Source Apportionment of Inorganic Solutes in Surface Waters of Lake Baikal Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection Sites
2.2. Chemical Determinations
2.3. Data Processing
2.3.1. Identification of Tracers and Sources
2.3.2. Evaluation of Source Contributions
3. Results
3.1. Ionic Composition of Waters and Its Relation to Watershed Geology
3.2. Trace Elements Composition of Waters and its Relation to Watershed Geology
3.3. Identification of Main Ion Sources
3.4. Identification of Trace Element Sources
3.5. Source Apportionment of Main Ions
3.6. Source Apportionment of Trace Elements
3.7. Source Identification and Apportionment of Anthropogenic Trace Elements
4. Conclusions
- Uniform ionic composition of surface waters in the Lake Baikal watershed indicated the existence of only two tracers of main ion sources, such as (Ca2+ + Mg2+)/K+ and SO42−/HCO3−. The use of these tracers allowed identification of the three sources of main ions, such as silicate rocks, sulfide-bearing silicate rocks, and carbonate rocks, and evaluation of their contributions to ionic composition of surface waters.
- The variety of trace element compositions of surface waters in the Lake Baikal watershed indicated the existence of multiple tracers of trace element sources, four of which, namely Sr/Fe, Sr/Mn, Ni/V, and Mo/V, were identified. The use of these tracers and the obtained data on sources of main ions showed the possibility of identifying natural trace element sources and distinguishing between natural and anthropogenic trace element sources.
- The proposed approach allows classification of inland surface waters according to the chemical composition of natural and anthropogenic solute sources and, thus, creation of local water chemistry-based classifications of streams. The classified data on contributions of solute sources to water chemistry are necessary to support and improve water quality.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Semenov, M.Y.; Marinaite, I.I. Multi-source apportionment of polycyclic aromatic hydrocarbons using end-member mixing approach. Environ. Earth Sci. 2015, 73, 1769–1777. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Marinaite, I.I.; Golobokova, L.P.; Khuriganova, O.I.; Khodzher, T.V.; Semenov, Y.M. Source apportionment of polycyclic aromatic hydrocarbons in Lake Baikal water and adjacent air layer. Chem. Ecol. 2017, 33, 977–990. [Google Scholar] [CrossRef]
- Semenov, M.; Marinaite, I.; Zhuchenko, N.; Silaev, A.; Vershinin, K.; Semenov, Y. Revealing the factors affecting occurrence and distribution of polycyclic aromatic hydrocarbons in water and sediments of Lake Baikal and its tributaries. Chem. Ecol. 2018, 34, 901–916. [Google Scholar] [CrossRef]
- Christophersen, N.; Neal, C.; Hooper, R.P.; Vogt, R.D.; Andersen, S. Modelling stream water chemistry as a mixture of soilwater end members—A step toward second-generation of acidification models. J. Hydrol. 1990, 116, 307–320. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Zimnik, E.A. A three component hydrograph separation based on relationship between organic and inorganic component concentrations: A case study in Eastern Siberia, Russia. Environ. Earth Sci. 2015, 73, 611–620. [Google Scholar] [CrossRef]
- Kirso, U.; Irha, N.; Paalme, L.; Reznikov, S.; Matveev, A. Levels and origin of PAHs in some big lakes. Polycycl. Aromat. Compd. 2001, 22, 715–728. [Google Scholar] [CrossRef]
- Nikanorov, A.M.; Reznikov, S.A.; Matveev, A.A.; Arakelyan, V.S. Monitoring of polycyclic aromatic hydrocarbons in the Lake Baikal basin in the areas of intensive anthropogenic impact. Russ. Meteorol. Hydrol. 2012, 37, 477–484. [Google Scholar] [CrossRef]
- Reznikov, S.A.; Adzhiev, R.A. Persistent organic pollutants in bottom sediments in the north of Lake Baikal in the area of the Baikal-Amur Mainline impact. Russ. Meteorol. Hydrol. 2015, 40, 207–2014. [Google Scholar] [CrossRef]
- Meuleman, C.; Leermakers, M.; Baeyens, W. Mercury speciation in Lake Baikal. Water Air Soil Pollut. 1995, 80, 539–551. [Google Scholar] [CrossRef]
- Chebykin, E.P.; Sorokovikova, L.M.; Tomberg, I.V.; Rasskazov, S.V.; Khodzher, T.V.; Grachev, M.A. Current state of the Selenga River waters in the Russian territory concerning major components and trace elements. Chem. Sustain. Dev. 2012, 20, 561–580. Available online: https://www.sibran.ru/upload/iblock/d5e/current_state_of_the_selenga_river_waters_in_the_russian_territory_concerning_major_components_and_t.pdf (accessed on 22 February 2021).
