Cross-Scale Vulnerability Assessment for Smallholder Farming: A Case Study from the Northeast of Brazil
Abstract
:1. Introduction
- How do selected indices compare in their conceptual grounding and their thematic overlap?
- How and for what reasons do results between indices vary in intra-scale comparison, and also from scale to scale?
- What are advantages and limitations of such cross-scale analysis?
- 1.
- review existing indices, identify two suitable indices at three nested scales (municipality, farm, and field) based on this review, and systematically compare them with respect to their conceptual grounding and thematic overlap,
- 2.
- apply the two indices to two exemplary farming systems at each of these scales,
- 3.
- compare their results both at each individual scale (intra-scale comparison) and between scales (cross-scale comparison), and finally
- 4.
- identify and discuss advantages and short-comings of the applied indices and their potential for cross-scale assessment.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Literature Review and Selection of Indices
- availability of input data
- developed for drylands
- developed for Northeast Brazil
- climate sensitivity
2.4. Selected Indices and Their Calculation
- I
- regression of smallholder agriculture and resource degradation (ly↓, rq↓)
- II
- regression of smallholder agriculture and resource improvement (ly↓, rq↑)
- III
- expansion of smallholder agriculture and resource improvement (ly↑, rq↑)
- IV
- expansion of smallholder agriculture and resource degradation (ly↑, rq↓)
2.5. Intra- and Cross-Scale Comparison
3. Results
3.1. Comparison of Selected Indices in Conceptual Grounding and Thematic Overlap
3.2. Individual Assessments and Intra-Scale Comparison
3.2.1. Regional Scale
3.2.2. Farm Scale
3.2.3. Field Scale
3.3. Cross-Scale Comparison
4. Discussion
4.1. Review of Indices for Vulnerability Assessment
4.2. Benefits of Intra- and Cross-Scale Comparison
4.3. Limitations and Possible Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Municipality Index 1
Sub-Indices | Indicators * |
---|---|
Sensitivity (S) | Dependence of farm income on crop and animal production (%) |
Municipal population engaged in agriculture (%) | |
Farms without access to water storage (%) | |
Farms with rainfed farming (%) | |
Adaptive capacity (AC) | Product diversification |
Farms in which the producer is the landowner (%) | |
Farms whose heads can read and write (%) | |
Farms whose heads are engaged in associations or unions (%) | |
Farms receiving technical assistance (%) | |
Farms with access to electric energy supply (%) | |
Exposure (E) | Aridity Index (AI) |
Appendix A.2. Municipality Index 2
Activity | Relative-Specific Labour Demand (lyd) * | Examples |
---|---|---|
Cereal crops | 1 | Beans, corn, rice |
Roots, tubers | 7 | Manioc, cashew nuts, cotton |
Specialized crops | 20 | Tomatoes, melons, mangoes |
Pastures | 0.3 | |
Cattle, buffalos | 2 | |
Pigs, horses, donkeys | 1 | |
Goats, sheep | 0.25 |
Appendix A.3. Farm Index 1
Subindices | Indicators |
---|---|
Livelihood viability (30%) | Land ownership, household wealth status, |
Livelihood diversification, household food security | |
Crop diversification, production | |
Livestock diversification, herd size | |
Ownership of means of transport | |
Livestock lost to drought or diseases, vaccination | |
Drought preparedness practice | |
Access to markets | |
Innovation potential (20%) | Attitudes towards new livelihood practices |
Adoption of improved production techniques | |
Access to credit, state innovative support | |
Ability to influence others | |
Access to contingency resources and support (20%) | Group participation |
Access to government emergency support | |
Savings, grain storage | |
Access to remittances or state support | |
Ownership of fungible livestock | |
Integrity of the natural and built environment (15%) | Extent of soil erosion |
Access to irrigation, water for livestock/consumption | |
Access to grazing land | |
Tree planting | |
Social and institutional capability (15%) | Access to drought warning information |
Drought preparedness plan | |
Institutions supporting adaptation | |
Solidarity in the community |
Appendix A.4. Farm Index 2
