Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Development of an Indicator System for Assessing ECC and ES
2.3. Data Collection and Processing
3. Results
3.1. Spatial and Temporal Changes in the ECC and ES in TRHR
3.2. Analysis of the Limiting Factors for ECC and ES in TRHR
4. Discussion
4.1. Indicator System Development of the ECC and ES
4.2. Spatiotemporal Variations of the ECC and ES in TRHR
4.3. Effect of ECCP in the TRHR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, S.; Li, J.; Guan, X.; Gao, X.; Gu, Y.; Zhang, D.; Mi, F.; Li, D. The evaluation of forestry ecological security in China: Developing a decision support system. Ecol. Indic. 2018, 91, 664–678. [Google Scholar] [CrossRef]
- Ohl, C.; Krauze, K.; Grunbuhel, C. Towards an understanding of long-term ecosystem dynamics by merging socio-economic and environmental research. Ecol. Econ. 2007, 63, 383–391. [Google Scholar] [CrossRef]
- Zhao, Y.-Z.; Zou, X.-Y.; Cheng, H.; Jia, H.-K.; Wu, Y.-Q.; Wang, G.-Y.; Zhang, C.; Gao, S.-Y. Assessing the ecological security of the Tibetan plateau: Methodology and a case study for Lhaze County. J. Environ. Manag. 2006, 80, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, E. An evaluation of the ecological and environmental security on China’s terrestrial ecosystems. Sci. Rep. 2017, 7, 811. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.J.; Byron, C. The flexible application of carrying capacity in ecology. Glob. Ecol. Conserv. 2018, 13, e00365. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Cao, W.; Zhong, H.; Harris, W.; Gong, G.; Zhang, Y. Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecol. Eng. 2018, 116, 67–79. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, Q.; Fan, J.; Bennett, S.; Li, Y. Assessing construction land potential and its spatial pattern in China. Landsc. Urban Plan. 2011, 103, 207–216. [Google Scholar] [CrossRef]
- Gong, L.; Jin, C. Fuzzy Comprehensive Evaluation for Carrying Capacity of Regional Water Resources. Water Resour. Manag. 2009, 23, 2505–2513. [Google Scholar] [CrossRef]
- Salerno, F.; Viviano, G.; Manfredi, E.C.; Caroli, P.; Thakuri, S.; Tartari, G. Multiple Carrying Capacities from a management-oriented perspective to operationalize sustainable tourism in protected areas. J. Environ. Manag. 2013, 128, 116–125. [Google Scholar] [CrossRef]
- Wang, S.; Xu, L.; Yang, F.; Wang, H. Assessment of water ecological carrying capacity under the two policies in Tieling City on the basis of the integrated system dynamics model. Sci. Total. Environ. 2014, 472, 1070–1081. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wu, J.; Wang, T. Index system of urban resource and environment carrying capacity based on ecological civilization. Environ. Impact Assess. Rev. 2018, 68, 90–97. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, Y.; Chen, Y.; Liu, Y.; Zhang, Y.; Shen, S.; Yang, R.; Xu, Z.; Hong, Y.; Yang, R. Diagnosing cropland’s allowable range and spatial allocation in China’s typical mountainous plateau area: An evaluation framework based on ecological carrying capacity. Sci. Total Environ. 2019, 685, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, Y.; Gao, P.; Xia, B. A Mamdani fuzzy inference approach for assessing ecological security in the Pearl River Delta urban agglomeration, China. Ecol. Indic. 2018, 94, 386–396. [Google Scholar] [CrossRef]
- Lu, X.-C.; Zhang, J.; Li, X.-Z. Geographical information system-based assessment of ecological security in Changbai Mountain region. J. Mt. Sci. 2014, 11, 86–97. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Z.; Mao, D.; Li, L.; Liu, M.-Y.; Jia, M.; Man, W.; Lu, C. Remote Observation in Habitat Suitability Changes for Waterbirds in the West Songnen Plain, China. Sustainability 2019, 11, 1552. [Google Scholar] [CrossRef] [Green Version]
