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Abstract: The removal of carbon dioxide (CO2) at offshore operation requires an absorption system
with an environmentally friendly solvent that can operate at elevated pressure. Potassium carbonate
promoted with glycine, PCGLY, is a green solvent that has potential for offshore applications. For high
solvent concentrations at elevated pressure, the by-product of CO2 absorption consists of precipitates
that increase operational difficulty. Therefore, this study was done to assess the CO2 absorption
performance of non-precipitated PCGLY with concentration 15wt%PC+3wt%GLY, which is known
to have comparable solubility performance with MDEA. A packed absorption column was used to
identify the CO2 removal efficiency, mass transfer coefficient in liquid film, klae, and overall volumetric
mass transfer coefficient, KGav. A simplified rate-based model was used to determine klae and KGav

based on the experimental data with a maximum MAE value, 0.057. The results showed that liquid
flow rates and liquid temperature gives significant effects on the klae and KGav profile, whereas
gas flow rate and operating pressure had little effect. The CO2 removal efficiency of PCGLY was
found to be 77%, which was only 2% lower than 1.2 kmol/m3 MDEA. KGav of PCGLY is comparable
with MDEA. The absorption process using PCGLY shows potential in the CO2 sweetening process
at offshore.

Keywords: CO2 absorption; mass transfer coefficient; potassium carbonate; glycine; packed
absorption column

1. Introduction

Carbon dioxide (CO2) concentration in the atmosphere is now in critical condition as it has
reached the 406.5 ppm threshold [1]. It is considered as the peak level since the past three million
years. CO2 release in Malaysia is projected to upsurge by more than 100% in 2030 [2,3]. This issue has
raised concerns by the industrial sectors to use natural gas (NG) as a fuel, as it is the cleanest fossil fuel.
In fact, when burned, NG can release up to 50% less CO2 than coal and 20% to 30% less than oil [4,5].

In the gas processing industry, CO2 in raw gas will be removed to its permissible concentration as
it is crucial for enhancing the gross heating value of the natural gas and reducing the corrosion risk
at the pipelines and equipment. It is estimated that at least 13 trillion cubic feet of NG reserves in
Malaysia are left undrilled due to the high CO2 concentration, which is reaching 87% [6]. However,
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the current technology is still limited to process raw NG with CO2 concentration less than 10% at
the onshore purification plant [7]. This problem will cause an increasing demand for NG due to the
technology’s limitation in processing CO2-rich NG.

Researchers have discovered an excellent opportunity for significant CO2 capture at offshore
platforms which can capitalize high pressure of raw NG from the gas reservoir for CO2-CH4

separation [8]. However, it is still in its preliminary stage [8,9]. This is due to the current technology for
CO2 capture at offshore, which is the membrane technology, have several issues that affect membrane
viability at high pressure offshore conditions, such as plasticization of the membrane and an aggressive
gas environment [8,10,11].

The maturity of the chemical absorption technology is well understood for CO2 removal at
industrial scale [12].

Today, alkanolamines solvent used in the packed absorption column causes several effects to the
environment, such as corrosion, high toxicity, and degradation of products that need to be handled
thus far [13–17].

Therefore, many studies have been devoted to develop a “green” solvent that can perform better
than the commercialised alkanolamine. The idea of “green” solvents expressed the goal to minimized
the environmental impact resulting from the use of the chemical solvent [18]. Grant et al. [19] reported
that the UNO MK3 process, which involved potassium carbonate (PC) as a solvent, is significantly
better than MEA on ecotoxicity and carcinogen emission. The key advantages of PC are low corrosivity,
high chemical solubility of CO2, low toxicity, low degradation rate, requires low solvent cost, and ease of
regeneration as compared to amine-based solvents [20–22]. In addition, as mentioned by Kim et al. [23],
potassium carbonate (PC) is an effective solvent for absorbing CO2 from synthesis gas at elevated
temperature and pressure. The characteristic permits the operation for CO2 capture at an offshore
platform. However, this solvent has a major disadvantage, which is sluggish mass transfer rate in
liquid phase. This will consequently result in a poor mass transfer performance and subsequently,
large and expensive equipment will be needed [14,20,24,25].