- Lychagin, M.; Chalov, S.; Kasimov, N.; Shinkareva, G.; Jarsjo, J.; Thorslund, J. Surface water pathways and fluxes of metals under changing environmental conditions and human interventions in the Selenga River system. Environ. Earth Sci. 2017, 76, 1. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Semenov, Y.M.; Silaev, A.V.; Begunova, L.A. Assessing the Self-Purification Capacity of Surface Waters in Lake Baikal Watershed. Water 2019, 11, 1505. [Google Scholar] [CrossRef] [Green Version]
- Kasimov, N.; Shinkareva, G.; Lychagin, M.; Kosheleva, N.; Chalov, S.; Pashkina, M.; Thorslund, J.; Jarsjö, J. River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals. Water 2020, 12, 2137. [Google Scholar] [CrossRef]
- Chalov, S.; Thorslund, J.; Kasimov, N.; Aybullatov, D.; Ilyicheva, E.; Karthe, D.; Kositsky, A.; Lychagin, M.; Nittrouer, J.; Pavlov, M.; et al. The Selenga River delta: A geochemical barrier protecting Lake Baikal waters. Reg. Environ. Chang. 2017, 17, 2039–2053. [Google Scholar] [CrossRef]
- Chebykin, E.P.; Goldberg, E.L.; Kulikova, N.S. Elemental composition of suspended particles from the surface waters of Lake Baikal in the zone affected by the Selenga River. Russ. Geol. Geophys. 2010, 51, 1126–1132. [Google Scholar] [CrossRef]
- Yoshioka, T.; Mostofa, K.M.G.; Konohira, E.; Tanoue, E.; Hayakawa, K.; Takahashi, M.; Ueda, S.; Katsuyama, M.; Khodzher, T.; Bashenkhaeva, N.; et al. Distribution and characteristics of molecular size fractions of freshwater dissolved organic matter in watershed environments: Its implicationto degradation. Limnology 2007, 8, 29–44. [Google Scholar] [CrossRef]
- Khazheeva, Z.I.; Plyusnin, A.M. Discharge of biogenic substances with river runoff in Selenga basin. Water Resour. 2012, 39, 420–431. [Google Scholar] [CrossRef]
- Khazheeva, Z.I.; Plyusnin, A.M. The regime of dissolved gases and organic matter in Selenga basin rivers. Water Resour. 2013, 40, 61–73. [Google Scholar] [CrossRef]
- Khodzher, T.V.; Domysheva, V.M.; Sorokovikova, L.M.; Sakirko, M.V.; Tomberg, I.V. Current chemical composition of Lake Baikal water. Inland Waters 2017, 7, 250–258. [Google Scholar] [CrossRef]
- Timoshkin, O.A.; Moore, M.V.; Kulikova, N.N.; Tomberg, I.V.; Malnik, V.V.; Shimaraev, M.N.; Troitskaya, E.S.; Shirokaya, A.A.; Sinyukovich, V.N.; Zaitseva, E.P.; et al. Groundwater contamination by sewage causes benthic algal outbreaks in the littoral zone of Lake Baikal (East Siberia). J. Great Lakes Res. 2018, 44, 230–244. [Google Scholar] [CrossRef]
- Kozhowa, O.M.; Silow, E. The current problems of Lake Baikal ecosystem conservation. Lakes Reserv. Res. Manag. 1998, 3, 19–33. [Google Scholar] [CrossRef]
- Tomberg, I.V.; Sorokovikova, L.M.; Popovskaya, G.I.; Bashenkhaeva, N.V.; Sinyukovich, V.N.; Ivanov, V.G. Concentration dynamics of biogenic elements and phytoplankton at Selenga, R. Mouth and in Selenga shallows (Lake Baikal). Water Resour. 2014, 41, 687–695. [Google Scholar] [CrossRef]
- Panizzo, V.N.; Swann, G.E.A.; Mackay, A.W.; Vologina, E.; Alleman, L.; André, L.; Pashley, V.; Horstwood, M.S.A. Constraining modern-day silicon cycling in Lake Baikal. Glob. Biogeochem. Cycles 2017, 31, 556–574. [Google Scholar] [CrossRef] [Green Version]
- Panizzo, V.N.; Roberts, S.; Swann, G.E.A.; McGowan, S.; Mackay, A.W.; Vologina, E.; Pashley, V.; Horstwood, M.S.A. Spatial differences in dissolved silicon utilization in Lake Baikal, Siberia: Examining the impact of high diatom biomass events and eutrophication. Limnol. Oceanogr. 2018, 63, 1562–1578. [Google Scholar] [CrossRef] [Green Version]