- Rojo, L.; Bautista, S.; Orr, B.J.; Vallejo, V.R.; Cortina, J.; Derak, M. Prevention and restoration actions to combat desertification. Sécheresse 2012, 23, 219–226. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Veith, T.L.; Bosch, D.D.; Arnold, J.G. Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service Watersheds. J. Hydrol. Eng. 2007, 12, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Bryan, B.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Fan, J.-W.; Shao, Q.-Q.; Liu, J.-Y.; Wang, J.-B.; Harris, W.; Chen, Z.-Q.; Zhong, H.-P.; Xu, X.-L.; Liu, R.-G. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai–Tibet Plateau, China. Environ. Monit. Assess. 2009, 170, 571–584. [Google Scholar] [CrossRef]
- Shao, Q.; Cao, W.; Fan, J.; Huang, L.; Xu, X. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci. 2016, 27, 183–204. [Google Scholar] [CrossRef]
- Convertino, M.; Baker, K.; Vogel, J.; Lu, C.; Suedel, B.; Linkov, I. Multi-criteria decision analysis to select metrics for design and monitoring of sustainable ecosystem restorations. Ecol. Indic. 2013, 26, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Canto-Perello, J.; Martinez-Leon, J.; Curiel-Esparza, J.; Martin-Utrillas, M. Consensus in prioritizing river rehabilitation projects through the integration of social, economic and landscape indicators. Ecol. Indic. 2017, 72, 659–666. [Google Scholar] [CrossRef]
- Hermoso, V.; Pantus, F.; Olley, J.; Linke, S.; Mugodo, J.; Lea, P. Systematic planning for river rehabilitation: Integrating multiple ecological and economic objectives in complex decisions. Freshw. Boil. 2011, 57, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- Mateos, D.M.; Power, M.E.; Comín, F.A.; Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Boil. 2012, 10, e1001247. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xu, X.; Shao, Q. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J. Geogr. Sci. 2008, 18, 259–273. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, Y.; Wang, S.; Wang, L.; Wang, F.; Liu, W.; Guo, B. Multicriteria decision analysis for monitoring ecosystem service function of the Three-River Headwaters region of the Qinghai-Tibet Plateau, China. Environ. Monit. Assess. 2015, 187, 355. [Google Scholar] [CrossRef]
- Liu, D.; Cao, C.; Dubovyk, O.; Tian, R.; Chen, W.; Zhuang, Q.; Zhao, Y.; Menz, G. Using fuzzy analytic hierarchy process for spatio-temporal analysis of eco-environmental vulnerability change during 1990–2010 in Sanjiangyuan region, China. Ecol. Indic. 2017, 73, 612–625. [Google Scholar] [CrossRef]
- Li, X.-L.; Brierley, G.; Qiao, Y.-M.; Yang, Y.-W.; Gao, J.; Zhang, J. Rangeland degradation on the Qinghai-Tibet plateau: Implications for rehabilitation. Land Degrad. Dev. 2011, 24, 72–80. [Google Scholar] [CrossRef]
- The People’s Government of Qinghai Province (PGQP). The Phase II Planning on Ecological Conservation and Construction Program in the Sanjiangyuan National Nature Reserve; The People’s Government of Qinghai Province (PGQP): Qinghai, China, 2013; pp. 1–85. [Google Scholar]
- Ma, S.; Ma, S. The Environmental Justice in Ecological Immigration A Case Study of Sanjiangyuan Area. Arch. Res. 2015, 17, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Foggin, M.; E Torrance-Foggin, M. How can social and environmental services be provided for mobile Tibetan herders? Collaborative examples from Qinghai Province, China. Pastoralism 2011, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fan, J.; Zhou, D.; Zhang, H. Ecological Protection and Restoration Program Reduced Grazing Pressure in the Three-River Headwaters Region, China. Rangel. Ecol. Manag. 2017, 70, 540–548. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Zhu, W.; Pan, Y.; Zhang, C.; Zhang, D. Changes in Spring Phenology in the Three-Rivers Headwater Region from 1999 to 2013. Remote Sens. 2014, 6, 9130–9144. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.Q.; Fan, J.W. The Integrated Monitoring and Assessment of Ecosystem in the Three-River Headwaters Region; Science Press: Beijing, China, 2012; pp. 190–222. [Google Scholar]
- Qinghai Provincial Bureau of Statistics. Qinghai Statistical Yearbook; Qinghai Provincial Bureau of Statistics: Xining, China, 2015. [Google Scholar]