The absorption performance including the chemical kinetics and mechanism for CO2 and glycine
was studied by Guo et al. [26]. They demonstrated that glycine is a good promoter to improve
the absorption performance. Recent literature [27] has studied the capture rate of precipitating
potassium carbonate promoted with glycine (PCGLY). The precipitating carbonate promotes high
cyclic loading and low reaction enthalpy, which lead to low energy requirement for regeneration
process. However, the highly concentrated PCGLY produces some operational problems such as
flooding in the absorption column and intermittent operation, which is caused by blockage at the
operation start-up [28]. The precipitation of the solvent in the form of crystal and fouling has severe
risks to the operation, which will subsequently reduce the CO2 absorption performance.

Nevertheless, a previous study by Shaikh et al. [21] on CO2 solubility in non-precipitated PCGLY
showed its potential as an effective CO2 absorbent. The optimum concentration of this solvent that
give promising solubility performance was also reported. It was considerably better than MEA. Other
than the solubility data, mass transfer performance data are very important as they can be used for
upscaling purposes. Nevertheless, no mass transfer coefficient data are available for this solvent.

Therefore, this research aimed to assess the mass transfer performance of non-precipitated PCGLY
blend solvent for CO2 removal at elevated operational pressure condition. The NG sweetening
process at the offshore platform was usually operated at a pressure more than 3.7 MPa [29]. Therefore,
the operational condition of the bench-scale packed column was maintained at 4.0 MPa in most of the
experimental sets.
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2. Materials and Methods

2.1. Chemicals and Materials

The chemicals used in this experiment were potassium carbonate (PC) with 99.95% purity and
glycine with 99% purity. Both chemicals were bought from Avantis Supply Sdn. Bhd. Purified CO2

were bought from Air Product Sdn. Bhd. NG was purchased from PETRONAS NGV Sdn. Bhd.

2.2. Process Description

The equipment used in this study was a bench-scale packed absorption column with 0.046 m
internal diameter, 2.040 m height, and packed with Sulzer metal gauze. The packing had the surface
area of approximately 500 m2/m3, fabricated from 316 stainless steels and equipped with six sampling
points along the column height. The absorption packed column was designed to operate at a maximum
of 6 MPa. The maximum liquid flow capacity of the bench-scale packed absorption column was
0.5 L/min. The same equipment was used by Hairul et al. and Halim et al. [8,30,31], but with minor
modifications on the liquid flow stabilizer system. The packed absorption column is illustrated by a
schematic diagram shown below (Figure 1).
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Figure 1. Schematic diagram bench-scale packed absorption column.

In this study, NG was used with 97% CH4. The desired CO2 concentration is achieved by setting
the values using mass flow controller. CO2 and NG were first heated by a heat exchanger to 70 ◦C.
Then, the inlet CO2 and NG concentrations were set by a mass flow controller. The mixed gas was then
compressed into a high pressure vessel and flowed into an absorption packed column until the desired
operating pressure was reached. Pressure of the absorption packed column was maintained by a back
pressure regulator.

Gas was injected from the bottom part of the column with respective gas flow rate. Meanwhile,
the liquid was pumped into the top of the column. The liquid flow rate was controlled by a liquid
flow controller, which was equipped with a back pressure regulator. The pressure in high pressure gas
vessel was monitored to be at least 10 bars above the column pressure to ensure that the gas can flow
into the column.
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Mass transfer mechanism took place in the absorber once the mixed gas was in direct contact with
the liquid to create a counter current flow. In turn, CO2 in the mixed gas was absorbed into the liquid.
The treated gas withdrawn through the top of the column and the CO2-rich solvent was drained into a
solvent effluent tank.

The absorption performance experiments were performed in anticipation of the steady-state
conditions at each sampling points were reached. Then, CO2 concentration in the gas phase along the
column was determined at six equidistance sampling point across the column by using an infrared
(IR) analyser.