Subindices | Indicators |
---|---|
Autonomy | Seed autonomy |
Water autonomy | |
Feed autonomy | |
Food security | |
Soil Fertility | |
Responsivity | Production diversity |
Market diversity | |
Income diversity | |
Gender equity | Gender equity |
Social integration | Social participation |
Access to public policies |
Appendix A.5. Soil Index 1
Indicator | Unit | Weighting | LT | B | UT | OP | Scoring Curve |
---|---|---|---|---|---|---|---|
OC | g/kg | 0.33 | 10 | 17.5 | 25 | More is better | |
P | mg/dm3 | 0.11 | 2 | 8 | 16 | More is better | |
K+ | mmolc/dm3 | 0.11 | 0.4 | 0.8 | 1.6 | More is better | |
pH | - | 0.11 | 4.5 | 5/8 | 8.5 | 6 | Optimum |
BD | g/cm3 | 0.17 | 1.5 | 1.65 | 1.8 | Less is better | |
SSI | % | 0.17 | 5 | 7 | 9 | More is better |
Appendix A.6. Soil Index 2
Indicator | Unit | Preserved | Degraded | Scoring * |
---|---|---|---|---|
OC | g/kg | 28.06 | 3.13 | Pres = max |
P | mg/kg | 10.88 | 6.15 | Pres = max |
K+ | mg/kg | 150.14 | 112.25 | Pres = max |
Ca2+ | cmolc/kg | 7.09 | 4.84 | Pres = max |
Na+ | cmolc/kg | 0.06 | 0.16 | Deg = max |
Mg2+ | cmolc/kg | 2.14 | 2.83 | Deg = max |
Al3+ | cmolc/kg | 0.02 | 0.12 | Deg = max |
H++Al3+ | cmolc/kg | 3.02 | 1.84 | Pres = max |
m | % | 0.36 | 1.91 | Deg = max |
ESP | % | 0.56 | 1.81 | Deg = max |
Appendix B
References
- Fischer, G.; Shah, M.; Velthuizen, H. Van Climate Change and Agricultural Vulnerability. In Proceedings of the A Special Report, World Summit on Sustainable Development, Johannesburg, South Africa, 26 August–4 September 2002. [Google Scholar]
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [Green Version]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Machado, H.F.; Bennati, P.; Guilles, M.; Rocha, P.; Lima, A.; Vasconcelos, I. Climate change and impacts on family farming in the North and Northeast of Brazil; International Policy Centre for Inclusive Growth Working Paper 141; International Policy Centre for Inclusive Growth: Brasilia, Brazil, 2016. [Google Scholar]
- Lima, R.; da, C.C.; Cavalcante, A.; de, M.B.; Pérez-Marin, A.M. Desertificação e Mudanças Climáticas no Semiárido Brasileiro; INSA-PB: Campina Grande, Brazil, 2011; ISBN 9788564265028. [Google Scholar]
- IBGE Censo Agropecuário 2017. Resultados Preliminares; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Menezes, R.S.C.; Garrido, M.S.; Perez Marin, A.M. Fertilidade dos solos no semi-árido. In XXX Congr. Bras. Ciência do Solo; Rio de janeiro: Embrapa Solos, Brazil, 2005; p. 30. [Google Scholar]
- Downing, T.E.; Patwardhan, A. Assessing Vulnerability for Climate Adaptation. In Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures; Cambridge University Press: Cambridge, GB, USA, 2005; pp. 69–87. [Google Scholar]
- Pandey, R.; Meena, D.; Aretano, R.; Satpathy, S.; Semeraro, T.; Kumar Gupta, A.; Rawat, S.; Zurlini, G. Socio-ecological Vulnerability of Smallholders due to Climate Change in Mountains: Agroforestry as an Adaptation Measure. Chang. Adapt. Socio-Ecol. Syst. 2015, 2, 26–41. [Google Scholar]
- Luers, A.L.; Lobell, D.B.; Sklar, L.S.; Addams, C.L.; Matson, P.A. A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Chang. 2003, 13, 255–267. [Google Scholar]
- Fellmann, T. The Assessment of Climate Change-Related Vulnerability in the Agricultural Sector: Reviewing Conceptual Frameworks; Pablo de Olavide University: Seville, Spain, 2012; ISBN 9780123985293. [Google Scholar]
- Tao, S.; Xu, Y.; Liu, K.; Pan, J.; Gou, S. Research Progress in Agricultural Vulnerability to Climate Change. Adv. Clim. Chang. Res. 2011, 2, 203–210. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Oosting, S.J.; Homann-Kee Tui, S.; Masikati, P.; Falconnier, G.N.; Giller, K.E. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa: A call for integrated impact assessments. Reg. Environ. Chang. 2016, 16, 2331–2343. [Google Scholar] [CrossRef] [Green Version]
- Füssel, H.-M. Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Böhringer, C.; Jochem, P. Measuring the Immeasurable: A Survey of Sustainability Indices. Ecol. Econ. 2007, 63, 1–8. [Google Scholar]
- Füssel, H.M. How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: A comprehensive indicator-based assessment. Glob. Environ. Chang. 2010, 20, 597–611. [Google Scholar]
