Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al2O3 Nano-Refrigerant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Condition
2.2. Experiment Procedure
2.3. Refrigeration System Performance
2.4. Nano-Refrigerant Properties
2.5. Energy Consumption and Energy Efficiency of Refrigerator
3. Results and Discussions
3.1. Stability of Nanofluid
3.2. Effect of Nano-Refrigerant on Evaporator Temperature Gradient
3.3. Energy Consumption by the Compressor
3.4. Compressor Discharge and Suction Pressure Analysis
3.5. Pressure Drop in the System
4. Conclusions
- Stability of Al2O3 nano-lubricant oil decreases by increasing the nanoparticle concentration in the base fluid. Therefore, application of nanofluid with high nanoparticle concentration is limited and alternative preparation methods and using additives are needed to improve the stability. However, nanofluid with low nanoparticle concentration is stable for longtime;
- Evaporator temperature gradient is increased by using nano-refrigerant. It proves that thermodynamic behavior of fluid is improved. An increment of 20.2% occurred at the temperature gradient of the evaporator for 0.1%-Al2O3;
- It has been found that the electricity consumption of the refrigerator was 2.69% lower than that of the base fluid (R134a) when 0.1%-Al2O3 nanoparticle was added to the system. This value was 1% for the case of 0.05%-Al2O3;
- It is apparent from the data that the on-cycles duration was less for nano-refrigerants, but off-cycles duration was nearly the same for both baseline and nanofluid. It proves that the cooling velocity in nano-refrigerant system was happened quicker than the normal refrigerant. This can be a reason of reduction in energy consumption during a complete standard cycle;
- Suction and discharge pressures of the compressor decreased when using nano-refrigerant compared to the case of pure refrigerant. The result of increasing the pressure drop in the system due to adding nanoparticles to the fluid appears in the suction pressure and its effects on the discharge pressure;
- Effect of nano-refrigerant on the performance of the compressor could be a reason for decreasing the discharge pressure of the compressor;
- Finally, it can be concluded that using nanoparticles in a refrigeration system can improve thermodynamic characteristics and decrease energy consumption of a domestic refrigerator.
5. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.K. Handbook of Air Conditioning and Refrigeration, 2nd ed.; McGraw Hill: New York, NY, USA, 2000. [Google Scholar]
- Althouse, A.D.; Turnquist, C.H.; Bracciano, A.F.; Bracciano, D.C.; Bracciano, G.M. Modern Refrigeration and Air Conditioning, 9th ed.; Goodheart-Willcox: Tinley Park, IL, USA, 2004. [Google Scholar]
- Aslfattahi, N.; Saidur, R.; Arifutzzaman, A.; Sadri, R.; Bimbo, N.; Mohd Sabri, M.F.; Maughan, P.A.; Bouscarrat, L.; Daw-son, R.J.; Mohd Said, S.; et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites. J. Energy Storage 2020, 27, 101115. [Google Scholar] [CrossRef]
- Abdelrazik, A.; Tan, K.H.; Aslfattahi, N.; Arifutzzaman, A.; Saidur, R.; Al-Sulaiman, F.A. Optical, stability and energy performance of water-based MXene nanofluids in hybrid PV/thermal solar systems. Solar Energy 2020, 204, 32–47. [Google Scholar] [CrossRef]
- Aslfattahi, N.; Samylingam, L.; Abdelrazik, A.S.; Arifutzzaman, A.; Saidur, R. MXene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector. Sol. Energy Mater. Sol. Cells 2020, 211, 110526. [Google Scholar] [CrossRef]