- Kemp, P.H. Chemistry of Natural Waters. Part VI. Classification of Waters. Water Res. 1971, 5, 943–956. [Google Scholar] [CrossRef]
- Stuyfzand, P.J. A New Hydrochemical Classification of Water Types; IAHS-AISH Publication: Wallingford, CT, USA, 1990; Volume 182, pp. 89–98. [Google Scholar]
- Guler, C.; Thyne, G.D.; McCray, J.E.; Turner, A.K. Evaluation of graphical and multivariate statistical method for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Merovich, G.T.; Stiles, J.M.; Petty, J.T.; Ziemkiewicz, P.F.; Fulton, J.B. Water chemistry-based classification of streams and implications for restoring mined watersheds. Environ. Toxicol. Chem. 2007, 26, 1361–1369. [Google Scholar] [CrossRef]
- Strauch, G.; Schreck, P.; Nardin, G.; Gehre, M. Origin and distribution of sulphate in surface waters of the Mansfeld mining district (Central Germany)—A sulphur isotope study. Isot. Environ. Health Stud. 2001, 37, 101–112. [Google Scholar] [CrossRef]
- Porowski, A.; Porowska, D.; Halas, S. Identification of Sulfate Sources and Biogeochemical Processes in an Aquifer Affected by Peatland: Insights from Monitoring the Isotopic Composition of Groundwater Sulfate in Kampinos National Park, Poland. Water 2019, 11, 1388. [Google Scholar] [CrossRef] [Green Version]
- Mayer, B.; Shanley, J.B.; Bailey, S.W.; Mitchell, M.J. Identifying sources of stream water sulfate after a summer drought in the Sleepers River watershed (Vermont, USA) using hydrological, chemical, and isotopic techniques. Appl. Geochem. 2010, 25, 747–754. [Google Scholar] [CrossRef]
- Borzenko, S.V.; Shvartsev, S.L. Chemical composition of salt lakes in East Transbaikalia (Russia). Appl. Geochem. 2019, 103, 72–84. [Google Scholar] [CrossRef]
- Hounslow, A.W. Water Quality Data: Analysis and Interpretation; CRC Press; Lewis Publishers: Boca Raton, FL, USA, 1995; p. 416. [Google Scholar]
- Alfarrah, N.; Walraevens, K. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water 2018, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, J.W. A double paradox in catchment hydrology and geochemistry. Hydrol. Process. 2003, 17, 871–874. [Google Scholar] [CrossRef]
- Sun, H.; Alexander, J.; Gove, B.; Pezzi, E.; Chakowski, N.; Husch, J. Mineralogical and anthropogenic controls of stream water chemistry in salted watersheds. Appl. Geochem. 2014, 48, 141–154. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allegre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Bucher, K.; Zhou, W.; Stober, I. Rocks control the chemical composition of surface water from the high Alpine Zermatt area (Swiss Alps). Swiss J. Geosci. 2017, 110, 811–831. [Google Scholar] [CrossRef]
- Walter, J.; Chesnaux, R.; Cloutier, V.; Gaboury, D. The influence of water/rock-water/clay interactions and mixing in the salinization processes of groundwater. J. Hydrol. Reg. Stud. 2017, 13, 168–188. [Google Scholar] [CrossRef]
- Votintsev, K.K. Hydrochemistry of Lake Baikal; AN SSSR: Moscow, Russia, 1961. (In Russian) [Google Scholar]
- Domysheva, V.M.; Sorokovikova, L.M.; Sinyukovich, V.N.; Onishchuk, N.A.; Sakirko, M.V.; Tomberg, I.V.; Zhuchenko, N.A.; Golobokova, L.P.; Khodzher, T.V. Ionic Composition of Water in Lake Baikal, Its Tributaries, and the Angara River Source during the Modern Period. Russ. Meteorol. Hydrol. 2019, 44, 687–694. [Google Scholar] [CrossRef]
