coefficient approached 0, the distribution could be said to be equal; as it approached
1, the distribution was unequal. Therefore, in the case of the Gini coefficient decreasing, and the node’s
impurity decreasing as the nodes separated, the division of the corresponding node was terminated,
and the final tree model was made. Finally, the best model was drawn from the trees made in such a
manner using the out-of-bag (OOB) method. When n observed samples are sampled with replacement
n times, they are re-sampled with the probability of the following equation [30,31]. In Equation (3), by
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restoring n observation samples n times, the sample is capable of being duplicated in the sample, and
the same size sample is taken as training data, with the other unselected objects being set as test sets.
Therefore, the variables have slightly different characteristics for each tree and generalize the results,
based on the predictions of each tree to improve performance. In this study, which deals with many
variables, we used this method. In parameter setting of Random Forest trained each model through
resampling method bagging and used 10 decision trees for training. In addition, the maximum depth of
the tree was set to 32 and the number of random splits was set to 128, and 100 training was conducted.

OOB = 1− (1−
1
n
)

n
(3)

Decision jungle is another ensemble model and is a method for detailed classification. This model
refers to the combination of randomized ensembles of directed acyclic graphs (DAGs). This model
has the function of a division node that obtains general information and the structure of DAGs.
DAGs independently learn each root, and each root predicts accuracy using the learned nodes [32].
In parameter setting of multiclass decision jungle, ten decision directed acyclic graphs (DAGs) layers
are used and the maximum depth of the decision tree was set to 32. Also, the number of optimization
steps was defined as 2048.

Equation (4) applies to multiple class classification neural networks through Cross entropy.
The value derived is the cost function E. The output y value ranges from 0 < y < 1 and the Cross
entropy cost function is used together as an active function. d is displayed as one-hot-vector when the
answer label is correct, and the error is equal to the output value to zero, and the larger the difference
between the two values, the greater the error value. n and m mean the total number of y ji for each
data, i− dimensional value for the number of j data, and d ji means the i− dimensional value. Thus, to
calculate the probability for each data, the probability is expressed using ln, and the mean loss function
is divided by n, which represents the total number of data. λ is a cost function that determines how
much the weight of the connection w will be reflected. Thus, even if the error is zero, the cost function
will have a large value, thus solving the overcompatibility problem of the neural network by keeping
the weight small.

E =
1
N

n∑
j

m∑
i

{
−di ln

(
y ji

)
−

(
1− d ji

)
ln

(
1− y ji

)}
+ λ

1
2
||w||2 (4)

To minimize the costs after obtaining the cost function, the backpropagation algorithm was used.
The accuracy of the classification model was obtained using the optimized cost function obtained
through this process [33]. In parameter setting of multiclass neural network, there is no dropout where
100 hidden nodes are created, and all nodes are connected, and the learning rate is set to 0.001.

Logistic regression is a statistical methodology that is used to solve and predict the problem of
identifying the linear relationship between independent and dependent variables, which is identical to
the goal of a regular regression analysis. Logistic regression is used when the dependent variables are
categorical data. When two or more dependent variables are analyzed, this is referred to as a multiclass
logistic regression analysis. Logistic regression analysis faces the problem of effectively finding the
linear predictor variables. Therefore, it can be represented as in Equation (5).

Logistic regression is a statistical method used to resolve and predict the problem of identifying
linear relationships between independent and dependent variables just like the goals of regular
regression. Logistic regression is used when the dependent variable is categorical data. Time to
analyze more than one dependent variable is called multi-class logistic regression. Logistic regression
is a good way to find linear predictors. Therefore, it can be expressed as in math Equation (5).
The expression in logistic analysis is used to determine the effect of the regression values on the
dependent variables by using a probability px with anode ratio that indicates the intersection ratio and
determines whether they are true or false, and thus the regression coefficients β0, βnxn and variables
are used to determine the effect of the regression values of the various analysis variables on the
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dependent variables and to depend on the regression values that have the greatest influence on the
data classification of data [34]. In parameter setting of multiclass logistic regression, four obesity
information was designated as dependent variables, and through this, class prediction values for which
data belong to each classification were derived. Multiclass logistic reserve derived 2.2 × 10−15 with
p− value less than 0.05 and used it to select the model.