- Liu, Y.; Zeng, C.; Cui, H.; Song, Y. Sustainable Land Urbanization and Ecological Carrying Capacity: A Spatially Explicit Perspective. Sustainability 2018, 10, 3070. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.G.; Foser, G.R.; Weesies, G.A.; McCool, D.K.; Yoderm, D.C. Predicting Soil erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997. [Google Scholar]
- Fryrear, D.W.; Saleh, A.; Bilbro, J.D.; Schomberg, H.M.; Stout, J.E.; Zobeck, T.M. Revised Wind Erosion Equation; Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1998. [Google Scholar]
- Wang, J.; Liu, J.; Cao, M.; Liu, Y.; Yu, G.-R.; Li, G.; Qi, S.; Li, K. Modelling carbon fluxes of different forests by coupling a remote-sensing model with an ecosystem process model. Int. J. Remote Sens. 2011, 32, 6539–6567. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 506–512. [Google Scholar] [CrossRef]
- Liu, S. Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North-Central Florida. J. Hydrol. 1998, 207, 32–41. [Google Scholar] [CrossRef]
- Gao, Y.L.; Lin, H.L.; Zhou, Z.Y.; Wei, Y.M. Analysis on ecological footprint of sustainable development in Sanjiangyuan Region. Pratacultural Sci. 2019, 36, 11–19. [Google Scholar] [CrossRef]
- Du, F. Ecological Resettlement of Tibetan Herders in the Sanjiangyuan: A Case Study in Madoi County of Qinghai. Nomad. Peoples 2012, 16, 116–133. [Google Scholar] [CrossRef] [Green Version]
- Li, L. Review of Fachun Du, Ecological Resettlement in the Sanjiangyuan of Qinghai. Nomad. Peoples 2015, 19, 344–348. [Google Scholar] [CrossRef]
- Huang, M. Factors affecting analysis of herdsmen income in the Sanjiangyuan ecological protection zone. In Proceedings of the Eighth International Conference on Measuring Technology and Mechatronics Automation ICMTMA, Macau, China, 11–12 March 2016. [Google Scholar]
- Yan, J.; Li, H.; Hua, X.; Peng, K.; Zhang, Y. Determinants of Engagement in Off-Farm Employment in the Sanjiangyuan Region of the Tibetan Plateau. MT Res. Dev. 2017, 37, 464–473. [Google Scholar] [CrossRef]
- Wu, L.; Wang, H. Poisoning the pika: Must protection of grasslands be at the expense of biodiversity? Sci. China Life Sci. 2017, 60, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Foggin, M. Environmental Conservation in the Tibetan Plateau Region: Lessons for China’s Belt and Road Initiative in the Mountains of Central Asia. Land 2018, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Shao, Q.; Guo, X.; Tang, Y.; Li, Y.; Wang, D.; Wang, Y.; Fan, J. Effect of Large Wild Herbivore Populations on the Forage-Livestock Balance in the Source Region of the Yellow River. Sustainability 2018, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Qinghai Province Tourism Bureau. Ecotourism Development Planning for Sanjiangyuan Region in Qinghai Province (2009–2025); Tourism Press: Beijing, China, 2009. [Google Scholar]
- Merce, I.; Radac, B.; Milin, A.; Gherman, R.; Tonea, E. Forest National Park—An ecotourism destination. J. Biotechnol. 2016, 231, S96. [Google Scholar] [CrossRef]
- Aymoz, B.G.P.; Randrianjafy, V.R.; Randrianjafy, Z.J.N.; Khasa, D.P. Community Management of Natural Resources: A Case Study from Ankarafantsika National Park, Madagascar. AMBIO 2013, 42, 767–775. [Google Scholar] [CrossRef] [Green Version]
- Akyeampong, O.A. Pro-poor tourism: Residents’ expectations, experiences and perceptions in the Kakum National Park Area of Ghana. J. Sustain. Tour. 2011, 19, 197–213. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer (Weight) | Indicator (Weight) (±) | Data Sources or Calculation Method |
---|---|---|---|
ECC | Climate layer (0.225) | C1—Annual precipitation (0.3) (+) | National Meteorological Information Center (http://data.cma.cn), ANUSPLIN Interpolation |
C2—Annual mean temperature (0.3) (+) | |||
C3—> 0 °C accumulated temperature (0.15) (+) | |||
C4—Annual amount of solar radiation (0.10) (+) | |||
C5—Annual frost-free days (0.15) (+) | |||
Land layer (0.300) | C6—Water erosion modulus (0.17) (-) | Revised Universal Soil Loss Equation [38] | |
C7—Wind erosion modulus (0.08) (-) | Revised Wind Erosion Equation [39] | ||