- Lesnikowski, A.; Ford, J.; Biesbroek, R.; Berrang-Ford, L.; Heymann, S.J. National-level progress on adaptation. Nat. Clim. Chang. 2016, 6, 261–264. [Google Scholar] [CrossRef]
- Awolala, D.O.; Ajibefun, I.A. Rice Farmers’ Vulnerability to Extreme Climate: Deploying Local Adaptation Finance in Ekiti State, Nigeria. World Environ. 2015, 5, 91–100. [Google Scholar]
- Eakin, H.; Winkels, A.; Sendzimir, J. Nested vulnerability: Exploring cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems. Environ. Sci. Policy 2009, 12, 398–412. [Google Scholar] [CrossRef]
- Sietz, D.; Untied, B.; Walkenhorst, O.; Lüdeke, M.K.B.; Mertins, G.; Petschel-Held, G.; Schellnhuber, H.J. Smallholder agriculture in Northeast Brazil: Assessing heterogeneous human-environmental dynamics. Reg. Environ. Chang. 2006, 6, 132–146. [Google Scholar] [CrossRef]
- Lindoso, D.P.; Rocha, J.D.; Debortoli, N.; Parente, I.C.I.; Eiró, F.; Bursztyn, M.; Rodrigues-Filho, S. Climate Change and Vulnerability to drought in the semiarid: The case of smallholder farmers in the brazilian northeast. In Climate Change in Brazil: Economic, Social and Regulatory Aspects; da Motta, R.S., Hargrave, J., Luedemann, G., Gutierrez, M.B.S., Eds.; World Bank: Washington, DC, USA, 2011; ISBN 9788578111281. [Google Scholar]
- IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In Special Report of the Intergovernmental Panel on Climate Change; Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. (Eds.) IPCC: Cambridge, UK, 2012. [Google Scholar]
- Blesh, J.; Wittman, H. “Brasilience”: Assessing Resilience in Land Reform Settlements in the Brazilian Cerrado. Hum. Ecol. 2015, 43, 531–546. [Google Scholar] [CrossRef]
- Bishop, D.; Fuller, R. Resilience in Nicaragua: Impact Evaluation of Climate Change Adaptation among Small Scale Producers; Effectiveness Review Series 2014/15; Oxfam GB: Oxford, UK, 2015. [Google Scholar]
- Fernandes, L.A.D.O.; Woodhouse, P.J. Family farm sustainability in southern Brazil: An application of agri-environmental indicators. Ecol. Econ. 2008, 66, 243–257. [Google Scholar] [CrossRef]
- Petersen, P.; da Silveira, L.M.; Fernandes, G.B.; Almeida, S.G. de Método de análise econômico-ecológica de Agroecossistemas, 1st ed.; Articulação Nacional de Agroecologia/AS-PTA: Rio de Janeiro, Brazil, 2017; ISBN 9788587116284. [Google Scholar]
- Cherubin, M.R.; Karlen, D.L.; Cerri, C.E.P.; Franco, A.L.C.; Tormena, C.A.; Davies, C.A.; Cerri, C.C. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS ONE 2016, 11, e0150860. [Google Scholar] [CrossRef]
- Perez Marin, A.M.; Rogé, P.; Altieri, M.A.; Ulloa Forero, L.F.; Silveira, L.; Oliveira, V.M.; Domingues-Leiva, B.E. Agroecological and social transformations for coexistence with semi-aridity in Brazil. Sustainability 2017, 9, 990. [Google Scholar] [CrossRef] [Green Version]
- Scholes, R.J.; Reyers, B.; Biggs, R.; Spierenburg, M.J.; Duriappah, A. Multi-scale and cross-scale assessments of social-ecological systems and their ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Reidsma, P.; Ewert, F.; Oude Lansink, A.; Leemans, R. Vulnerability and adaptation of European farmers: A multi-level analysis of yield and income responses to climate variability. Reg. Environ. Chang. 2009, 9, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Sietz, D. Regionalisation of global insights into dryland vulnerability: Better reflecting smallholders’ vulnerability in Northeast Brazil. Glob. Environ. Chang. 2014, 25, 173–185. [Google Scholar] [CrossRef] [Green Version]
- da Silveira, L.M.; Freire, A.G.; Diniz, P.C.O. Polo da Borborema: Ator contemporâneo das lutas camponesas pelo território. Rev. Agric. 2010, 7, 13–19. [Google Scholar]
- AESA Geo Portal. Available online: http://geoserver.aesa.pb.gov.br/geoprocessamento/geoportal/ shapes.html (accessed on 1 October 2017).
- AESA Meteorologia–Chuvas. Available online: http://www.aesa.pb.gov.br/aesa-website/meteorologia-chuvas (accessed on 15 January 2017).
- Embrapa Solos UEP Recife. Available online: www.uep.cnps.embrapa.br/solos/index.html (accessed on 12 December 2017).
- Embrapa Sistema Brasileiro de Classificação de Solos, 2nd ed.; Sistema Brasileiro de Classificação de Solos: Brasília, Brazil, 2013; ISBN 85-85864-19-2.
