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Abstract: When integrating the Internet of Things (IoT) with Unmanned Aerial Vehicles (UAVs)
occurred, tens of applications including smart agriculture have emerged to offer innovative solutions
to modernize the farming sector. This paper aims to present a low-cost platform for comprehensive
environmental parameter monitoring using flying IoT. This platform is deployed and tested in a real
scenario on a farm in Medenine, Tunisia, in the period of March 2020 to March 2021. The experi-
mental work fulfills the requirements of automated and real-time monitoring of the environmental
parameters using both under- and aboveground sensors. These IoT sensors are on a farm collecting
vast amounts of environmental data, where it is sent to ground gateways every 1 h, after which the
obtained data is collected and transmitted by a drone to the cloud for storage and analysis every 12 h.
This low-cost platform can help farmers, governmental, or manufacturers to predict environmental
data over the geographically large farm field, which leads to enhancement in crop productivity and
farm management in a cost-effective, and timely manner. Obtained experimental results infer that
automated and human-made sets of actions can be applied and/or suggested, due to the innovative
integration between IoT sensors with the drone. These smart actions help in precision agriculture,
which, in turn, intensely boost crop productivity, saving natural resources.

Keywords: Internet of Things; Unmanned Aerial Vehicles; smart farming; environmental parame-
ters; LoRa

1. Introduction

The Food and Agriculture Organization (FAO) predicts that by 2050, the world popu-
lation will hit 9.73 billion, and by 2100, it will be 11.2 billion; with the current population of
approximately 7.84 billion, this shows an increase of approximately 25% [1]. To feed this
larger population, food production should double by 2050 [2]. For example, the current
figure of 2.1 billion tons of annual cereal production should reach approximately 3 billion
tons [3]. This means there is a serious need to enhance productivity and meet the demands
of nations [4]. However, the current agricultural land is restricted by various factors such as
land and climate patterns, population density, and rapid urbanization, which are constantly
posing threats to the availability of arable land [5]. To illustrate, in 1991, the total arable
area for food production was 19.5 million square miles (39.47% of the world’s land area),
which was reduced to approximately 18.6 million square miles (37.73% of the world’s land
area) in 2013 [6]. Thus, the gap between the demand and supply of food is becoming
more significant and alarming as time progresses. Therefore, authors in the literature [7,8]
emphasize the significance of enhancing farm management by using scientific strategies
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and technology in the agricultural field, which, in turn, drastically boost crop productivity
and help in saving natural resources [9,10].

In recent years of the Fourth Industrial Revolution (4IR), researchers, engineers, and
IT specialists are striving to participate in employing advanced technology to achieve
a better life for our planet, as Figure 1 shows [11,12]. One of those pillars of 4IR is IoT,
which is considered as the fuel of the 4IR since it contributes effectively by linking trillions
of objects and sensors, all of which generate real-time data. It is expected that around
100 billion devices have been connected to the internet by 2020 [13,14]. This number will
further increase since the IoT is progressively entering a wide array of sectors and indus-
tries, ranging from manufacturing, health, communications, and energy to the agricultural
industry [15]. In an agricultural environment, for instance, IoT technology has been uti-
lized to deal with distributed data collection from farming environments and, important
for directing farmers, with real-time information of the farming field [16]. On the other
hand, integration between IoT and Unmanned Aerial Vehicles (UAVs) attracts researchers’
attention for various reasons. UAVs’ reliability, flexibility, portability, line of sight (LoS)
connectivity, efficiency, applicability, rapid deployment, and low maintenance cost are valid
reasons for considering such a technology. UAVs cover a wide range of platforms, from
drones to high altitude platforms (HAPs), low altitude platforms (LAPs), or tethered plat-
forms [17,18]. UAVs have drawn tremendous attention, both in the industry and academia,
due to their advantages and wide applications [19]. For example, telecommunications,
monitor disaster-relief missions, empowering smart cities, atmospheric studies, service
delivery, surveillance, high-resolution imaging, and military applications [20,21].
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Goldman Sachs predicts that the agriculture sector will be the second-largest user of
drones in the world in the next five years [22]. Thus, the use of UAVs in agriculture is
expanding rapidly to assist farmers with monitoring and making decisions that support
crop productivity via acquiring field data in easy, fast, and cost-effective ways, compared
to traditional methods [23]. Farmers and other stakeholders can access the data gathered
through UAVs from cloud-based platforms remotely through apps from their smart devices,
which can help in predicting the yield of the crop, pesticides, fertilizers, seed sowing, etc.
Figure 2 illustrates various scenarios of smart farming using a UAV, where a wide range
of agricultural parameters can be monitored to improve crop yields, reduce costs, and
optimize process inputs, such as environmental conditions, growth status, soil status,
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irrigation water, pest, and fertilizers, weed management, and greenhouse production
environment [24]. The evolution of IoT and UAVs has enabled the vision of sustainable
smart farming, in which data can be obtained and processed autonomously, to enhance
production time, and farm management practices more efficiently [25].

The rest of this paper is organized as follows: related works are investigated in
Section 2; a state-of-the-art review is outlined in this section with a highlight of major
applications of coupling IoT with UAV technology in smart farming. Materials and methods
are presented in detail in Section 3; this section presents the architecture of the proposed
system. In Section 4, we describe the implementation and testbed; the proposed solution has
been deployed and validated in a farmhouse that covers a large set of different agricultural
activities using flying IoT. The experimental results are described in Section 5; experimental
results in this section are discussed from two aspects—first, the results of smart farming’s
environmental monitoring of temperature, humidity, soil moisture, rain level, and solar
radiation are presented, and second, results of the Hata propagation model, which include
PL and RSS. Finally, Section 6 concludes this paper.
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2. Related Works

A state-of-the-art review is outlined in this section with a highlight of major applica-
tions of coupling IoT with UAV technology in smart farming. Communication technologies,
network functionalities, and connectivity requirements of such integration are covered in
this section. A related work windup is presented in Table 1, before using this review to
highlight the research gaps and report own research motivations.