loge
px

1− px
= β0 + β1x1 + β2x2 + · · · βpxp. (5)

To select the model with the best value for deriving obesity information using these four models,
the performance of the four models was judged using the accuracy of the model, the precision value,
and the recall value. Table 5 lists the accuracies of the four models. In Table 5, the accuracy of these data
was derived by randomly extracting 100 data for four types of obesity information in order to select
the model that produces the highest accuracy for the four classification models and the model that
derives the highest accuracy for the obesity information. As a result, a total of 100 data were derived
for the four obesity information (normal weight: 40, underweight: 26, overweight: 20, obese: 14) and
random forest and multiclass decision jungle produced the highest accuracy and chose the random
forest model. The values extracted from Table 5 are the representations of the average values of the
four types of obesity information. Therefore, as shown in Figure 4, each ROC curve for each of the four
models was derived, and the random forest with the highest accuracy was selected as the final model.

Table 5. Results of classification analysis models.

Analysis Model Accuracy Precision Recall

Random forest 0.99 0.99 0.99
Multiclass neural network 0.89 0.83 0.62
Multiclass decision jungle 0.99 0.99 0.99

Multiclass logistic regression 0.95 0.91 0.83

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 17 

dependent variables by using a probability ݌௫ with anode ratio that indicates the intersection ratio 
and determines whether they are true or false, and thus the regression coefficients ߚ଴, ߚ௡ݔ௡ and 
variables are used to determine the effect of the regression values of the various analysis variables on 
the dependent variables and to depend on the regression values that have the greatest influence on 
the data classification of data [34]. In parameter setting of multiclass logistic regression, four obesity 
information was designated as dependent variables, and through this, class prediction values for 
which data belong to each classification were derived. Multiclass logistic reserve derived 2.2e−15 with ݌ − value less than 0.05 and used it to select the model. log௘ ௫1݌ − ௫݌  = ଴ߚ  + ଵݔଵߚ + ଶݔଶߚ + ⋯  ௣. (5)ݔ௣ߚ

To select the model with the best value for deriving obesity information using these four models, 
the performance of the four models was judged using the accuracy of the model, the precision value, 
and the recall value. Table 5 lists the accuracies of the four models. In Table 5, the accuracy of these 
data was derived by randomly extracting 100 data for four types of obesity information in order to 
select the model that produces the highest accuracy for the four classification models and the model 
that derives the highest accuracy for the obesity information. As a result, a total of 100 data were 
derived for the four obesity information (normal weight: 40, underweight: 26, overweight: 20, obese: 
14) and random forest and multiclass decision jungle produced the highest accuracy and chose the 
random forest model. The values extracted from Table 5 are the representations of the average values 
of the four types of obesity information. Therefore, as shown in Figure 4, each ROC curve for each of 
the four models was derived, and the random forest with the highest accuracy was selected as the 
final model. 

 

Figure 4. ROC curve classification models. 

  

Figure 4. ROC curve classification models.



Sustainability 2020, 12, 3702 12 of 17

4. Results and Discussion

Using the selected variables and the four types of models, we generated each classification model,
and then selected the most accurate model. In the analysis, we used the Azure statistics module
provided by Microsoft, based on R. For the analysis models, we used the multiclass random forest,
multiclass decision jungle, multiclass neural network, and multiclass logistic regression. Prior to
analyzing each classification model, we conducted a model construction. Here, we modified the
construction values so that all the models had identical conditions.

Random forest: This is a resampling method known as bagging, which is used to select multiple
samples and trains them to each model in order to aggregate the result. We used ten decision trees;
the maximum depth of the decision tree was set to 32; the number of random splits per node was set
to 128; and the minimum number of samples per leaf node was defined as one. Bagging performs
a restoration random sampling of the target data and sorts the extracted data into a sample group,
which then collects the predictor variables of the learned models in order to generate a model [31] the
multiclass neural network. For this, we set the hidden layer specification to be a fully connected case,
with 100 hidden nodes being generated, and the learning rate was defined as 0.001. We performed
100 iterations. As with random forest, the resampling for the multiclass decision jungle model was
completed via bagging. Ten decision DAGs were used. The maximum depth of the decision DAGs
were set to 32, the number of random splits per node was set to 128, and the number of optimization
steps per decision DAG layer was defined as 2048.

