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Abstract: The power industry is an important strategic industry that has effectively advanced the
rapid development of China’s economy. However, this rapid development has created significant
environmental problems and does not support the sustainable development of the ecological envi-
ronment and economy. This study evaluated and analyzed the sustainable performance of China’s
inter-provincial power supply chain systems (PSCSs), and developed policy recommendations for
further developing China’s power industry based on the research results. For PSCSs with internal
subsystems, this study first developed a non-radial two-stage model, and proposed steps to solve the
model; then, this study applied the proposed model to empirically analyze China’s inter-provincial
PSCSs. The empirical analysis yielded the following key research findings. Firstly, for the study
period, China’s power industry had a low overall performance, and PSCS performance varied sig-
nificantly across different regions. Secondly, the average meta-frontier efficiency (ME) of PSCSs in
high-income regions was the highest; the average ME of PSCSs in middle-income regions was the
lowest. This is consistent with the environmental Kuznets curve hypothesis. Thirdly, this study found
that the PSCSs had effective management and technical systems in Qinghai and Guangdong. The
PSCSs in other regions need improvements to mitigate either inadequate management, inadequate
technology, or both.

Keywords: power supply chain system; sustainability; internal subsystem; technology

1. Introduction

The power industry has played a significant role in advancing China’s economic
development [1]. However, the rapid development of the industry has highlighted the
visibility of conflicts between power generation and ecological environment protection [2,3].
For example, coal-fired power plants emit large quantities of greenhouse gases, which
are associated with climate change [4]. As the power supply chain system (PSCS) is an
important part of the industrial base, and is a major carbon emitter in China, its sustainable
development is a key way to conserve energy and reduce emissions [5].

A PSCS mainly includes a power generation subsystem (PG) and a power grid sub-
system (PGS) [6]. The PG is responsible for power production, and the PGS is responsible
for power transportation, power distribution and power retail [7]. Improving the overall
efficiency of the PSCS requires the joint efforts of all subsystems within the supply chain [8].

Studies have been conducted to assess PSCS performance; however, there are some
current research gaps. Firstly, most previous studies focused on assessing PSCS perfor-
mance, but only a few studies have analyzed the potential causes of PSCS inefficiency [6].
This makes it difficult to make recommendations on the direction of performance improve-
ments. Secondly, most previous studies have evaluated the efficiency of the entire power
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industry or power companies, but have not assessed the internal subsystems of the PSCS.
This may lead to an overestimate of PSCS performance.

This study proposed a new performance model for PSCSs and applied it to analyze
the performance of China’s regional PSCSs. This study specifically answered the following
research questions. First, how can the performance of PSCSs be modeled by considering
internal subsystems? Second, how can the problem of overestimating PSCS performance
be avoided? Third, how does the disposable income of residents affect the environmental
performance of the regional PSCSs? Fourth, how can China’s regional PSCSs improve
their performance?

This study makes three main theoretical contributions to the field. The first is that
this study classified regional PSCSs in China based on the level of residents’ disposable
income, and analyzed the impact of that income on regional PSCS performance. The
second is that this study introduced a non-radial directional distance function (DDF) into
the data envelopment analysis (DEA) model. Compared with previous models (e.g., [9]),
this study’s model effectively avoids the problem of overestimating performance. The third
is that, in addition to the performance evaluation model, this study further deconstructed
the inefficiencies into management inefficiency and technical inefficiency, and provided
specific recommendations for inefficient PSCSs.

In addition to the above theoretical contributions, this study also yielded key research
findings. First, China’s overall PSCS performance during the study period was low, with
significant opportunities for improvement. In addition, there were significant differences
in PSCS performance between different regions. Second, the PSCSs in the high-income
regions had the highest average meta-frontier efficiency (ME); PSCSs in the middle-income
regions had the lowest ME. This result is consistent with the environmental Kuznets curve
hypothesis. Third, this study found that only the PSCSs in Qinghai and Guangdong
performed well with respect to both management and technological potential. The PSCSs
in other regions need to correct either management insufficiencies, technical insufficiencies,
or both.