Georgios et al. [26] proposed a low-cost Long-Range Wide-Area Network (LoRa)-based
IoT platform for Smart Farming Modular IoT Architecture called LoRaFarM that aims to im-
prove generic farms management in a highly customizable way. The proposed LoRaFarM
platform has been evaluated in a real farm in Italy, where it collected environmental data
(air, soil, temperature, and humidity) related to the growth of farm products (e.g., grapes
and greenhouse vegetables) over a period of three months. A web-based visualization tool
for the collected data is also presented, to validate the LoRaFarM architecture.

Authors in [27] developed a hierarchical smart farming structure based on the collabo-
ration between UAVs and federated Wireless Sensor Networks (WSNs) for crop monitoring.
Two important aspects of such collaboration have been considered: designing the UAV tra-
jectories for efficient data collection and implementing effective data processing algorithms
(consensus and symbolic aggregate approximation) at the network level to assess relevant
data transmission. Experiments were carried out at a Romanian research institute where
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different crops and methods are developed. The results demonstrate that the collaborative
UAV–WSN–IoT approach increases the performances in both smart farming and ecological
agriculture.

A smart agriculture management system (SAMS) was introduced in [28], which
proposed an automated system to help farmers to increase crop production by crashing
into natural resources. The system used different sensors to collect data required for the
growth of the crop, where these data were fed into the ThingSpeak IoT cloud platform for
data visualization. The real-time data were stored on Firebase Database and then used for
crop prediction using Support Vector Machine (SVM) classifier.

Researchers in [29] presented an intelligent antifrost irrigation management system
that contains a climatological station and ecological anti-disaster frost irrigation. The
solar-powered system interacts with the environmental system through a website, allowing
the real-time interconnection, acquisition, and monitoring of information through mobile
phone systems (GSM/GPRS) and internet (TCP/IP) services. Additionally, the proposed
system uses an intelligent Fuzzy Expert System (FES) to predict the greenhouse temperature
and control activation of a water pump, considering humidity, the temperature of inside
and outside air, solar radiation, and wind speed. The intelligent model gives a prediction
by determining coefficients with the analysis of variance method.

Nestor et al. in [30] developed an application for water irrigation called “Agrinex.”
This system is an alternative approach in collecting and measuring physical parameters
from the environment, particularly in smart irrigation systems. Agrinex is connected to
several in-field sensors such as a water level sensor, paddy temperature sensor, and a
field weather station. This work aimed to make this information accessible anywhere
wherever there is internet access using a mobile application, which makes Agrinex scalable
and adaptable to changes. The mesh-based network recorded a maximum transmission
distance of 11 m from sink to sensor node with a 90% success rate. Data from the field can
be accessed remotely close to real-time when short network delays are accounted for. It
also gives the additional benefit of equipping lands with an automated irrigation system
that conserves up to 81% of water consumption.

Authors in [31] proposed a system that decides whether or not water is needed
for farms by predicting the rainfall using the Genetic Algorithm (GA) approach. In the
proposed system, voluminous weather and soil moisture data are stored inside the cloud
servers. Based on data collected by a UAV and then fed to the GA, water spraying is
performed, which can be monitored using a mobile application. Cloud servers are used for
storing and processing large volumes of weather and soil moisture data. Results show that
the sensor-based system is activated to check whether the GA-based system completes its
prediction correctly or not by sensing moisture levels from the soil. If the moisture level
of the soil crosses the predefined threshold value, then plant watering is performed by
quadrotor UAV.

Researchers in [32] developed a framework for monitoring pests and diseases of crops
based on IoT and UAV that attempts to solve the correlation between the occurrence of
pests/diseases and weather parameters. The proposed framework is deployed in the
Yangtze River Zone of China, where it uses rotary devices based on sun perception to
obtain solar energy. Results infer that low-altitude remote sensing and monitoring through
aerial imaging of pests and diseases using UAV is reasonable, while more analyses of
climate changes would provide some precautions in advance.

A Narrow Band IoT (NB-IoT) system is proposed in [33] to collect underground soil
parameters in potato crops using a UAV network. Around 2500 sensors deployed under
and above ground are connected to UAV using Low-Power Wireless Personal Area Network
(LPWPAN). Simulation results show that due to UAV altitude and path loss, the link quality
between the ground sensor and UAV is reduced. Another observation is that the lifetime
of sensor batteries was varied depending on the location of the sensor under or above
ground. Using LoRa technology and proper path loss model are recommended as future
work to enhance link accuracy and performance. Regarding path loss, authors in [22–25]



Sustainability 2021, 13, 5908 5 of 26

discussed different types of propagation path loss from an aerial platform perspective,
where Free-Space and Air-to-Ground are typical deterministic propagation models, while
Hata and Okumura are typical empirical ones. Results show that an appropriate model can
be selected based on coverage range, adaption across different terrains, and better Quality
of Service (QoS).