2.3. Reactive Absorption Model for klae and KGav Determination

2.3.1. Reaction and Kinetic Mechanism of CO2 Absorption into PCGLY Blended Solvent

The mechanism involved in the CO2 absorption system can be represented by a kinetic reaction
model. The overall reaction in the carbonate system can be described as follows:

CO2 + CO2−
3 + H2O→ HCO−3 (1)

The rate-elementary reaction step of reaction 2 is:

CO2 + OH− → HCO−3 (2)

In this case, the solvent is in the alkaline form with pH value of 1.09. Since the pH value is
more than 10, therefore the contribution of the direct reaction between CO2 and H2O is assumed
negligible [14].

The overall reaction between CO2 and glycine takes place via the zwitterion mechanism, where
CO2 binds with the amino group to form a zwitterion, which rapidly deprotonates and exchanges H+

with water as follows [26]:
RR′NH + CO2 → RR′N+HCO−2 (3)

RR′N+HCO−2 → RR′NCO−2 + H+ (4)

The rate of reaction of PCGLY is shown in Equation (5):

Rco2 = [CO2](kOH[OH] + kGLY[GLY]) (5)

The kOH value can be obtained using the correlation reported by Thee et al. [32], whereas kGLY
correlation was reported by Guo et al. [26]:

kOH
(
M−1s−1

)
= 2.53× 1011exp

−4311
T(K)

(6)

kGLY
(
M−1s−1

)
= 1.24× 1012exp

−5459
T(K)

(7)

During the reaction between PCGLY and CO2, part of the carbonate is converted to bicarbonate
while glycine is converted into glycinate. Glycine is an acid that exist in aqueous solution as
deprotonated base form. According to Guo et al. [26], the base form of the amino acid being the
dominant reactive species compared to OH where the carboxylic acid group in amino acid deprotonated
at alkaline conditions. The reaction rate is improved due to the reaction of deprotonated amines group.
The deprotonated part of OH in aqueous solution is ionized by glycine to promote CO2 absorption.

2.3.2. Two-Film Theory

The CO2 absorption mechanism can be considered as according to the two-film theory, where the
equilibrium is deemed at the liquid-gas interphase and the mass transfer resistance between the liquid
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and gas phases is added in order to obtain the overall resistance [33]. This concept can be applied to
determine the overall coefficient by combining the individual coefficient, as shown by Equation (8):

KGae=

(
1

kgae
+

HCO2

klaeE

)−1

(8)

where KG denoted as the overall mass transfer coefficient in the gas phase, ae is the effective mass transfer
area in the packed column, HCO2 is the Henry’s law constant, and E is the chemical enhancement factor
of PCGLY, and kl and kg is the mass transfer coefficient of liquid and gas film, respectively. In this case,
the CO2 absorption into PCGLY is considered as liquid-film control. Therefore, kg has a negligible
effect on Kg and the first term in Equation (4) can be omitted to be as shown in Equation (9):

KGae=

(
HCO2

klaeE

)−1

(9)

KG av was then calculated by the formula given Equation (10):

KG av = KGae/Vcell (10)

Where Vcell is the volume of single cell of the infinitesimal element as illustrated in Figure 2 in
Section 2.3.4.

2.3.3. Reaction Model

The overall CO2 absorption rate may be presented as follows:

rCO2 = KGae
(
PCO2 − P ∗CO2

)
(11)

where PCO2 indicated as the CO2 partial pressure and P ∗CO2 indicated as the CO2 partial pressure at
equilibrium. As the kinetic of the reaction is fast, P ∗CO2 is negligible [34,35].

Equation (9) is substituted into Equation (11) to give Equation (12) as follows:

rCO2 =
PCO2

HCO2/klaeE
(12)

The effect of chemical kinetics of the liquid phase on mass transfer is indicated by E, which was
introduced by Wellek et al. [36] as shown in Equation (9). E is dependence on the infinite enhancement
(Ein f ) and Hatta number (Ha).