The rest of this paper is organized as follows. Section 2 reviews the relevant re-
search literature. Section 3 proposes the non-radial PSCS performance evaluation models.
Section 4 applies the model of this study to empirically analyze PSCSs in China. Section 5
summarizes the study and proposes policy recommendations.

2. Literature Review

There are three main literature streams related to this research topic: (1) performance
evaluations of the power industry without regarding environmental factors, (2) evaluations
of environmental efficiencies in the power industry, (3) research using a two-stage DEA
model, and (4) the relationship between environmental performance and economic income.
This section summarizes these areas.

2.1. Performance Evaluation for the Power Industry without Environmental Factors

As an effective non-parametric mathematical programming method, DEA has many
advantages. For example, it does not need to assume the functional relationship between
input and output, and does not need to pre-determine weights [10]. Therefore, DEA can
objectively evaluate the input-output efficiency of the decision-making unit. In view of the
importance of the power industry in the national economy, many studies have evaluated
the performance of the power industry by using DEA models. Färe et al. [11] applied
DEA to assess PSCS performance, and compared the performance of public and private
companies. Golany et al. [12] employed DEA to measure power-plant performance in the
Israeli Electric Corporation. Sueyoshi and Goto [13] proposed an adjusted DEA model to
examine the performance of Japanese power generation enterprises from 1984 to 1993. That
study also included specific recommendations for the development of the Japanese power
industry. Arocena [14] applied DEA to analyze the vertical integration, diversification,
and economies of scale within the Spanish power industry. That study concluded that



Sustainability 2021, 13, 5972 3 of 17

the largest utilities could improve their efficiencies of scale by dividing them into smaller
units. Sueyoshi and Goto [15] used DEA to classify energy companies into efficient and
non-efficient categories, and then developed an improved DEA method to rank energy
companies. Xin-Gang and Zhen [16] adopted a four-stage DEA method to measure and
analyze the technical efficiency of China’s wind power enterprises. That study found that
the overall efficiency of China’s wind power industry was low from 2011 to 2015.

2.2. Environmental Performance of Power Industry

The rapid development of the power industry has led to significant environmental
problems. Scholars have realized that it is not enough to evaluate the performance of
the power industry from the perspective of economic output. This has led to increased
scholarly interest in evaluating the environmental performance of the power industry by
using DEA models. Zhou et al. [1] combined the entropy model and the DEA model to
propose an improved non-radial method for evaluating the environmental efficiency of
the Chinese provincial power industry. The results found significant differences in the
environmental efficiencies between provincial power systems in China. Zhang et al. [17]
proposed two non-radial DEA methods to analyze the carbon efficiency of fossil fuel power
plants, which revealed a significant positive correlation between plant size and efficiency.
Chen et al. [18] applied a game-based cross-efficiency model to analyze China’s provincial
power efficiency. The results showed that China’s provincial power efficiency has not
improved significantly from 2005 to 2014.

Wang et al. [19] applied several DEA methods to analyze the operation and environmental
performance of China’s provincial thermal power industry, and then used the Malmquist
index to analyze the dynamic performance changes. Sartori et al. [20] used DDF-DEA to
evaluate the sustainable development of the Brazilian power industry using five scenarios.
The results showed that the company’s performance differed under different application
scenarios. Chen et al. [21] proposed a DEA model to analyze the energy congestion in China’s
regional coal-fired power generation industry. Energy congestion means low energy efficiency,
which is specifically defined as “reducing energy input will lead to an increase in one or more
outputs without worsening other inputs or outputs” [21–23]. The empirical analysis showed
that the coal-fired power industry faces undesirable energy congestion problems in the most
underdeveloped areas of China. Undesired energy congestion is defined as “increasing input
will cause a decrease in desired output” [21].