- Alekin, O.A. Osnovy Gidrokhimii (Fundamental of Hydrochemistry); Gidrometeoizdat: Leningrad, Russia, 1966. [Google Scholar]
- Semenov, M.Y.; Sandimirova, G.P.; Korovyakova, I.V.; Troitskaya, E.S.; Khramtsova, T.I.; Donskaya, T.V. Comparative assessment of soil weathering rates in the landscapes of the northern slope of the Khamar-Daban ridge. Russ. Geol. Geophys. 2005, 46, 50–59. [Google Scholar]
- Semenov, M.Y.; Van Grieken, R. Base cation fluxes in mountain landscapes of Lake Baikal southern shore. Commun. Soil Sci. Plant Anal. 2007, 38, 2635–2646. [Google Scholar] [CrossRef]
- Falkner, K.K.; Measures, C.I.; Herbelin, S.E.; Edmond, J.M.; Weiss, R.F. The major and minor element geochemistry of Lake Baikal. Limnol. Oceanogr. 1991, 36, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Falkner, K.K.; Church, M.; Measures, C.I.; LeBaron, G.; Thouron, D.; Jeandel, C.; Stordal, M.C.; Gill, G.A.; Mortlock, R.; Froelich, P.; et al. Minor and trace element chemistry of Lake Baikal, its tributaries, and surrounding hot springs. Limnol. Oceanogr. 1997, 42, 329–345. [Google Scholar] [CrossRef]
- Kuzmin, M.I.; Drill, S.I.; Sandimirov, I.V.; Sandimirova, G.P.; Geletii, V.F.; Chukanov, V.S.; Kalmychkov, G.V.; Bychinskii, V.A. Strontium isotope variations in the sedimentary sequence of Lake Baikal. Dokl. Earth Sci. 2007, 412, 131–135. [Google Scholar] [CrossRef]
- Pavlov, V.E.; Sorokovikova, L.M.; Tomberg, I.V.; Khvostov, I.V. Fifty-year variations in water ionic composition in small tributaries of the Southern Baikal. Water Resour. 2014, 41, 553–555. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Sinyukovich, V.N.; Netsvetaeva, O.G.; Tomberg, I.V.; Sez’ko, N.P.; Lopatina, I.N. Chemical composition of snow water and river water on the southeastern shore of Lake Baikal. Russ. Meteorol. Hydrol. 2015, 40, 334–342. [Google Scholar] [CrossRef]
- Sinyukovich, V.N. Relationships between water flow and dissolved solids discharge in the major tributaries of Lake Baikal. Water Resour. 2003, 30, 186–190. [Google Scholar] [CrossRef]
- Sorokovikova, L.M.; Sinyukovich, V.N.; Netsvetayeva, O.G.; Tomberg, I.V.; Sezko, N.P. The entry of sulfates and nitrogen into Lake Baikal with the waters of its influent rivers. Geogr. Nat. Resour. 2009, 30, 35–39. [Google Scholar] [CrossRef]
- Li, T.; Sun, G.; Ma, S.; Liang, K.; Yang, C.; Li, B.; Liang, K.; Yang, C.; Li, B.; Luo, W. Inferring sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from the western Taiwan Strait through end-member mixing analysis. Mar. Pollut. Bull. 2016, 112, 166–176. [Google Scholar] [CrossRef]
- Liu, Y.; Yamanaka, T. Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry. J. Hydrol. 2012, 464–465, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Williams, M.; Caine, N. Source waters and flow paths in a seasonally snow-covered catchment, Colorado Front Range, USA. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Kuz’min, M.I.; Bychinskii, V.A.; Kerber, E.V.; Oshchepkova, A.V.; Goreglyad, A.V.; Ivanov, E.V. Chemical composition of sediments in Baikal deep-water boreholes as a basis for reconstructions of climatic and environmental changes. Russ. Geol. Geophys. 2014, 55, 1–17. [Google Scholar] [CrossRef]
- Geological Map of Central Asia and Adjacent Areas. Atlas of Geological Maps of Central Asia and Adjacent Areas. Scale 1:2,500,000; Geological Publishing House: Beijing, China, 2008; p. 5. Available online: http://neotec.ginras.ru/neomaps/M025_Asia-C_2008_Geology.jpg (accessed on 22 February 2021).