Authors in [34] suggested a heterogeneous IoT sensor node system to sense acoustic,
rain, wind, light, temperature, and pH levels of the cornfields for smart agriculture applica-
tions. The system aimed to achieve productive corn harvest in large-scale fields using a
drone that gathers data and sends it to a gateway. The simulation results that monitored
at the gateway using the IoT application called Grafana show that it offers maximum
efficiency from the soil and follows the crop development according to the weather and soil
conditions, in addition to reducing the workload and the risk of disease and pest, as well
as optimizing irrigation and obtaining better quality products at low cost. As future work,
collecting a wider range of climatic data and geographical conditions would be useful in
designing a model of smart farming.

A related work windup in smart farming based on the IoT and UAV is presented in
Table 1, before using this review to highlight the research gaps and report the authors’
research motivations.

Table 1. Related work windup in smart farming based on the IoT and UAV.

Ref. Focus Area(s) of the Paper Wireless Protocol/Device IoT Application Layer

[26]

� LoRaFarM aimed at supporting the
management of an arbitrary farm through the
integration of heterogeneous IoT technologies.

� Based on the LoRaWAN architecture.
� Has been evaluated in a real farm in Italy.

� IEEE 802.11
� LoRaWAN
� MQTT

� Application Web

[27]

� The measurements are collected at the ground
level by the local nodes.

� A UAV must pass above the Cluster heads to
extract the relevant data from that area.

� The UAV sends the data to a central unit for
back-end cloud computing processing
and decision.

� ZigBee
� GPRS/3G

� Cloud
� User interface

[28]

� The system is capable of monitoring
temperature, humidity, soil moisture level
using NodeMCU.

� A notification in the form of SMS will be sent
to the farmer’s phone about the environmental
condition of the field.

� ESP8266
� GSM/GPRS

� ThingSpeak
� Smartphone

[29]

� An intelligent antifrost irrigation management
system is presented.

� The system is self-sustaining using
solar panels.

� The ANN could be used to optimally predict
the inside temperature of greenhouses.

� FES controls the activation of a water pump.

� Internet (TCP/IP)
� GSM/GPRS

� Embedded computer
� Website
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Table 1. Cont.

Ref. Focus Area(s) of the Paper Wireless Protocol/Device IoT Application Layer

[30]

� An application for water irrigation called
Agrinex.

� This application is connected to several in-field
sensors such as a water level sensor,
temperature sensor, and a field
weather station.

� The drip irrigation mechanism was utilized for
feasibility reasons as water conserved was
adequately measured.

� nRF24L01
� Wi-Fi

� Web Server
� Smartphone

[31]

� Propose a system that will recommend
whether water is needed or not by predicting
the rainfall using a Genetic Algorithm.

� If the moisture level of the soil crosses the
predefined threshold value, then plant
watering is performed by quadrotor UAV.

� 4G � SMS
� E-mail

[32]

� Framework for Agricultural Pest and Disease
Monitoring Based on Internet of Things and
UAV for providing profound insights into the
specific relationship between the occurrence of
pests/diseases and weather parameters.

� The images captured by UAV are transmitted
to the cloud for analyzing the degree of
damage of pests and diseases based on
spectrum analysis technology.

� LoRa
� TVWS
� Wi-Fi

� Microsoft AZURE

[33]

� A Narrow Band IoT (NB-IoT) system to collect
underground soil parameters in potato crops
using a UAV network.

� Simulation results show UAV altitude and
path loss affect the link quality between the
ground sensor and UAV.

� The lifetime of sensor batteries varied
depending on the location of the sensor under
or above ground.

� LPWPAN � Application Server

[34]

� Heterogeneous IoT sensor nodes system to
sense acoustic, rain, wind, light, temperature,
and pH levels of the cornfields.

� The system aims to achieve productive corn
harvest in large-scale fields using a drone that
gathers data and sends it to a gateway.

� Simulation results offer maximum efficiency of
soil, reduction workload, and disease and pest
risk; besides optimizing irrigation, which all
lead to better quality products at low cost.

� CSMA/CA � Grafana
� InfluxDB

Proposed
platform

� A low-cost platform for environmental
parameter monitoring using UAV–IoT for
smart farming.

� IoT devices can collect environmental data.
� The data are sent to a gateway that is attached

to a UAV and then transmitted to a cloud
server.

� Optimized propagation path loss is
considered.

� This platform is deployed and tested in a real
scenario on a farm in Medenine, Tunisia.

� LoRa
� 4G

� Cloud server
� Web application,
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This paper is motivated to present a low-cost platform for comprehensive environ-
mental parameter monitoring using flying IoT. This integration between IoT and drone
is also coupled with cloud computing technology, which, in turn, helps in building sus-
tainable smart agriculture and enhancing crop productivity and farm management in a
cost-effective, and timely manner.

Thus, the paper aims to implement a system that periodically collects data using
both under- and aboveground sensors on farms and sends them to the gateway; then,
using a drone with a LoRa module onboard, the obtained data are transmitted to the cloud
for storage, analysis, and monitor the status of crops and farms. The proposed platform
is based on experimental work to fulfill the requirements of automated and real-time
monitoring of the environmental parameters for 12 months. Thus, a clear picture can be
obtained to make wise decisions in managing the crop and enhancing its productivity.
This integrated system of multiple technologies used in the proposed platform develops
comprehensive under- and aboveground sensors, along with considering an optimized
propagation path loss, which is a noteworthy shift from existing works. In this context and
to achieve the paper’s aim, the following research objectives need to be pursued:

O1. Identification of environmental parameters affecting crop productivity;
O2. Selection of a propagation model that is suitable for smart farming;
O3. Hardware calibration of related devices for experimental work;
O4. Implementation of the proposed platform and testing ti in a real scenario;
O5. Analyzing findings and drawing smart action plans to help in precision agriculture.