E = 1 +
1[ (

1
Ein f−1

)1.35
+

(
1

E1−1

)1.35
] 1

1.35

(13)

where,

Ein f = 1 +
DOHCOH

bOHDCO2lCCO2i
+

DGLYCGLY
bGLYDCO2lCCO2i

(14)

E1 =
Ha

tanh(Ha)
(15)

Ha =

√
DCO2l ((kOHCOH + kGLYCGLY)

ko
l

(16)

where DOH denoted as the diffusivity coefficient of hydroxide ion in the liquid, CGLY is the molar
concentration of glycine in the liquid, b is the reaction’s stoichiometric factor, CCO2i is the CO2 molar
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concentration at the interphase, DCO2l is the CO2 molecular diffusivity in the liquid, and Ha is the
Hatta number. The values of kGLY and kOH are the reaction rate constants given by Equations (6) and
(7). The correlations of physical parameters of packed absorption column specifically on the hydraulic,
and effective areas were presented by our previous work [37].

CO2 molar concentration at the interphase indicated in Equation (14) may be determined as
according to the Henry’s law equation, shown as Equation (17):

Cco2i =
PCO2

Hco2
(17)

where PCO2 is the CO2 partial pressure and HCO2 is the CO2 Henry’s law constant.
Henry’s law can be used to predict the physical solubility of CO2 in PCGLY. In this work,

the equation for Henry’s Law constant was accounted for potassium carbonate only since the low
concentration of promoter was usually assumed to have no effect on gas solubility [38,39]. The equation
of Henry’s Law is given as in Equation (18) [39]:

log HCO2 = 0.125 m + 5.30−
1140
T(K)

(18)

The CO2 diffusivity in carbonate solution can be approximated using Equation (19) [40,41].

DCO2,l =DCO2water (µwater/µl)
0.82 (19)

where,

DCO2water = 2.35× 10−6 exp
(
−

2199
T

)
(20)

µwater = 1.86× 10−6 exp
(16400

RT

)
(21)

The liquid viscosity of 15wt.% PC + 3 wt.% GLY can be approximated using the correlation
provided by Shuaib et al. [15], as shown in Equation (22):

µl = 185.701 exp(−0.016)T (22)

2.3.4. Mass Balance

To obtain klae and KGav in the system, the calculations for the system can be conducted using
the mass balance method. The mass balance of the absorption model considered a few assumptions
as follows:

• The system is at steady-state operation.
• Fast reaction mechanism occurs in the liquid film of the gas-liquid interface.
• The gas and liquid flow rates are constant throughout the column.

The CO2 concentration profile at different positions of the column can be determined using the
one-dimensional mass balance equation as follows:

dNCO2g

dz
=

d(GYCO2)

dz
= rCO2 (23)

where NCO2g denoted as CO2 molar flux, G is the gas flow rate over a unit of column’s cross sectional
area, dz is the step size in z direction, and YCO2 is the CO2 mole fraction in the gas phase. Figure 2
illustrates the gas absorption system in an infinitesimal step size of the absorption packed column for
mass balance.
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The chemical mole fraction in the solvent may be estimated by calculating the mass balance over
the column height step size, as shown in Equation (24):

XPCGLY,i = XPCGLY.i+1 +
(YCO2i+1 −YCO2i)bG

L
(24)

where XPCGLY is the mole fraction of active PCGLY in the water and L is the liquid molar flow rate.
Figure 3 shows the simplified flowchart of CO2 absorption simulation model.
Since correlation to determine klae value for Sulzer gauze packing is not available, it was

back-calculated using simplified rate-based model as shown in Figure 3. The absorption column height
was divided into a number of segments with step size of dz. The solvent and CO2 concentration at the
inlet were known. The CO2 absorption in packed column was computed by the iteration method in
200 segments, i of column height as shown in Figure 3. The modelling procedure started from the
uppermost part of the column with known PCGLY concentration and initial guess of CO2 concentration
at the outlet stream. The model was solved by computing the chemical enhancement factor, absorption
rate, and CO2 composition for each segment using Equations (13), (14), and (23), respectively. The CO2

concentration at the final segment of the column was then compared with the experimental outlet CO2

concentration. The procedures were iterated until the computed CO2 concentration was the same as
the experimental CO2 concentration at the outlet stream. Then, the computed values were compared
with the experimented CO2 concentration profile along the column’s height. The adjustments of klae

were repeated until MAE < 0.06 Then, KGav was identified as according to Equations (9) and (10).
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2.4. CO2 Removal Efficiency