- Vernadskij, V.I. Problemy Biogeohimii [Biogeochemistry Issues]; M. Nauka: Moscow, Russia, 1980; p. 320. (In Russian) [Google Scholar]
- Hoskin, P.W.O.; Kinny, P.D.; Wyborn, D.; Chappell, B.W. Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: An Integrated Approach. J. Petrol. 2000, 41, 1365–1396. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, C.; Adeyeye, O.; Yang, W.; Liang, X. Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- Lovley, D.R.; Phillips, E.J. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 1988, 54, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, M.V.; Handler, R.M.; Scherer, M.M. Fe(II) reduction of pyrolusite (β-MnO2) and secondary mineral evolution. Geochem. Trans. 2017, 18, 7. [Google Scholar] [CrossRef] [Green Version]
- Lowson, R.T.; Comarmond, M.-C.J.; Rajaratnam, G.; Brown, P.L. The kinetics of the dissolution of chlorite as a function of pH and at 25 °C. Geochim. Cosmochim. Acta 2005, 69, 1687–1699. [Google Scholar] [CrossRef]
- Nekrasov, I.J.; Besmen, N.I. Pyrite-pyrrhotite geothermometer. Distribution of cobalt, nickel and tin. Phys. Chem. Earth 1979, 11, 767–771. [Google Scholar] [CrossRef]
- Torma, A.E. Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. Rev. Can. Biol. 1971, 3, 209–216. [Google Scholar]
- Matasova, G.G.; Kazansky, A.Y.; Kozhevnikov, N.O.; Snopkov, S.V.; Kharinsky, A.V. A rock magnetic quest for possible ore sources for the ancient iron smelting industry in the Olkhon region (Lake Baikal, Siberia). Archaeometry 2017, 59, 511–527. [Google Scholar] [CrossRef]
- Sklyarov, E.V.; Sklyarova, O.A.; Lavrenchuk, A.V.; Menshagin, Y.V. Natural pollutants of Northern Lake Baikal. Environ. Earth Sci. 2015, 74, 2143–2155. [Google Scholar] [CrossRef]
- Solongo, T.; Fukushi, K.; Altansukh, O.; Takahashi, Y.; Akehi, A.; Baasansuren, G.; Ariuntungalag, Y.; Enkhjin, O.; Davaajargal, B.; Davaadorj, D.; et al. Distribution and Chemical Speciation of Molybdenum in River and Pond Sediments Affected by Mining Activity in Erdenet City, Mongolia. Minerals 2018, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Sklyarov, E.V.; Lavrenchuk, A.V.; Starikova, A.E.; Fedorovsky, V.S.; Khromova, E.A. Genesis of Manganese Ore Occurrences of the Olkhon Terrane the Western Baikal Region. Petrology 2019, 27, 79–94. [Google Scholar] [CrossRef]
- Mochizuki, A.; Murata, T.; Hosoda, K.; Katano, T.; Tanaka, Y.; Mimura, T.; Mitamura, O.; Nakano, S.; Okazaki, Y.; Sugiyama, Y.; et al. Distributions and geochemical behaviors of oxyanion-forming trace elements and uranium in the Hovsgol–Baikal–Yenisei water system of Mongolia and Russia. J. Geochem. Explor. 2018, 188, 123–136. [Google Scholar] [CrossRef]