3. Materials and Methods

This section presents the architecture of the platform, which aims to monitor using
both under- and aboveground sensors and a drone for smart farming. Figure 3 shows
the conceptual work in a bird’s-eye view of the proposed architecture, which consists of
space segment and ground segment. The space segment comprises the drone, with its
payloads including the camera, and LoRa module, which is responsible for collecting data
from a wireless server gateway and then transmitting them to the cloud for storage and
further analysis. The ground segment contains three parts: (1) ground control station that
is controlled by the end user; (2) underground sensors gateway node that collects data
from underground sensors (soil moisture); and (3) HOBO U30 Weather Station Starter
Kit, which is an aboveground sensor that measures temperature/humidity, rain, and solar
radiation. Clearly, in the proposed platform architecture, the drone acts as a focal point
between ground devices including sensors, relays, and gateways, on the one hand, and
cloud, on the other hand, which reflects the reliability and robustness of such a technology.

The rest of this section discusses the proposed architecture from functions and speci-
fications in five layers, namely, sensor nodes layer, wireless server gateway, drone-LoRa
layer, cloud layer, and end-user layer.
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3.1. Sensor Nodes Layer

For smart farming, we considered two main types of IoT sensors to measure various
parameters of an agricultural field, which are underground sensors and aboveground
sensors. The former is related to sensors measure soil moisture. These sensors can transmit
data to the wireless server gateway node for storage and processing. The latter, as Figure 4
shows, uses the HOBO U30 Weather Station Starter Kit, which can accept up to 10 plug-
and-play smart sensors to measure temperature/humidity, rain, and solar radiation. The
nodes are powered with a rechargeable battery using solar panels. The goal of having
a comprehensive sensor is to provide stakeholders in the agricultural field with a full
range of data that would help in making a wise decision in managing crops and resources
(e.g., water), besides enhancing farm productivity. These wireless sensors can be placed in
various locations throughout a farm, even in the harshest environmental conditions.
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Figure 5 shows sensors that are attached to HOBO U30 Weather Station Starter Kit.
Figure 5 illustrates an S-THB-M008 temperature/humidity smart sensor, which consists
of a monitoring system for recording two environmental parameters. The temperature
paraments can be measured within a range between −40 to 75 ◦C, while the humidity
range is between 0 and 100 %. The stainless-steel sensor tip and durable cable, rated for
submersion in water at 50 ◦C for up to one year, ensure reliable operation. The length
of this model is 2 m. Figure 5 displays the S-RGB-M002 rain gauge, which considers a
smart rainfall sensor used to measure up to 5 inches of rain per hour with an accuracy of
0.01 inches and a maximum interval of 4000 tips; also, the sensor contains two-meter cables.

Figure 5 displays the solar radiation sensor S-LIB-M003, which can effectively measure
light levels with a silicon pyranometer sensor. This product offers a measurement range
of 0 to 1280 W/m2 over a spectral range of 300 to 1100 nm. A measurement averaging
mode is available. All these smart sensors can transfer all stored data automatically to
the recorder without the need for any programming or comprehensive user configuration.
Figure 5 shows a soil moisture smart sensor S-SMC-M005, which offers a two-tine design
for easy installation. In addition, S-SMC-M005 is a smart sensor, allowing users to launch
monitoring systems quickly, easily, and affordably. It provides ±3% accuracy in typical soil
conditions and ±2% accuracy with soil-specific calibration. Readings are provided directly
in volumetric water content, where this sensor is designed to maintain low sensitivity to
salinity and textural effects.
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3.2. The Wireless Server Gateway

This layer is responsible for collecting data from sensor nodes and aggregating and
transmitting to the drone–LoRa layer using LoRa module, which is a long-range wide-area
network technology, such as a cellular network, but designed for lower energy consumption.
It enables devices to send small amounts of data over long distances, for years, running
on a small battery. The range of the LoRa gateways is 15 km in rural areas and 5 km in
urban areas. Table 2 shows the difference between the main low-power wide-area network
(LPWAN) technologies, one of which is LoRa. Figure 6 shows communication between the
HOBO U30 Weather Station Starter Kit and wireless server gateway.
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Table 2. Comparison between short-range and long-range technologies [7,8].

Specifications Short Range Long Range

Bluetooth ZigBee WiFi LoRaWAN SigFox Ingenu

Modulation GFSK/DQPSK/DPSK BPSK/OQPSK various schemes Chirp Spread
Spetrum (CSS)

DBPSK(UL)
GFSK(DL)

RPMA-DSSS(UL)
CDMA(DL)

MAC FDMA/TDMA CSMA/CA CSMA/CA unslotted MAC unslotted
ALOHA CDMA-like

Data rate 3 Mbps 250 kbps 7 Gbps 0.3 kbps–50 kbps 100 bps(UL)
600 bps(DL)

78 kbps(UL)
19 kbps(DL)

Coverage up to 30 m up to 100 m up to 100 m
up to 5 km

(urban)
15 km (rural)

10 km (urban)
50 km (rural)

up to 15 km
(urban)
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3.3. The Drone–LoRa Layer

This layer is responsible for collecting data from wireless server gateway and transmit-
ting them to the cloud using LoRa technology. Since at remote areas such as farms, there
might be no network deployment, and/or the installation of a LoRa gateway might impose
a significant cost without guaranteeing the interconnection of all the installed devices,
this proposal used a drone as a mobile gateway to collect data from time to time from
various sensors located in the farm. Besides the drone mobility and flexibility, it allows
accessing remote and hard locations, which is represented as a flying LoRa gateway. The
drone–LoRa gateway is a multi-radio device that is endowed with at least two different
wireless interfaces for communication between the IoT devices and the cloud. Dragino,
a manufacturer of IoT systems, created a LoRa gateway device called LG02, which was
used for this system. LG02 is an open-source dual-channel LoRa Gateway. It lets you
bridge LoRa wireless network to an IP network via WiFi, Ethernet, 3G, or 4G cellular, with
a frequency range of 862~1020 MHz.