CO2 removal efficiency was calculated as follows [8,31,42]:

CO2 removal e f f iciency =
yinlet − youtlet

yinlet
× 100 (25)

where yinlet is the CO2 mole fraction at the inlet of the column and youtlet is the CO2 mole fraction at the
last stage of packing.

2.5. Mean Absolute Error (MAE) Was Determined as Given in Equation (26)

MAE =
1
n

n∑
t=1

∣∣∣∣∣∣ yexp − yCal

yexp

∣∣∣∣∣∣ (26)

where yexp is the CO2 mole fraction in the experiment, ycal is the calculated CO2 mole fraction, and n is
the number of sampling points.
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3. Results

3.1. CO2 Absorption Performance Behaviour

The performance data were plotted as CO2 concentration profile over the column height to
determine klae and KGav using the simplified numerical model. klae is a characteristic of the packing,
which depends on the physical properties of the solvents such as viscosity, density, and surface tension.
To observe the performance behavior, klae was plotted over several process parameters such as liquid
flow rate, gas flow rate, column pressure, and liquid inlet temperature without chemical enhancement.
On the other hand, KGav, which is the overall mass transfer performance, was evaluated across the
absorption column with chemical enhancement. In this study, the value of KGav is not consistent along
the column due to the reduction of the chemical reactant with increasing of CO2 loading in solvent.
This is a practical condition to achieve the maximum CO2 loading.

3.1.1. Effect of Liquid Flow Rate on CO2 Absorption and Mass Transfer Performances

Figures 4a,b represents the effect of liquid flow rate on CO2 removal efficiency, klae and KGaV

value. The experiments were performed under operating conditions 41.72 mol/m2.h of gas flow rate,
4.04 MPa of operational pressure with 20 mol% of CO2 concentration in NG, and 333 K of liquid
inlet temperature.
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Figure 4. (a) CO2 removal efficiency and klae; (b): KGaV profile with trend over various liquid flow
rate various liquid flow rate.

Figure 4a shows that an increase of liquid flow rate from 1.81 to 7.22 m3/m2.h causes the increase
of CO2 removal efficiency, and klae by 55% and 1.90 × 10−3 s−1, respectively. The enhancement of klae

may be caused by the increase of the wetting surface area between the liquid and gas phases in the
column, thus intensifying CO2 removal efficiency and klae. Another possible factor that contribute to
good absorption performance are the turbulence flow regime induced by the liquid flow rate. [7,42,43].
The plotted data indicated that the mass transfer performance of the system was controlled by the
mass transfer in liquid phase, where klae was mainly affected by the liquid flow rate and contact time
between the liquid and gas phases [44].

Similar behaviour can be observed in Figure 4b where an increase of liquid load would result to
greater KGav value. The main cause of this behaviour is due to higher klae values at high liquid flow
rate observed in Figure 4a which are also proportion to KGav values [45]. Another possible cause is
that the the higher liquid flow rate led to the increasing amount of available chemical molecules that
are able to react with CO2 for absorption processes, thus increasing the chemical enhancement E in the



Sustainability 2020, 12, 3873 10 of 17

solvent, which is proportional to KGav values. It can be perceived in Figure 4b where the absorption
system is controlled by the mass transfer resistance in liquid phase. Besides, a substantial reduction of
KGav can be perceived across the column height at liquid flow rate, L = 7.22 m3/m2 h. This behaviour
might be caused by reducing of the chemical reactant and the reaction kinetic in the solvent.