- Aslfattahi, N.; Saidur, R.; Sabri, M.F.M.; Arifutzzaman, A. Experimental investigation on thermal stability and enthalpy of eutectic alkali metal solar salt dispersed with MgO nanoparticles. In Proceedings of the 4th International Tropical Renewable Energy Conference, Bali, Indonesia, 14–16 August 2019. [Google Scholar]
- Das, L.; Habib, K.; Saidur, R.; Aslfattahi, N.; Yahya, S.M.; Rubbi, F. Improved thermophysical properties and energy efficiency of aqueous ionic liquid/MXene nanofluid in a hybrid PV/T solar system. Nanomaterials 2020, 10, 1372. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Choi, S.U.; Yu, W.; Pradeep, T. Nanofluids Science and Technology, 1st ed.; Wiley: New Jersey, NJ, USA, 2008. [Google Scholar]
- Rubbi, F.; Habib, K.; Saidur, R.; Aslfattahi, N.; Yahya, S.M.; Das, L. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids. Solar Energy 2020, 208, 124–138. [Google Scholar] [CrossRef]
- Aslfattahi, N.; Saidur, R.; Sidik, N.A.C.; Sabri, M.F.M.; Zahir, M.H. Experimental assessment of a novel eutectic binary molten salt-based hexagonal boron nitride nanocomposite as a promising PCM with enhanced specific heat capacity. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 68, 73–85. [Google Scholar] [CrossRef]
- Samylingam, L.; Aslfattahi, N.; Saidur, R.; Yahya, S.M.; Afzal, A.; Arifutzzaman, A.; Tan, K.H.; Kadirgama, K. Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid. Sol. Energy Mater. Sol. Cells 2020, 218, 110754. [Google Scholar] [CrossRef]
- Aslfattahi, N.; Saidur, R.; Arifutzzaman, A.; Abdelrazik, A.S.; Samylingam, L.; Sabri, M.F.M.; Sidik, N.A.C. Improved thermo-physical properties and energy efficiency of hybrid PCM/graphene-silver nanocomposite in a hybrid CPV/thermal solar system. J. Therm. Anal. Calorim. 2020, 142, 1–18. [Google Scholar]
- Aslfattahi, N.; Saidur, R.; Sabri, M.F.M.; Arifutzzaman, A. Thermal conductivity and rheological investigation of aqueous poly (ethylene) glycol/MXene as a novel heat transfer fluid. In AIP Conference Proceedings; AIP Publishing LLC.: New York, NY, USA, 2021. [Google Scholar]
- Parashar, N.; Aslfattahi, N.; Yahya, S.M.; Saidur, R. ANN Modeling of Thermal Conductivity and Viscosity of MXene-Based Aqueous IoNanofluid. Int. J. Thermophys. 2021, 42, 1–24. [Google Scholar] [CrossRef]
- Parashar, N.; Aslfattahi, N.; Yahya, S.M.; Saidur, R. Prediction of the Dynamic Viscosity of MXene/Palm Oil Nanofluid Using Support Vector Regression; AIP Publishing LLC.: New York, NY, USA, 2021. [Google Scholar]
- Abdullah, N.; Saidur, R.; Zainoodin, A.M.; Aslfattahi, N. Optimization of electrocatalyst performance of platinum–ruthenium induced with MXene by response surface methodology for clean energy application. J. Clean. Prod. 2020, 277, 123395. [Google Scholar] [CrossRef]
- Abdelrazik, A.; Tan, K.H.; Aslfattahi, N.; Saidur, R.; Al-Sulaiman, F.A. Optical properties and stability of water-based nanofluids mixed with reduced graphene oxide decorated with silver and energy performance investigation in hybrid photovoltaic/thermal solar systems. Int. J. Energy Res. 2020, 44, 11487–11508. [Google Scholar] [CrossRef]
- Krishna, Y.; Saidur, R.; Aslfattahi, N.; Faizal, M.; Ng, K.C. Enhancing the thermal properties of organic phase change material (palmitic acid) by doping MXene nanoflakes. In AIP Conference Proceedings; AIP Publishing LLC.: New York, NY, USA, 2020. [Google Scholar]
- Krishna, Y.; Aslfattahi, N.; Saidur, R.; Faizal, M.; Ng, K.C. Fatty acid/metal ion composite as thermal energy storage materials. SN Appl. Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Pressure Drop Characteristics of TIO2–R123 Nanorefrigerant in a Circular Tube. Eng. e-Trans 2011, 6, 124–130. [Google Scholar]
- Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Investigation of Viscosity of R123-TIO2 Nanorefrigerant. Int. J. Mech. Mater. Eng. 2012, 7, 146–151. [Google Scholar]
- Peng, H.; Ding, G.; Jiang, W.; Hu, H.; Gao, Y. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int. J. Refrig. 2009, 32, 1259–1270. [Google Scholar] [CrossRef]
- Peng, H.; Ding, G.; Hu, H. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Exp. Therm. Fluid Sci. 2011, 35, 960–970. [Google Scholar] [CrossRef] [Green Version]
- Henderson, K.; Park, Y.G.; Liu, L.; Jacobi, A.M. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int. J. Heat Mass Transf. 2010, 53, 944–951. [Google Scholar] [CrossRef]
- Ding, G.; Peng, H.; Jiang, W.; Gao, Y. The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture. Int. J. Refrig. 2009, 32, 114–123. [Google Scholar] [CrossRef]
- Saidur, R.; Kazi, S.N.; Hossain, M.S.; Rahman, M.M.; Mohammed, H.A. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew. Sustain. Energy Rev. 2011, 15, 310–323. [Google Scholar] [CrossRef]
- Bi, S.; Shi, L.; Zhang, L.L. Application of nanoparticles in domestic refrigerators. Appl. Therm. Eng. 2008, 28, 1834–1843. [Google Scholar] [CrossRef]
- Bi, S.; Guo, K.; Liu, Z.; Wu, J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Convers. Manag. 2011, 52, 733–737. [Google Scholar] [CrossRef]
- Kedzierski, M.A.; Gong, M. Effect of CuO nanolubricant on R134a pool boiling heat transfer. Int. J. Refrig. 2009, 32, 791–799. [Google Scholar] [CrossRef]
- Kedzierski, M.A. Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer. Int. J. Refrig. 2011, 34, 498–508. [Google Scholar] [CrossRef]
- Bartelt, K.; Park, Y.; Liu, L.; Jacobi, A. Flow-Boiling of R-134a/POE/CuO Nanofluids in a Horizontal Tube. In Proceedings of the International Refrigeration and Air Conditioning Conference, Champaign and Urbana, West Lafayette, IN, USA, 14–17 July 2008. [Google Scholar]
- Standard, BS EN ISO 15502:2005: Household refrigerating appliances. In Characteristics and Test Methods; British Standard/European Standard/International Organization for Standardization: BSI Standards Publication: London, UK, 2005.
- Micael, J.M.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 7th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
Item | Specification | |
---|---|---|
Model name | SR 30 NMB | |
Type | 2-Door Freezer/refrigerator | |
Power source | 230~240 V/50 Hz | |
Net Capacity Lit (cu.ft.) | Freezer | 68 (2.4) |
Refrigerator | 186 (6.6) | |
Total | 254 (9.0) | |
Refrigerant | R 134a (140 g) | |
Compressor model | SD162CL1U/T3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarrafzadeh Javadi, F.; Saidur, R. Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al2O3 Nano-Refrigerant. Sustainability 2021, 13, 5659. https://doi.org/10.3390/su13105659
Sarrafzadeh Javadi F, Saidur R. Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al2O3 Nano-Refrigerant. Sustainability. 2021; 13(10):5659. https://doi.org/10.3390/su13105659
Chicago/Turabian StyleSarrafzadeh Javadi, Farhood, and Rahman Saidur. 2021. "Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al2O3 Nano-Refrigerant" Sustainability 13, no. 10: 5659. https://doi.org/10.3390/su13105659
APA StyleSarrafzadeh Javadi, F., & Saidur, R. (2021). Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al2O3 Nano-Refrigerant. Sustainability, 13(10), 5659. https://doi.org/10.3390/su13105659