Figure 7 shows the drone configurations of the experiment, where the drone is pre-
sented, along with its components including electronic speed controllers (ESCs), motors,
propellers, flight controller (Pixhawk-4), BME280 sensor, battery, and Raspberry Pi 3 mi-
crocontroller, and the LoRa module. This module, which is located onboard the drone,
uses a 4G transceiver as a channel to establish communication between the ground server
gateway and the cloud, as seen in Figure 8. Of note, the gateway server represents the
interface between a large area with a significant number of nodes and the cloud.
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3.4. The Cloud Layer

Collaboration of IoT and cloud computing in agriculture provides pervasive access
to shared resources. To meet various agricultural needs upon request over a network and
execute operations, cloud computing plays a vital role. Cloud provides a large amount of
storage through large, virtualized servers that are connected to perform necessary action.
Analytics resources and web services are also installed on the cloud or the internet, which
are accessible by cloud services. Cloud computing can be used for a twofold purpose in
smart farming applications, i.e., (i) to gather and store information that is transmitted from
the remote client and (ii) to process the data and display the results to the users. Data
processing includes visualization, data analytics, decision making, etc.

3.5. The End-User Layer

This layer represents the ground station, which is typically sets of ground-based
hardware and software to communicate with the drone via wireless telemetry in the hand
of an admin user. This portable and universal ground station also provides a range of
applications (e.g., control the launch, flight, aerial imaging, and recovery of the drone).
This work considered the optimized Hata empirical propagation path loss model to bridge
the gap between the ground station and the drone at the cloud layer. The novel twist
on the considered Hata path loss model used in this work involves using the elevation
angle instead of distance to optimize the model when propagating signals from the drone
to terrestrial sensors and using LoS connectivity to improve reliability, increased end-
user mobility, and reduce power consumption [35,36]. This is a noteworthy shift from
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what exists in models presented in the literature, as presented in related works of the
previous section.

Hata’s equations are classified into urban, suburban, or rural areas; yet, here, it was
considered only in rural areas since it involved farm zones [37,38]. The distance d of the
Hata propagation model is computed based on elevation angle (θ), which is a notable shift
from existing propagation models. The θ is a vital element in calculating path loss from
space such as in drone scenarios. Path loss in a rural area is given by

PL(urban) = 69.55 + 26.16 log ( f )− 13.82 log (ht)− a(hr) + [44.9 − 6.55 log (ht)]× [log (d)]b (1)

PL(rural) = PL(urban) − 4.78 log ( f )2 + 18.33 × log( f )− 40.94 (2)

d = 2 Er[cos−1
(

Er

Er + ht
∗ cos(θ)

)
− θ

]
(3)

where f denotes frequency (MHz), ht denotes transmitter altitude (m), which represents
drone altitude, hr denotes receiver altitude (m), which represents the ground station, d
denotes transmitter to receiver separation in (km), Er denotes Earth’s radius at 6378 km,
and a(hr) denotes correction factor for effective mobile antenna altitude, which is a function
of the size of the coverage area. Received signal strength (RSS) represents the strength of
wireless signals as measured by the receiver, which is typically measured in units of decibels
(dB) [39]. Calculating PL model and RSS are useful in monitoring system performance,
network planning, and coverage to achieve perfect reception. The RSS can be calculated
as follows:

RSS = Pt + Gt + Gr − PL(rural) − L (4)

where Pt denotes transmitter power (dBm), Gt denotes transmitter antenna gain (dBi), Gr
denotes receiver antenna gain (dBi), PL demotes path loss of Hata model in a rural area,
and L denotes connector loss (dB).

4. Implementation and Testbed

This section presents the proposed solution as deployed and validated in a farmhouse
that covered a large set of different agricultural activities using flying IoT. The low-cost
proposal platform was considered for comprehensive monitoring of environmental pa-
rameters using both under- and aboveground sensors. Field experiments were carried out
from March 2020 to March 2021 at Medenine, Tunisia; some background information about
this region, such as geographic location, soil property, and climate can be referred to the
map of world climates.

The proposed system can be explained in five steps, as Figure 9 shows. S-THB-M008
refers to temperature/humidity sensor, S-RGB-M002 refers to rain gauge sensor, S-LIB-
M003 refers to solar radiation sensor, and S-SMC-M005 refers to soil moisture smart sensor.
First, both under- and aboveground sensors collected relevant data from the farm every 1 h.
Second, these data were stored temporarily on an embedded Secure Digital (SD) card in
the wireless server gateway. Third, the drone flew and collected data from various wireless
server gateways located in the farm every 12 h. Fourth, the drone sent the data to the cloud.
Fifth, automated and human-made sets of actions could be taken to apply smart actions
for precision agriculture, which, in turn, dramatically boost crop productivity, and help
in saving natural resources. These actions could be obtained from the cloud into the user
interface smart device. However, a decision support system could be introduced in a future
study to link the farm’s smart devices together to achieve an autonomous system.
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Figure 9. Five steps of executing the proposed model.