Multiclass logistic regression model: This was defined by using a value of 20 as the limited-memory
Broyden Fletcher Goldfarb Shanno (L-BFGS) memory size. After defining the models, as mentioned,
analyses were conducted. The analysis process was generated, as shown in Figure 5.
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The total number of data values in the analysis models was 6382, which is divided into a Train set
(70%) and a Test set (30%). A total of 16 variables were used to conduct the analyses. A total of 16
variables were used to conduct the analyses. 16 variables were used in the analysis using the variables
shown in Table 4, and 16 variables included body-specific variables affecting obesity information and
extracorporeal information affecting obesity. We aimed to select the model with the highest accuracy
from among the four models in order to conduct obesity information extraction through body size
information. Table 5 lists the accuracies of the four models. The values extracted from Table 5 are the
representations of the average values of the four types of obesity information.

The results from evaluating the four levels of accuracy in the obesity information from each
model showed that random forest produced the highest accuracy. Therefore, we used that model
to machine-learn the data for the 16 variables (nine external variables: information including body
length information and circumference information. Seven internal variables: information on the body’s
internal body characteristics and numbers) and used this learning model to conduct obesity-information
extraction using the extracorporeal data. Out of 16, 11 extracorporeal data variables were used, excluding
intracorporeal data—fat mass, body water, minerals, BMI, and body fat (%)—in order to conduct
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a prediction analysis of obesity information. Based on real-time results, we used the Azure web
application via the construction, in the process shown in Figure 5, to generate the web service process.

The prediction results using the process shown in Figure 5 in the Azure web environment are
shown in Figure 6. In Figure 6, when the values are entered, the value of the Web Service input is then
input to the value of the Score model, which is produced by the train model. The output value in the
Web service is derived from the value received by the score model, in the Train model, as the output
value in the Web service. Test data were randomly extracted 100 times from the data collected in 2014
from Size Korea, such as analysis data and the conducted tests.
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The results using information learned from the random forest model and the body index data
entered into the web page showed that obesity information was accurately predicted in 85 out of the
100 extracorporeal data values tested. Further, when we compared the histograms and boxplot with
the obesity information, based solely on BMI and WHtR, the values from the obesity information
differed greatly, and the comparison of the boxplot for each of the obesity measures, based on the BMI
values, revealed different values and criteria. Depending on the measurement method, the obesity
information extracted was shown to be different. The standards for BMI were defined as follows:
(a) underweight: BMI < 18.5 kg/m2; (b) healthy range: 18.5 kg/m2

≤ BMI < 23.0 kg/m2; (c) overweight:
23.0 kg/m2

≤ BMI < 25.0 kg/m2; and (d) obese: 25.0 kg/m2
≤ BMI. The standards for WHtR were defined

as follows: (a) underweight: WHtR < 0.43; (b) healthy range: 0.43 ≤WHtR ≤ 0.53; (c) overweight:
0.53 ≤ overweight ≤ 0.58; and (d) obese, 0.58 ≤ obese.

Figure 7 shows the webpage environment using the model created in Figure 6. Therefore, if
you enter 10 body sizes and press submit, the obesity information is displayed using the model that
has already been learned. Therefore, by using this webpage, you can understand your own obesity
information in real time and update your information in real time.
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5. Conclusions

As it is difficult to obtain precise information about obesity by only using values based on
existing BMI and WHtR calculations, our study used machine learning from intracorporeal and
extracorporeal information to more accurately measure obesity. For measurement data, we analyzed
direct-measurement anthropomorphic data from the 2015 dataset of Size Korea. The structure of the
data used in the analysis comprised of 148 variables for 6413 subjects (3192 men and 3221 women) in
people aged from their 20s to 60s. For measurements in the investigation protocol for data collection,
we considered the statistical method to decide measurement subjects based on ISO 15535, to calculate
the minimum number of measurement subjects by relative accuracy (1–3%), using the maximum
variation value of data by body type.