2.3. Two-Stage DEA Model

This study developed a two-stage non-radial model to study the performance of
China’s PSCSs. As such, it is important to review relevant literature about the two-stage
DEA model. As the research has deepened, scholars have found that the traditional single-
stage DEA model does not effectively describe actual production processes. This led to
the development of two-stage DEA models. Seiford and Zhu [24] applied the DEA model
to evaluate the profitability and market efficiency of the United States commercial banks.
Kao and Hwang [25] improved the traditional DEA model into a two-stage DEA model
to measure the efficiency of the entire decision-making process and each decision-making
stage. Chen et al. [26] extended Kao and Hwang’s model [25], proposing an additive two-
stage DEA model, which broke down the overall efficiency of the system into a weighted
sum of the efficiency of all stages.

Wang et al. [27] proposed a two-stage weighted DEA model to evaluate the efficiency
of systems with shared inputs, and analyzed the relationship between weights, system effi-
ciency, and subsystem efficiency. Zhu et al. [28] used a two-stage DEA resource allocation
method, considered the fixed cost as a shared input for two stages in the decision-making
unit, and designed three resource allocation schemes. Chu et al. [29] applied a two-stage
non-cooperative DEA resource allocation method. The study concluded that the method
ensured the uniqueness of the resource allocation scheme.
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Sun et al. [30] adopted a two-stage game-based DEA model to evaluate the perfor-
mance of circular economy systems. The model used considered the game relationship
between the subsystems, and effectively identified the technical gaps between the systems.
Sun et al. [6] proposed a two-stage DEA model to analyze the sustainable performance of a
power system. The proposed model considered the non-cooperative relationship between
power subsystems. Yin et al. [31] employed a bi-target two-stage DEA model from the
perspective of cooperation. Solving the model included designing a new algorithm.

2.4. The Relationship between Environmental Performance and Economic Income

Some scholars have also analyzed the relationship between economic development
and environmental performance. For example, Taskin and Zaim [32] analyzed the impact
of per capita income and international trade factors on environmental efficiency. The results
demonstrate that per capita income and environmental performance show a relationship
of the environmental Kuznets curve type. Halkos and Tzeremes [33] first used the window
DEA method to evaluate the environmental performance of 17 OECD countries, and then
verified the Kuznets relationship between environmental performance and national income
through the generalized moment estimation method. The results show that there is no
U-shaped relationship between environmental efficiency and per capita income. Wang [34]
used the non-radial DEA method to analyze the energy-saving and emission reduction
performance of 209 cities in China, and found that there is a U-shape between energy-
saving and emission reduction performance and income. Halkos and Polemis [35] used
the DEA method to evaluate the environmental performance of the US power generation
industry, and studied the relationship between environmental performance and economic
development. The results show that in the global context, environmental efficiency and
regional economic growth have a stable N-shaped relationship.

2.5. Literature Summary

The literature shows that PSCS performance has attracted scholarly attention, with
DEA methods being increasingly used to evaluate PSCS performance. This study differs
from these previous studies in two key ways. First, this study introduces Kuosmanen’s
technique [36] and the non-radial method to the two-stage DEA model to solve the problem
of overestimating efficiencies. Second, this study further explores the impact of residents’
income on PSCS performance.

3. Methodology
3.1. Traditional DDF Model

Figure 1 shows the general internal structure of the PSCS. In the power generation sub-
system (PG), the inputs are xij(i = 1, 2, . . . , I); the desirable outputs are yrj(r = 1, 2, . . . , R);
and the undesirable outputs are bkj(k = 1, 2, . . . , K). In the power grid subsystem (PGS),
the inputs include yrj(r = 1, 2, . . . , R) and cdj(d = 1, 2, . . . , D); the desirable outputs are
vzj(z = 1, 2, . . . , Z); and the undesirable outputs are ptj(t = 1, 2, . . . , T). The explanations
of notations and variables are shown in Table 1.
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Table 1. Summary of notations and variables.