Figure 10 shows the sensor placement that was considered in our practical experiments.
In total, there were 4 HOBO U30 Weather Station Kits deployed in the field in various
experimental parcels from our farm. Each Station Kit had one temperature/humidity
sensor (Ref: S-THB-M008), one rain sensor (Ref: S-RGB-M002), two soil moisture sensors
(S-SMC-M005), and one solar radiation sensor (S-LIB-M003). This layout of the farm was
divided into four sections according to its current layout, where each HOBO Weather
Station Kit was placed in every section with a distance of about 0.5 km between each other.
Each HOBO Weather Station was powered with renewable energy from the sun via solar
panels, while smart sensors to measure temperature/humidity, rain, and solar radiation
were linked to this kit. This means the lifetime of these sensors are very long and sufficient,
due to rechargeable battery using solar panels.

For UAV setup, the DJI Quadcopter drone was used for the testing scenario. All hard-
ware modules for the sender were mounted on the drone including, the LoRa transceiver.
The considered drone was a fixed-wing type, which enabled coverage of large geographic
areas with low energy consumption. For the sake of improving energy utilization efficiency,
the flight path of the drone was planned previously using Strip’s approach, as Figure 11
demonstrates, using freeware Mission Planner software calibrated by remote control [40].
The considered drone was equipped with a rechargeable battery with a flight time of about
30 min, where the drone flew every 12 h to collect data from four server ground gateways
that linked to HOBO, before transmitting it to the cloud for storage and analysis.
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5. Experimental Results

After defining the main parts of the proposed design system and methodology, along
with the main structure of the testbed, this section highlights practical measurements
and results.

This proposed design was deployed and tested in a real scenario on a farm in Mede-
nine, Tunisia in the period of March 2020 to March 2021. This system was deployed and
validated in Medenine, Tunisia, due to its varied terrain and options of open farms that
covered a large set of different agricultural activities. Indeed, the chosen farm covered both
open-field and greenhouse cultivation, together with the production of several different
agricultural products. Furthermore, the farms were manually controlled by the farmers
without the support of any technology, just based on their experiences.

Assessing the impact of environmental factors and prototyping outdoor applications
as part of live projects provides a better understanding of smart IoT that greatly combined
with UAV technology, which helps in precision agriculture, and, in turn, intensely boosts
crop productivity, saving natural resources in a real-case scenario.

Experimental results in this section are discussed from two aspects—first, the results
of smart farming’s’ environmental monitoring of sensing temperature, humidity, soil
moisture, rain level, and solar radiation are presented, and second, the results of the Hata
propagation model, which include PL and RSS. These parameters show the focal point
between the ground station and the drone at the cloud layer.

5.1. Monitoring of Environmental Parameters

The IoT sensor devices on a farm collect vast amounts of environmental data, through
which they are sent to ground gateways every 1 h, and then the obtained data are collected
and transmitted by a drone to the cloud for storage and analysis each 12 h. In this subsection,
smart farming’s environmental monitoring of sensing temperature, humidity, soil moisture,
rain level, and solar radiation are presented. Along with these environmental monitoring,
automated and human-made sets of actions have been highlighted to apply smart actions
for precision agriculture. It is worth mentioning that Figures 12–16 are representative
experimental results from massive results that we collected in the field in one year.
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Figures 12 and 13 show temperature and humidity reading, respectively, from its
relevant sensor in a period from March 2020 to March 2021 in Medenine, Tunisia. Clearly,
during early summer (June to September), temperature ranges from 25 ◦C to 40 ◦C, while in
autumn and winter temperature, it reaches below 20. Another observation is in December
and January when the temperature reaches single digits, which represents the coldest
period of the year, whereas July and August have the highest temperatures. The average
humidity is usually linked to temperature, which depends on the actual wind and the
sunshine amount and temperature. Crops have minimum and maximum temperatures at
which growth developments are affected. Thus, examples of automated and human-made
sets of actions that can be driven from the sensed temperature data include the following:

• At minimum temperatures (e.g. early spring), farmers are advised to focus on seeds
germination, and watering should be discrete since this period is favorable for grow-
ing crops;

• During the periods with temperatures below the minimum temperatures (e.g. winter
or autumn) planting processes should stop;

• At maximum temperatures (e.g. summer), water sprinklers in farms can increase the
watering of plants and should be continuous through the summer;

• High humidity and temperatures are more favorable for the spread of crop pests and
diseases; thus, farmers are advised to consider various strategies such as spraying
chemicals on plants.

• Plantings and quarterly grains that are suggested for the Medenine area in case of
high humidity and temperature conditions are Apricot, apples, Figs, Peaches, Grapes,
and Almonds.
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Monitoring meteorological parameters such as soil moisture is an essential stage
of agriculture. Figure 14 shows the soil moisture reading from its relevant sensor in a
period from March 2020 to March 2021 in Medenine, Tunisia. Soil moisture reflects the
water that is held in the spaces between soil particles, where having these data would
help in understanding soil temperature, soil nutrients, soil density, and viscosity. It is
noticeable from experiential results that soil moisture is overlapped with rainfall and/or
water irrigation, where autumn and winter seasons represent peak values due to high
rainfall. Therefore, smart actions can be considered based on soil moisture data include
the following:

• Water sprinklers in farms can automatically be on or off based on the level of soil
moisture to irrigate the crops;