For the data, the body-data measuring tools used were rulers and body composition analyzers
that can measure various body parts. The selection of variables was in two large groups: intracorporeal
and extracorporeal data. For this study, we used the variables of skeletal muscle mass, body-fat mass,
body water, minerals, body-fat ratio, and basal metabolism. For the analysis variables, we considered
six parts of the human body: chest, waist, hip, arm, thigh, and calf. We then conducted the analysis
using breadth, circumference, height, and girth of each part.

Prior to performing the analyses, we selected the variables using a regression model. Therefore,
the graphs from the Cp statistic and the adjusted R-squared were each generated. The minimum value
of the Cp statistic in this graph was 16, and the maximum value of the adjusted R-squared in this graph
was also 16. Therefore, we selected 16 variables, from among 30, for the value that had the lowest
value of the Cp statistic and the highest value of the adjusted R-squared. The selected variables for the
final analysis were gender, body-fat mass, body water, minerals, BMI, body-fat ratio, height, weight,
waist circumference, hip breadth, hip vertical length, chest breadth, chest circumference, chest girth,
thigh circumference, and calf circumference. We experimented with four analysis models: multiclass
random forest, multiclass decision jungle, multiclass neural network, and multiclass logistic regression.
Prior to analyzing each classification model, we conducted model construction. Here, we modified the
construction values so that all the models had identical conditions.

As the final analysis model that proceeded to machine learning, we selected the random forest
model because it had the highest accuracy from among the four models. After machine learning, we
used the learned model and 11 variables, with only extracorporeal data, to predict obesity information.
Further, we made a web-based application that could draw conclusions from the obesity information
values entered by users. In this web calculator, predictions of the four levels of obesity, as shown in
Table 6, and each of the 100 data values for web applications proposed in this paper, were predicted
accurately, with an average of 90%. Table 6 extracts 100 of data for each of the four types of obesity
information (normal weight, underweight, overweight, and obese) and compares them with the
existing obesity measurement method and the web application presented in this study. In comparison,
BMI, body fat percentage, WHR, WHtR, and Web applications proposed in this study were compared
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with four types of obesity, and accuracy was compared for a total of 400 data using 100 data each
with four types of obesity information. Therefore, five methods of eliciting obesity information were
compared for a total of 400 data, and the results are shown in Table 6. Therefore, we provided a
predicted value of the accuracy of each measurement and how much information was classified for
the measurement.

Table 6. Obesity information comparison results.

BMI Body Fat (%) WHR WHtR Web Application

Normal weight (Predicted value) 42% (70) 64% (75) 56% (62) 75% (82) 94% (97)
Underweight (Predicted value) 54% (132) 67% (121) 72% (123) 56% (103) 86% (95)
Overweigh (Predicted value) 46% (51) 78% (82) 64% (76) 62% (84) 92% (95)

Obese (Predicted value) 68% (147) 79% (122) 70% (139) 85% (131) 87% (113)

Using the final model, simple extracorporeal information, such as height, shoulder width, and
weight, can be entered into the development system so that obesity can be derived, based on existing
intracorporeal and extracorporeal information.

With the prediction of obesity information using extracorporeal information, real-time
measurement of obesity can be made, and people can quickly receive and update their own
obesity information without using high-cost equipment to measure physical information (e.g., an
Inbody machine or body-composition analyzer). Our web-based obesity calculator is convenient
for self-diagnosis, incurs almost no cost, and is not restricted by a user’s location. Therefore, unlike
previous measurement methods, which are great for height, weight, and one characteristic of the body,
this method incorporates information from various body parts and provides an obesity decision that
is based on the model learned from this information. By creating a model using intracorporeal and
extracorporeal data, a higher accuracy of obesity can be derived than when only using extracorporeal
data. Therefore, it was possible to predict obesity more accurately than the existing method, which
only assesses obesity through one value, such as height, weight, and waist circumference. With the
new method, it was possible to find that body composition is normal, even though it had been shown
to be hidden and muscular. However, this study focuses on Korean data to diagnose obesity according
to Korean characteristics. Therefore, the failure to analyze various countries is a limitation of this
study, and a better study in the future would design and analyze the criteria for obesity information in
various countries. In addition, as more information about obesity and related data is collected, we
expect that further research will be conducted.

Supplementary Materials: The data are available online at https://sizekorea.kr/page/report/1. (National Health
and Nutrition Survey 2015).
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