- Granina, L.Z.; Mats, V.D.; Fedorin, M.A. Iron-manganese formations in the Baikal region. Russ. Geol. Geophys. 2010, 51, 649–659. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Silaev, A.V.; Semenov, Y.M.; Begunova, L.A. Using Si, Al and Fe as Tracers for Source Apportionment of Air Pollutants in Lake Baikal Snowpack. Sustainability 2020, 12, 3392. [Google Scholar] [CrossRef] [Green Version]
- Plyusnin, A.; Smirnova, O.; Robinson, P. Storage and processing of acid waste waters of mining enterprises. E3S Web Conf. 2019, 98, 01041. [Google Scholar] [CrossRef]
- Khazheeva, Z.I.; Plyusnin, A.M.; Smirnova, O.K.; Peryazeva, E.G.; Zhambalova, D.I.; Doroshkevich, S.G.; Dabaeva, V.V. Mining Activities and the Chemical Composition of R.; Modonkul, Transbaikalia. Water 2020, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Kasimov, N.; Kosheleva, N.; Gunin, P.; Korlyakov, I.; Sorokina, O.; Timofeev, I. State of the environment of urban and mining areas in the Selenga Transboundary River Basin (Mongolia Russia). Environ. Earth Sci. 2016, 75, 1283. [Google Scholar] [CrossRef]
- Drozdova, J.; Raclavska, H.; Raclavsky, K.; Skrobankova, H. Heavy metals in domestic wastewater with respect to urban population in Ostrava, Czech Republic. Water Environ. J. 2019, 33, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Horak, E.; Sunderman, F.W. Fecal Nickel Excretion by Healthy Adults. Clin. Chem. 1973, 19, 429–430. [Google Scholar] [CrossRef]
- Svane, S.; Karring, H.; Cholkar, K. A comparison of the transition metal concentrations in the faeces, urine, and manure slurry from different livestock animals related to environmentally relevant microbial processes. Cogent Chem. 2019, 5. [Google Scholar] [CrossRef]
- Font, O.; Querol, X.; Juan, R.; Casado, R.; Ruiz, C.R.; López-Soler, A.; Coca, P.; García Peña, F. Recovery of gallium and vanadium from gasification fly ash. J. Hazard Mater. 2007, 139, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Shafer, M.M.; Toner, B.M.; Overdier, J.T.; Schauer, J.J.; Fakra, S.C.; Hu, S.; Herner, J.D.; Ayala, A. Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols. Environ. Sci. Technol. 2012, 46, 189–195. [Google Scholar] [CrossRef] [PubMed]
Area | K+ | Na+ | Mg2+ | Ca2+ | Cl− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|
Two-year average ionic composition of riverine water from 7 areas selected on the western coast | |||||||
Marituisky (n = 13) * | 1.16 | 2.38 | 1.38 | 8.57 | 0.41 | 9.05 | 28.4 |
Baikalsky (n = 8) | 0.78 | 2.79 | 3.30 | 12.9 | 0.71 | 11.2 | 49.1 |
Listvyansky (n = 11) | 0.94 | 3.93 | 6.37 | 18.7 | 1.26 | 26.1 | 66.0 |
Goloustnensky (n = 4) | 0.56 | 1.83 | 8.03 | 22.3 | 0.44 | 15.7 | 93.8 |
Buguldeyisky (n = 9) | 1.66 | 7.46 | 17.6 | 48.7 | 1.69 | 22.4 | 229 |