• Farmers can make the right decision to spray pesticides or apply fertilizers that are
based on the current state of the soil moisture;

• Soil management can be gained via on-site soil monitoring (nutrient analysis, soil
erosion, soil organic carbon, and insects) and then choosing the right plants for the
right lands;

• Plantings and quarterly grains that are suggested for the Medenine area in case of
middle-range soil moisture conditions are potatoes, pomegranate, orange, and lemon.
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Watering is an essential aspect in agriculture, either by relying on rainfall and/or
irrigation. Figure 15 demonstrates the rainfall reading from its relevant sensor in a period
from March 2020 to March 2021 in Medenine, Tunisia. As can be seen from the experimental
results, autumn and early winter months (September to January) represent peak values
due to high rainfall with average floats between 14 and 20 mm, whereas the rest of the
year with average floats around 2–6 mm. Hence, smart actions can be considered based on
rainfall data such as the following:

• Before irrigation using automated dripping and sprinkling, check the soil moisture in
the root zone at several locations;

• Estimate the amount of water needed to bring the soil to field capacity to save re-
sources;

• High and concentrated rainfall might destroy some types of crops; thus, rain sensors
would give precaution measures to farmers (e.g. use temporary greenhouses to protect
crops);

• Improve water-use efficiency via controlling irrigating status based on rainfall level;
• Plantings and quarterly grains that are suggested for the Medenine area in case of

high-level rainfall conditions are orange and lemon.
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Solar radiation has vital importance for crop growth, yield, prevention of pests and
diseases, and quality enhancement in agricultural products, where eaves absorb sunlight
and use it as the energy source for photosynthesis. Figure 16 shows the solar radiation
reading from its relevant sensor in a period from March 2020 to March 2021 in Medenine,
Tunisia. Experimental results indicate that the average radiation floats between 400 and
1000 W/m2; in winter readings display around 400 W/m2, while autumn readings show
around 600–800 W/m2, and summer readings show around 1000 W/m2. Therefore, smart
actions can be considered based on solar radiation data such as the following:

• Providing valuable data on solar light intensity and duration since plants do not absorb
all sunlight, due to reflection, possible damage leaves, and respiration requirements
of photosynthesis;

• Farmers are advised to consider greenhouses to protect plants from the high light
intensity in open fields during summer;

• Adjust irrigation using automated dripping and sprinkling based on the solar radi-
ation measurements since the temperature is usually linked to the actual amount
of sunshine;

• Using solar panels for powering the weather station leads to energy efficiency;
• Farmers are advised to seed (e.g., wheat seeded) early spring since seeding earlier can

provide crops a yield advantage;
• Plantings and quarterly grains that are suggested for the Medenine area in case of

middle-range of solar radiation conditions are beans, pineapple, lettuce, and raspber-
ries.

To sum up, the more we understand the relationships between the monitored crops
their surrounding climate, the better we can plan and design stronger cropping practices.
The proposed design in this paper emphasizes automated and real-time monitoring of the
environmental parameters and making wise decisions and actions, either automated or
human-made sets of actions, which, in turn, lead to vegetative growth, root growth, water
uptake, saved resources, and flowering. Moreover, these sets of actions would support
smart decisions for precision agriculture during four seasons and hence increase crop
productivity.

Figure 17 shows sensing temperature, humidity, soil moisture, rain level, and solar
radiation in 24 h on 15 September 2020 as representative experimental results in a short
period of time. Clearly, temperature and humidity readings show similar characteristics
during summertime such as in September. The solar radiation line graph shows a spike
value at around 12.30 afternoon. Rainfall and soil moisture show a positive correlation.
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Figure 17. Sensing temperature, humidity, soil moisture, rain level, and solar radiation in 24 h on 15 September 2020:
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level in 24 h on 15 September 2020; (d) sensing solar radiation in 24 h on 15 September 2020; (e) sensing soil moisture in 24 h
on 15 September 2020.

5.2. Propagation Model Parameters

Figure 18 shows the obtained PL and RSS of the Hata propagation model of the
distance between the ground station and the drone at the cloud layer. Experimental
predictions of the considered Hata propagation model show that the range of PL floats
between −97 dB to −127.5 dB. Additionally, PL has a positive correlation with distance,
which represents the drone altitude. Noticeably, the shadowing effect and reflection of
signals from interfering obstacles were low, due to line-of-sight connectivity between the
ground station and the drone. As RSS is linked to PL, results show RSS varying between
−40 dBm to −70 dBm, which has again a positive correlation with distance (drone altitude).
Unsurprisingly, increasing transmission power would enhance RSS, since RSS depends
on transmitter power, antenna gains, and environmental factors. Having the results of
the propagation model including PL and RSS is useful in monitoring system performance,
network planning, and coverage to achieve perfect reception. In our scenario, this means
communication between drone and ground station as well as wireless server gateway
showing a high level of reception with the smallest attenuated signal, besides achieving
stronger wireless connectivity. This also helps in delivering collected data from the drone
to the cloud for storage and analysis in an efficient and timely manner.
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5.3. Comparison between the Proposed System and Other Existing Systems

A comparison between the proposed system and other existing systems is presented
in Table 3. This comparison is based on the major advantages, validation, decision support,
and critical challenges.

Table 3. Qualitative comparison between the proposed system and other existing systems.

Ref. Major Advantages Validation Decision Support System Critical Challenges

[26]

� Collected environmental data
(air/soil temperature and
humidity) related to the
growth of farm products over
a period of three months.