Notation/Variable Explanation

xij The ith input of PGj
bkj The kth undesirable output of PGj
yrj The rth desirable output of PGj
cdj The dth input of PGSj
vzj The zth output of PGSj
ptj The tth undesirable output of PGSj

λj and µj The weights of PGj
ωj and δj The weights of PGSj

θj Emission reduction factor
λ

g
j and µ

g
j The weights of PGj under the group-frontier

λm
j and µm

j The weights of PGj under the meta-frontier
ω

g
j and δ

g
j The weights of PGSj under the group-frontier

ωm
j and δm

j The weights of PGSj under the meta-frontier
αi

o Reduction potential of inputs in PGj
αk

o Reduction potential of undesired outputs of PGj
βd

o Reduction potential of inputs in PGSj
βt

o Reduction potential of undesired outputs in PGSj
βz

o Increased potential of desired outputs in PGSj

Traditional DEA models have mostly applied the Shephard distance function [37] to
evaluate the efficiency of the evaluated unit. The Shephard distance function maximizes the
desirable output, but also increases the undesirable output [38]. This does not align with
the practice of reducing emissions. To address this problem, Chambers et al. [39] proposed
the direction distance function (DDF). The DDF method increases desirable outputs while
simultaneously reducing inputs and undesirable output [40,41]. For PSCSj, the production
technology set is expressed as follows:

T =
{
(xij, yrj, bkj, cdj, vzj, ptj) : (bkj, vzj, ptj) can be generated by (xij, cdj)

}
(1)

To increase the potential improvement capacity of inputs and outputs, Färe and
Grosskopf [42] proposed a radial DDF approach, as follows:

D(xij, yrj, bkj, cdj, vzj, ptj)

= sup
{

α + β : (xij − αgx, yrj, bkj − αgb, cdj − βgc, vzj + βgv, ptj − βgp) ∈ T
} (2)

In model (2), g = (−gx, 0,−gb,−gc, gv,−gp) is the direction vector, representing the
adjustment direction of the inputs, the undesired outputs, and the desired outputs. The
variable α represents the potential improvement in the PG performance, and the variable
β represents the potential improvement in the PGS performance. If α = 0 and β = 0, the
evaluated PSCS is efficient and cannot be further improved.

Regarding the treatment of weak disposability, Kuosmanen [36] observed differences
in the disposability across decision-making units (DMUs); however, the traditional weak
disposability method implicitly assumed that all DMUs used uniform abatement factors.
Based on traditional DDF, this study further introduced Kuosmanen’s technique [36]. The
possible production set of the PSCS is as follows:
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T =



(x, y, b, c, v, p)
J

∑
j=1

zjxij ≤ (1− α)xio i = 1, 2, . . . , I

J
∑

j=1
θjzjbkj = (1− α)bko k = 1, 2, . . . , K

J
∑

j=1
θjzjyrj =

J
∑

j=1
ηjyrj r = 1, 2, . . . , R

J
∑

j=1
zj = 1 j = 1, 2, . . . , J

J
∑

j=1
ηjcdj ≤ (1− β)cdo d = 1, 2, . . . , D

J
∑

j=1
θjηj ptj = (1− β)pto t = 1, 2, . . . , T

J
∑

j=1
θjηjvzj ≥ (1 + β)vzo z = 1, 2, . . . , Z

J
∑

j=1
ηj = 1

zj, ηj ≥ 0



(3)

Equation (3) is nonlinear and is difficult to solve. Equation (3) is made linear using
the following transformation. For PGj, we set zj = λj + µj, λj(λj = θjzj) as representing
the weights of the active outputs; and µj (µj = (1− θj)zj) represents the weights of the
inactive outputs. For PGSj, we set ηj = ωj + δj, ωj (ωj = θjηj) as representing the weights
of the active outputs; and δj (δj = (1− θj)ηj) represents the weights of the inactive outputs.
Hence, Equation (3) is transformed into the following linear Equation (4).