C8—Soil types (0.17) (+) | China Soil Types Map (1:10,000,000) (http://www.resdc.cn/data.aspx?DATAID=145) | ||
C9—Digital elevation model (0.29) (-) | NASA (http://srtm.csi. cgiar.org) | ||
C10—Slope (0.29) (-) | Fitting surface method (ArcGIS 10.3) | ||
Biota layer (0.225) | C11—ANPP (0.40) (+) | GLOPEM-CEVSA model [40] | |
C12—Vegetation coverage (0.35) (+) | Dimidiate pixel model [41] | ||
C13—Vegetation types (0.25) (+) | China Vegetation Types Map (1:10,000,000) (http://www.resdc.cn/data.aspx?DATAID=122) | ||
Water layer (0.25) | C14—Water conservation (0.70) (+) | Rainfall storage capacity method [42] | |
C15—Surface water quality (0.30) (+) | Bulletin of the State Environment in Qinghai, Report of the Water resources monitoring in the Three-River Headwaters Region (http://sthjt.qinghai.gov.cn/zlzk) |
Target Layer | Criterion Layer (Weight) | Indicator (Weight) (±) | Data Sources or Calculation Method |
---|---|---|---|
ES | Pressure (0.3) | D1—GDP (0.30) (-) | Resource and Environment Data Cloud Platform (http://www.resdc.cn/data.aspx?DATAID=252) |
D2—Number of livestock per unit grassland (0.30) (-) | Qinghai Farming and Animal Husbandry Statistical Manual (http://tjj.qinghai.gov.cn/tjData/qhtjnj) | ||
D3—Number of threatened vegetation species (0.05) (-) | Provided by the environmental protection bureau, Qinghai Province (http://sthjt.qinghai.gov.cn) | ||
D4—Number of threatened animal species (0.05) (-) | |||
D5—Proportion of degraded grasslands to grasslands (0.20) (-) | Remote Sensing Interpretation [26] | ||
D6—Dosage of pesticides (0.05) (-) | Qinghai Statistical Yearbook (http://tjj.qinghai.gov.cn/tjData/qhtjnj) | ||
D7—Dosage of fertilizers (0.05) (-) | |||
State (0.5) | D8—Ecological carrying capacity (1.0) (+) | Calculated in this study | |
Response (0.2) | D9—Proportion of tertiary industry (0.25) (+) | Qinghai Statistical Yearbook (http://tjj.qinghai.gov.cn/tjData/qhtjnj) | |
D10—Population density (0.25) (-) | Resource and Environment Data Cloud Platform (http://www.resdc.cn/data.aspx?DATAID=251) | ||
D11—Per capita living space (0.10) (+) | Qinghai Statistical Yearbook (http://tjj.qinghai.gov.cn/tjData/qhtjnj) | ||
D12—Educational expenditure (0.10) (+) | |||
D13—Proportion of ecological migration to the population (0.10) (+) | [35] | ||
D14—Investments for ecological restoration (0.20) (+) |
Limiting Indicators | Before Implementation (2000–2004) | At Early-Term Implementation (2005–2009) | At Medium-Term Implementation (2010–2015) |
---|---|---|---|
C1 | 10.02 | 2.50 | 3.58 |
C2 | 0.09 | 0.05 | 0.05 |
C3 | 12.46 | 12.44 | 7.90 |
C4 | 7.70 | 18.44 | 21.37 |
C5 | 0.06 | 0.03 | 0.03 |
C6 | 0.53 | 0.49 | 0.41 |
C7 | 0.05 | 0.02 | 0.03 |
C8 | 3.61 | 3.85 | 3.78 |
C9 | 1.01 | 0.86 | 0.81 |
C10 | 0.54 | 0.52 | 0.52 |
C11 | 10.77 | 13.33 | 13.80 |
C12 | 2.24 | 2.41 | 1.67 |
C13 | 0.64 | 0.64 | 0.62 |
C14 | 47.62 | 43.76 | 45.01 |
C15 | 2.66 | 0.66 | 0.42 |
Before Implementation (2000–2004) | At Early-Term Implementation (2005–2009) | At Medium-Term Implementation (2010–2015) | |
---|---|---|---|
D1 | 0 | 0 | 0 |
D2 | 0.47 | 4.13 | 4.43 |
D3 | 0 | 0.01 | 4.14 |
D4 | 0 | 4.77 | 8.68 |
D5 | 0 | 0 | 1.94 |
D6 | 4.53 | 4.53 | 6.78 |
D7 | 0.01 | 2.76 | 4.38 |
D8 | 0 | 0 | 0.10 |
D9 | 0 | 5.22 | 30.95 |
D10 | 0.36 | 1.01 | 0.40 |
D11 | 2.42 | 4.40 | 10.68 |
D12 | 92.21 | 59.69 | 0.01 |
D13 | 0 | 0 | 0.48 |
D14 | 0 | 13.47 | 27.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fan, J.; Wang, S. Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas. Sustainability 2020, 12, 3923. https://doi.org/10.3390/su12093923
Zhang Y, Fan J, Wang S. Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas. Sustainability. 2020; 12(9):3923. https://doi.org/10.3390/su12093923
Chicago/Turabian StyleZhang, Yaxian, Jiangwen Fan, and Suizi Wang. 2020. "Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas" Sustainability 12, no. 9: 3923. https://doi.org/10.3390/su12093923
APA StyleZhang, Y., Fan, J., & Wang, S. (2020). Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas. Sustainability, 12(9), 3923. https://doi.org/10.3390/su12093923