Yelantsinsky (n = 13) | 0.99 | 2.14 | 3.73 | 14.0 | 0.91 | 4.88 | 61.1 |
Onguryonsky (n = 17) | 1.22 | 2.13 | 11.3 | 28.6 | 1.09 | 14.7 | 131 |
Basic statistical parameters of ionic composition of water from 75 western tributaries | |||||||
Average | 1.10 | 3.14 | 7.27 | 21.5 | 0.96 | 14.3 | 92.7 |
Minimum | 0.20 | 0.80 | 0.36 | 5.20 | 0.17 | 2.10 | 17.3 |
Maximum | 3.10 | 13.1 | 41.9 | 92.0 | 6.16 | 60.3 | 446 |
RSD ** | 0.61 | 2.24 | 7.55 | 17.2 | 9.41 | 12.4 | 85.8 |
Station | K+ | Na+ | Mg2+ | Ca2+ | Cl− | SO42− | HCO3− |
---|---|---|---|---|---|---|---|
1 | 1.66 | 6.91 | 6.23 | 28.0 | 1.53 | 15.1 | 118 |
2 | 1.68 | 7.01 | 6.32 | 29.3 | 1.61 | 15.5 | 120 |
3 | 1.73 | 6.93 | 6.81 | 29.3 | 1.54 | 18.1 | 120 |
4 | 1.57 | 6.82 | 6.11 | 28.4 | 1.45 | 14.2 | 121 |
5 | 1.39 | 5.64 | 5.54 | 25.1 | 1.32 | 12.1 | 104 |
6 | 1.31 | 5.51 | 4.81 | 22.2 | 1.14 | 10.3 | 95.3 |
7 | 1.26 | 4.82 | 5.12 | 22.3 | 1.23 | 12.1 | 88.3 |
8 | 1.21 | 4.81 | 4.72 | 19.3 | 1.24 | 9.22 | 85.5 |
9 | 1.25 | 4.73 | 4.01 | 21.4 | 1.23 | 10.3 | 85.4 |
10 | 1.31 | 4.92 | 4.51 | 22.2 | 0.93 | 9.33 | 87.1 |
11 | 1.25 | 4.91 | 4.30 | 21.1 | 0.84 | 8.21 | 90.1 |
Average | 1.42 | 5.73 | 5.32 | 24.4 | 1.28 | 12.2 | 101 |
Minimum | 1.21 | 4.73 | 4.01 | 19.3 | 0.84 | 8.21 | 85.4 |
Maximum | 1.73 | 7.01 | 6.81 | 29.3 | 1.61 | 18.1 | 121 |
RSD * | 0.20 | 0.99 | 0.94 | 3.71 | 0.25 | 3.14 | 15.5 |
Station | Sr | Al | Fe | Ti | Mn | Zn | Cu | V | Mo | Ni | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 211 | 19.3 | 33.2 | 0.81 | 15.1 | 0.91 | 1.91 | 1.74 | 2.53 | 0.61 | 0.31 |
2 | 202 | 69.1 | 90.1 | 2.33 | 10.2 | 1.02 | 2.02 | 1.93 | 2.52 | 0.75 | 0.42 |
3 | 220 | 17.4 | 47.5 | 1.24 | 8.01 | 1.15 | 2.13 | 1.61 | 2.31 | 0.95 | 0.35 |
4 | 210 | 19.1 | 20.4 | 0.83 | 6.42 | 0.31 | 1.89 | 2.22 | 2.24 | 0.71 | 0.35 |
5 | 160 | 26.3 | 23.1 | 0.92 | 7.03 | 1.97 | 1.76 | 1.51 | 1.75 | 0.62 | 0.31 |
6 | 174 | 11.0 | 10.1 | 0.64 | 7.51 | 2.96 | 1.75 | 0.73 | 1.86 | 0.55 | 0.34 |
7 | 159 | 17.5 | 19.3 | 0.85 | 8.62 | 1.43 | 1.64 | 0.74 | 1.65 | 0.65 | 0.30 |
8 | 151 | 31.4 | 36.2 | 1.13 | 9.54 | 1.61 | 1.61 | 0.63 | 1.61 | 0.64 | 0.45 |
9 | 153 | 20.2 | 20.1 | 0.81 | 10.7 | 1.22 | 1.52 | 0.62 | 1.63 | 0.63 | 0.41 |
10 | 154 | 39.3 | 60.0 | 1.63 | 13.1 | 1.54 | 1.73 | 1.51 | 1.62 | 0.75 | 0.50 |
11 | 161 | 47.1 | 96.3 | 2.12 | 15.0 | 1.01 | 2.01 | 1.47 | 1.74 | 1.05 | 0.44 |
Average | 175 | 29.1 | 41.2 | 1.21 | 10.1 | 1.32 | 1.83 | 1.34 | 1.91 | 0.71 | 0.44 |
Minimum | 150 | 11.3 | 10.1 | 0.62 | 6.42 | 0.31 | 1.51 | 0.63 | 1.63 | 0.62 | 0.33 |
Maximum | 220 | 69.4 | 96.5 | 2.33 | 15.0 | 2.93 | 2.14 | 2.21 | 2.54 | 1.13 | 0.51 |
RSD * | 26.6 | 17.1 | 29.3 | 0.61 | 3.13 | 0.71 | 0.22 | 0.62 | 0.43 | 0.24 | 0.12 |