� Web-based dashboard is also
presented, to validate the
LoRaFarM architecture.

� Experimental � No Support � Cost of system
� Power consumption

[27]

� Intelligent data collection and
processing.

� Data Management and
Interpretation level

� Experimental � Statistical indicators
� Communication covering
� Power consumption increases

with communication range

[28]

� Monitoring temperature,
humidity, soil moisture level

� A notification in the form of
SMS will be sent to farmer’s
phone

� Simulation
� Advice on

scheduling
irrigation

� Communication covering
� Power consumption increases

with communication range

[29]

� Intelligent control with
Weather Station and Artificial
Neural Network.

� The fuzzy control and ANN
allow the prediction of the
internal temperature of the
greenhouse.

� Experimental � Activation of a
water pump

� Solar cell system is generally
irregular and extensively
influenced by the weather
changes
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Table 3. Cont.

Ref. Major Advantages Validation Decision Support System Critical Challenges

[30]

� Agrinex system features a
mesh-like configuration of
in-field nodes that act both as
the sensor for soil moisture,
temperature, and humidity
and actuator on a valve that
regulates drip irrigation.

� Experimental � Regulates drip
irrigation.

� High power consumption in
the case of the sensor nodes far
from Sink

[31]

� A system that will recommend
whether water is needed or
not by predicting the rainfall
using Genetic Algorithm.

� Simulation

� Plant watering is
performed by
quadrotor UAV.

� Activation a pump
for water spraying.

� Gateway consumes more
power because it is always
awake.

[32]

� The results demonstrate that
wheat is susceptible to disease
when the temperature is
between 14 ◦C and 16 ◦C, and
high rainfall decreases the
spread of wheat powdery
mildew.

� Experimental � No Support
� Power consumption of drone
� Solar cell weight and size may

restrict flight endurance

[33]

� Results show that a single
drone with 50 seconds of flight
time could satisfy more than
2000 sensors deployed in a 20
hectares field.

� Simulation � No Support

� Influence of the sensor’s
density and buried depth, the
flight service time and altitude
in power-constrained
conditions

[34]

� The system uses
heterogeneous sensor nodes
which are capable of sensing
acoustic, rain, wind, light,
temperature, and pH levels.

� Simulation � No Support
� Communication covering
� Power consumption increases

with communication range

Proposed
system

� This low-cost platform can
help farmers, governmental, or
manufacturers to predict
environmental conditions data
over the geographically large
farm field, which leads to
enhancement of crop
productivity and farm
management in a cost-effective
and timely manner.

� Experimental

� Sets of automated
and/or
human-made
actions can be
applied or
suggested from the
cloud into the user
interface smart
device.

� Power consumption of the
drone should be optimized to
enhance flight time.

� Considering machine learning
approach would enhance
actions to be taken
autonomously

6. Conclusions

Smart farming involves the integration of advanced technologies into existing farm-
ing practices to increase production efficiency and quality of agricultural products. The
evolution of IoT and UAVs has enabled the vision of sustainable smart farming, where
these smart technologies have proven to increase the quality of crop yield and reduce the
environmental footprint from the agricultural sector. This paper shows a low-cost platform
for comprehensive environmental parameter monitoring using flying IoT. The proposal is
based on experimental work to fulfill the requirements of automated and real-time monitor-
ing of the environmental parameters using both under- and aboveground sensors. These
IoT sensors devices on a farm collect vast amounts of environmental data, where it is sent
to ground gateways every 1 h, after which the obtained data are collected and transmitted
by a drone to the cloud for storage and analysis every 12 h. This platform is deployed
and tested in a real scenario on a farm in Medenine, Tunisia, in the period of March 2020
to March 2021, covering open-field and greenhouse cultivation. This low-cost platform
can help farmers, governmental, or manufacturers to predict environmental conditions
data over the geographically large farm field, which leads to enhancement of crop produc-
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tivity and farm management in a cost-effective, and timely manner. Obtained practical
results indicate that automated and human-made sets of actions have been applied and/or
suggested that are smart actions for precision agriculture, which, in turn, dramatically
boost crop productivity and help in saving natural resources. Examples of these actions are
the following:

• Farmers are advised to consider various strategies such as spraying chemicals on
plants during some seasons;

• Various plantings and quarterly grains are suggested;
• Estimate the amount of water needed to bring the soil to field capacity;
• Farmers are advised to consider greenhouses to protect plants from high light intensity

during summer;
• Adjust water irrigation using automated dripping and sprinkling based on environ-

mental parameters;
• Using solar panels for powering the weather station leads to energy efficiency.

From a practical point of view, the deployed nodes, which are fed by a solar panel-
recharged battery, have correctly transmitted data for 12 months, with underground and
aboveground sensors and despite bad weather conditions. Indeed, even though some
samples were lost during several rainy days, once their batteries were recharged by solar
light during the following sunny days, nodes restarted to transmit properly.

PL and RSS of the Hata propagation model of the distance between the ground station
and the drone at the cloud layer show reasonable results, in which the obtained values
satisfy a high level of reception with the smallest attenuated signal, besides achieving line
of sight wireless connectivity in an efficient and timely manner. More elaboration can be
taken into consideration for future work, e.g., to develop a machine learning algorithm
to predict environmental conditions and then suggest solutions and/or precautions. A
decision support system framework could be introduced as part of a future project to link
the farm’s smart devices together to achieve an autonomous system. Moreover, the power
consumption of the drone can be optimized to enhance flight time, which leads to covering
wider farm zones.
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