3.1.2. Effect of Gas Flow Rate on CO2 Absorption Performances

The effect of gas flow rate, specifically on CO2 removal efficiency, klae and KGav was observed
as shown in Figure 5a,b. The experiments were conducted under operating conditions 7.22 m3/m2.h
of liquid flow rate, 4.04 MPa of operational pressure with 20 mol% of CO2 concentration in NG, and
333 K of liquid inlet temperature.
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Based on the Figure 5a, once the gas flow rate increases from 27.81 kmol/m2.h to 69.53 kmol/m2.h,
the CO2 removal significantly decreases from 92.68% to 44.38%, whereas the value of klae is reduced
from 3.00 s−1 to 2.21 s−1. At fixed liquid flow rate, an increase of gas flow rate resultantly decreases
L/G, thus causing the CO2 removal efficiency to decrease. The result on CO2 removal efficiency
corresponded well with that of Halim et al. and Abdul Halim et al. [7,30]. Nonetheless, the impact of
the gas flow rate on klae is insignificant compare to the liquid flow rate parameter. This is due to the
mass transfer between the liquid and gas phases which mainly depended upon the liquid phase mass
transfer resistance [46].

Figure 5b shows the KGav value reduces with increasing gas flow rate. At fixed liquid flow rate,
the reaction between a limited amount of solvent with the excess amount CO2 in gas phase resulted to
the reduction of chemical enhancement factor, E, thus causing the KGav to decrease. The justification
is supported by Fu et al. [47], where an increase of gas flow rate would react with more active free
absorbent in PCGLY, leading to the decrease of KGav value.

3.1.3. Effect of Operational Pressure on CO2 Absorption Performances

To study the effect of pressure on CO2 absorption performance, a set of experiments was performed
over a range of pressure between 1.01 MPa and 5.05 MPa with 20 mol% CO2 inlet concentration,
7.22 m3/m2.h of liquid flow rate, 41.72 mol/m2.h of gas flow rate and 333 K of liquid inlet temperature.
Figure 6a,b shows the effect of operational pressure to CO2 removal efficiency, klae and KGav.
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The plotted data in Figure 6a show that if the operational pressure rises from 1.01 MPa to 5.05 MPa,
the CO2 removal efficiency is enhanced from 38.80% to 78.57%, while klae value slightly decreases from
1.01 MPa to 3.03 MPa and behaves constantly from 3.03 MPa to 5.05 MPa. With respect to similar
CO2 concentration, an increase of operational pressure will directly increase CO2 partial pressure.
Therefore, the trend of the plotted CO2 removal efficiency can be related to the two-film theory, where
the mole fraction driving force for separation will increase with increasing CO2 partial pressure. Based
on Figure 6a, it is perceived that klae is slightly lower at the higher operational pressures. This may
cause by the restricted diffusion between CO2 in gas phase and amount of reactive PCGLY in the
liquid phase.

Figure 6b shows the KGav profile along the absorption packed column height with pressure range
between 1.01 MPa to 5.05 MPa. KGav was observed to decrease with increasing operational pressure.
The reduction of KGav is greater when the operational pressure increases from 1 MPa to 3 MPa. Beyond
that, the reduction of KGav is insignificant. This behaviour is most likely due to the transition of the
chemical reaction region from the Hatta number control to the infinite chemical enhancement control.
Under infinite chemical enhancement control, the CO2 absorption is controlled by the chemical reactant
diffusion in the liquid phase. A higher pressure would result in a lower mass transfer coefficient.

3.1.4. Effect of Inlet Liquid Temperature on CO2 Absorption Performance

To study the effect of liquid inlet temperature on CO2 absorption performance, a set of experiments
wasrun over a range of liquid inlet temperature between 303 to 333 K with 20 mol % CO2 inlet
concentration, 7.22 m3/m2.h of liquid flow rate, and 41.72 mol/m2.h of gas flow rate with 4.04 MPa of
operating pressure. Figure 7a,b shows the effect of liquid inlet temperature on CO2 removal efficiency,
klae and KGav.
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Figure 7a indicates that as the inlet liquid temperature increases from 303 to 333 K the CO2

removal efficiency increases from 57% to 75%. Moreover, the klae value increases from 1.09 × 10−3 s−1

to 2.78 × 10−3 s−1. An increase of liquid temperature would resultantly increase the CO2 diffusion
coefficient in the liquid thus enhance the mass transfer performance [48].