DL ** | 0.014 | 0.027 | 0.020 | 0.011 | 0.016 | 0.021 | 0.013 | 0.014 | 0.020 | 0.026 | 0.022 |
Station | Sr | Al | Fe | Ti | Mn | Zn | Cu | V | Mo | Ni | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|
Two-year average trace element composition of riverine water from 7 areas selected on the western coast | |||||||||||
Marituisky | 78.1 | 76.2 | 81.5 | 9.52 | 13.1 | 2.73 | 3.87 | 0.94 | 0.63 | 1.12 | 0.31 |
Baikalsky | 88.4 | 38.5 | 46.6 | 4.21 | 6.72 | 2.71 | 2.54 | 0.65 | 0.31 | 0.83 | 0.23 |
Listvyansky | 124 | 20.3 | 46.1 | 2.63 | 7.45 | 2.52 | 2.61 | 0.51 | 0.72 | 0.74 | 0.32 |
Goloustnensky | 123 | 16.1 | 47.3 | 2.35 | 7.26 | 1.77 | 2.62 | 0.54 | 0.54 | 0.75 | 0.34 |
Buguldeyisky | 253 | 76.4 | 39.0 | 11.6 | 4.81 | 4.89 | 3.34 | 9.73 | 3.91 | 0.83 | 0.71 |
Yelantsinsky | 77.0 | 93.3 | 42.2 | 22.9 | 6.73 | 3.85 | 3.03 | 7.72 | 1.23 | 0.51 | 0.35 |
Onguryonsky | 118 | 119 | 64.1 | 20.3 | 7.44 | 7.24 | 4.12 | 0.96 | 1.12 | 0.74 | 0.43 |
Basic statistical parameters of trace element composition of water from 75 western tributaries | |||||||||||
Average | 118 | 71.3 | 55.4 | 12.1 | 8.04 | 4.03 | 3.31 | 3.01 | 1.22 | 0.83 | 0.34 |
Minimum | 7.01 | 4.15 | 12.3 | 0.32 | 2.15 | 0.92 | 0.82 | 0.13 | 0.13 | 0.24 | 0.11 |
Maximum | 360 | 351 | 214 | 68.1 | 50.2 | 38.0 | 12.4 | 53.2 | 13.4 | 3.56 | 1.45 |
RSD * | 86.1 | 61.8 | 37.3 | 14.1 | 6.26 | 4.81 | 1.93 | 8.01 | 2.12 | 1.36 | 1.43 |
DL ** | 0.014 | 0.027 | 0.020 | 0.011 | 0.016 | 0.021 | 0.013 | 0.014 | 0.020 | 0.026 | 0.022 |
Area | Sulfide-Bearing Silicates | Silicates | Carbonates |
---|---|---|---|
Marituisky | 46 | 52 | 2 |
Baikalsky | 42 | 46 | 12 |
Listvyansky | 58 | 22 | 20 |
Goloustnensky | 20 | 33 | 47 |
Buguldeyisky | 7 | 54 | 40 |
Yelantsinsky | 9 | 82 | 9 |
Onguryonsky | 8 | 75 | 17 |
Selenga Watershed | 20 | 61 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenov, M.Y.; Semenov, Y.M.; Silaev, A.V.; Begunova, L.A. Source Apportionment of Inorganic Solutes in Surface Waters of Lake Baikal Watershed. Sustainability 2021, 13, 5389. https://doi.org/10.3390/su13105389
Semenov MY, Semenov YM, Silaev AV, Begunova LA. Source Apportionment of Inorganic Solutes in Surface Waters of Lake Baikal Watershed. Sustainability. 2021; 13(10):5389. https://doi.org/10.3390/su13105389
Chicago/Turabian StyleSemenov, Mikhail Y., Yuri M. Semenov, Anton V. Silaev, and Larisa A. Begunova. 2021. "Source Apportionment of Inorganic Solutes in Surface Waters of Lake Baikal Watershed" Sustainability 13, no. 10: 5389. https://doi.org/10.3390/su13105389
APA StyleSemenov, M. Y., Semenov, Y. M., Silaev, A. V., & Begunova, L. A. (2021). Source Apportionment of Inorganic Solutes in Surface Waters of Lake Baikal Watershed. Sustainability, 13(10), 5389. https://doi.org/10.3390/su13105389