- FAO. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil; FAO: Rome, Italy, 2015; ISBN 9251055114. [Google Scholar]
- IBGE Sistema IBGE de Recuperação Automática-SIDRA. Available online: sidra.ibge.gov.br (accessed on 20 December 2017).
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol. 2015, 2659, 2644–2659. [Google Scholar] [CrossRef] [Green Version]
- Campos, D.V.B.; de Calderano, S.B.; Teixeira, W.G.; Viana, J.H.M. (Eds.) Embrapa Manual de Métodos de Análise de Solo, 2nd ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2011; ISSN 1517-2627. [Google Scholar]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- do Carmo, D.L.; Silva, C.A. Métodos de Quantificação de Carbono e Matéria Orgânica em Resíduos Orgânicos. Rev. Bras. Ciência do Solo 2012, 36, 1211–1220. [Google Scholar] [CrossRef]
- Turner, B.L. Vulnerability and resilience: Coalescing or paralleling approaches for sustainability science? Glob. Environ. Chang. 2010, 20, 570–576. [Google Scholar] [CrossRef]
- Douxchamps, S.; Debevec, L.; Giordano, M.; Barron, J. Monitoring and evaluation of climate resilience for agricultural development–A review of currently available tools. World Dev. Perspect. 2017, 5, 10–23. [Google Scholar] [CrossRef]
- Miller, F.; Osbahr, H.; Boyd, E.; Thomalla, F.; Bharwani, S.; Zervogel, G.; Walker, B.; Birkmann, J.; van der Leeuw, S.; Rockstrom, J.; et al. Resilience and vulnerability: Complimentary or conflicting concepts? Ecol. Soc. 2010, 15, 1–25. [Google Scholar] [CrossRef]
- Lindoso, D.P.; Rocha, J.D.; Debortoli, N.; Parente, I.I.; Eiró, F.; Bursztyn, M.; Rodrigues-Filho, S. Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: A case study in Ceará. Clim. Chang. 2014, 127, 93–105. [Google Scholar] [CrossRef]
- Oxfam, G.B. Disaster Risk Reduction Programming in Ethiopia’s Somali Region. In Project Effectiveness Review; Full Technical Report; Oxfam GB: Oxford, UK, 2013. [Google Scholar]
- Pachauri, R.K.; Reisinger, A. (Eds.) IPCC Climate Change 2007: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- IPCC Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Menezes, R.S.C.; Silva, T.O. da Mudanças na fertilidade de um Neossolo Regolítico após seis anos de adubação orgânica. Rev. Bras. Eng. Agrícola Ambient. 2008, 12, 251–257. [Google Scholar] [CrossRef] [Green Version]
- da Silva, E.D.; Perez Marin, A.M.; Vendruscolo, J. Efeito de adubos orgânicos no crescimento de Zea mays L. em um Neossolo Regolítico. Cad. Agroecol. 2015, 10, 1–5. [Google Scholar]
- Martins, J.C.R.; Menezes, R.S.C.; Sampaio, E.V.S.B.; dos Santos, A.F.; Nagai, M.A. Produtividade de biomassa em sistemas agroflorestais e tradicionais no Cariri Paraibano. Rev. Bras. Eng. Agric. Ambient. 2013, 17, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Mofya-Mukuka, R.; Hichaambwa, M. Factors Influencing Smallholder Crop Diversification in Zambia and the Implications for Policy; Indaba Agricultural Policy Research Institute Working Paper 112; Indaba Agricultural Policy Research Institute: Lusaka, Zambia, 2016. [Google Scholar]
- UNESCO. UNESCO Map of the World Distribution of arid Regions; UNESCO: Paris, France, 1979; ISBN 9788578110796. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobkowitz, S.; Walz, A.; Baroni, G.; Pérez-Marin, A.M. Cross-Scale Vulnerability Assessment for Smallholder Farming: A Case Study from the Northeast of Brazil. Sustainability 2020, 12, 3787. https://doi.org/10.3390/su12093787
Dobkowitz S, Walz A, Baroni G, Pérez-Marin AM. Cross-Scale Vulnerability Assessment for Smallholder Farming: A Case Study from the Northeast of Brazil. Sustainability. 2020; 12(9):3787. https://doi.org/10.3390/su12093787
Chicago/Turabian StyleDobkowitz, Sophia, Ariane Walz, Gabriele Baroni, and Aldrin M. Pérez-Marin. 2020. "Cross-Scale Vulnerability Assessment for Smallholder Farming: A Case Study from the Northeast of Brazil" Sustainability 12, no. 9: 3787. https://doi.org/10.3390/su12093787
APA StyleDobkowitz, S., Walz, A., Baroni, G., & Pérez-Marin, A. M. (2020). Cross-Scale Vulnerability Assessment for Smallholder Farming: A Case Study from the Northeast of Brazil. Sustainability, 12(9), 3787. https://doi.org/10.3390/su12093787