Figure 7b shows the KGav profile across the column height at liquid inlet temperature range
between 303 to 333 K. A substantial decrease of KGav values can be perceived at T = 333 K. This is
due to increasing reaction kinetic between CO2 in gas phase and PCGLY from the top of the column
which consuming chemical enhancement, E in the absorption system. As observed, KGav values
reduce with increasing liquid inlet temperature. This is mainly contributed by the increasing reaction
kinetics caused by the increasing liquid temperature [41,49]. According to the Arrhenius expression,
higher temperatures will increase kOH and kGLY, in turn resulting in the increase of reaction rate.
Conversely, the higher temperatures reduce CO2 solubility, as indicated by the increase in the Henry’s
law constant [21,50]. Nevertheless, the effect of increasing the reaction rate constant overrides the
effect of increasing the Henry’s law constant [50]. In turn, CO2 removal efficiency and KGav increased
with increasing inlet liquid temperature.

3.2. Comparative Study of Absorption Performance with MDEA

MDEA is an acceptable solvent for comparison with PCGLY as it is the most commercial tertiary
amines for NG CO2 purification [51]. In order to measure the process performance of PCGLY,
a comparative study was conducted with MDEA. Specifications for process parameter are shown in
Table 1.

Table 1. Specifications of the process parameters for comparative studies.

Operating Parameters Value (Unit)

MDEA concentration 1.3 (kmol/m3)
PCGLY concentration 1.2 (kmol/m3)

Liquid flow rate 7.22 (m3/m2.h)
Gas flow rate 41.72 (kmol/m2.h)

Operating pressure 4.04 (MPa)
CO2 concentration 20 (%)

Liquid inlet temperature 333 (K)
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The simplified rate-based model was used to compare with the experimental data. Figure 8 shows
the CO2 concentration profile of MDEA and PCGLY. The model has good fitted with the experimental
data with MAE = 0.057.
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Figure 9 presented the CO2 removal efficiency of PCGLY and MDEA at 75% and 77%, respectively.
The PCGLY performance is comparable in terms of CO2 removal efficiency.
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Figure 10 illustrated the overall mass transfer coefficient for PCGLY and MDEA. The KGav of
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PCGLY as Potential Green Solvent

In this paper, the absorption performance of PCGLY was well proven to be comparable with
equimolar MDEA in terms of its CO2 removal efficiency and KGav. The potential of PCGLY is supported
by its environmental friendly properties and has less toxicity than MDEA [24,27]. PCGLY also requires
lower regeneration energy as compared to MDEA [15,27,32,52]. Due to the high solvent temperature in
the absorber, the required energy for stripping process is lower. [53]. Another advantage of PCGLY as
compared to MDEA is it is thermally stable and has no thermal degradation [21,24]. Moreover, PCGLY
is cheaper than MDEA, hence it can save more operational costs as compared to MDEA [27,52]. Due to
this, PCGLY is one of the potential alternative solvents in CO2 absorption technology. Future research
may focus on the evaluation of the energy consumption and control system for absorption system.

4. Conclusions

The mass transfer performance of aqueous PCGLY blend for CO2 absorption was determined
using a bench-scale packed absorption column. The experimental results indicated that: (1) klae and
KGav increased as liquid flow rate and inlet liquid temperature increased; (2) gas flow rate and operating
pressure had little effects on klae and KGav; (3) CO2 removal efficiency and KGav value of PCGLY are
comparable with MDEA. However, the advantage of PCGLY as green solvent, which also requires
lower regeneration energy and costs, would override the performance of MDEA. Furthermore, PCGLY
demonstrated resistance to degradation and lower toxicity than amine-based solvents. The simplified
numerical model demonstrated good agreement with the experimental data with MAE < 0.06.
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