T =



(x, y, b, c, v, p)
J

∑
j=1

(λj + µj)xij ≤ (1− α)xio i = 1, 2, . . . , I

J
∑

j=1
λjbkj = (1− α)bko k = 1, 2, . . . , K

J
∑

j=1
λjyrj =

J
∑

j=1
(wj + δj)yrj r = 1, 2, . . . , R

J
∑

j=1
(λj + µj) = 1 j = 1, 2, . . . , J

J
∑

j=1
(ωj + δj)cdj ≤ (1− β)cdo d = 1, 2, . . . , D

J
∑

j=1
ωj ptj = (1− β)pto t = 1, 2, . . . , T

J
∑

j=1
ωjvzj ≥ (1 + β)vzo z = 1, 2, . . . , Z

J
∑

j=1
(ωj + δj) = 1

λj, µj, ωj, δj ≥ 0



(4)

3.2. The Two-Stage Network Model

DDF models can be divided into radial and non-radial categories. The radial DDF
model has two main problems. First, the radial efficiency measurement does not measure
efficiencies or make recommendations for improvement for each index [43]. Second, the
radial DDF model has non-zero slack variables in the evaluation process, causing it to
overestimate efficiency [44]. Given these problems with the radial DDF model, this study
applied non-radial DDF to construct an efficiency evaluation model for PSCS.

Based on the studies of Sun et al. [6,8], the PSCSs were divided into G groups, with
the PSCSs in each group assumed to have the same or similar technical level. In the group,
the group efficiency (GE) of PSCSo was obtained using model (5).
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min GEo =

1
4

[
(1− 1

I

I
∑

i=1
αi

o)+(1− 1
K

K
∑

k=1
αk

o)+(1− 1
D

D
∑

d=1
βd

o)+(1− 1
T

T
∑

t=1
βt

o)

]
1+ 1

Z

Z
∑

z=1
βz

o

s.t.
Jg

∑
j=1

(λ
g
j + µ

g
j )xij ≤ (1− αi

o)xio , i = 1, 2, . . . , I,

Jg

∑
j=1

λ
g
j bkj = (1− αk

o)bko , k = 1, 2, . . . , K,

Jg

∑
j=1

λ
g
j yrj =

J
∑

j=1
(ω

g
j + δ

g
j )yrj, r = 1, 2, . . . , R,

Jg

∑
j=1

(λ
g
j + µ

g
j ) = 1 , j = 1, 2, . . . , J,

Jg

∑
j=1

(ω
g
j + δ

g
j )cdj ≤ (1− βd

o)cdo , d = 1, 2, . . . , D,

Jg

∑
j=1

ω
g
j ptj = (1− βt

o)pto , t = 1, 2, . . . , T,

Jg

∑
j=1

ω
g
j vzj ≥ (1 + βz

o)vzo, z = 1, 2, . . . , Z,

Jg

∑
j=1

(ω
g
j + δ

g
j ) = 1,

λ
g
j , µ

g
j , ω

g
j , δ

g
j ≥ 0.

(5)

In model (3), the variables (λg
j , µ

g
j , ω

g
j , δ

g
j ) represent the weights; the variable Jg rep-

resents the number of PSs in the gth group; the variable GEg
o represents the efficiency of

PSCSo; and the variables αi
o,αk

o, βd
o , βt

o and βz
o represent the improvement potentials of xio,

bko, cdo, pto and vzo, respectively. yrj is considered an intermediate variable connecting the
two subsystems; as such, this study considered it to be a free variable. In other words,
the variable yrj can freely adjust its target based on the actual situation. Model (5) is a
nonlinear model, which was converted into a linear model using the following three steps.

Step 1: Let 1

1+ 1
Z

Z
∑

z=1
βz

o

= t. Model (5) was transformed into model (6).

min GEo = t− t
4I

I
∑

i=1
αi

o − t
4K

K
∑

k=1
αk

o − t
4D

D
∑

d=1
βd

o − t
4T

T
∑

t=1
βt

o

s.t. 1 + 1
Z

Z
∑

z=1
βz

o =
1
t ,

Jg

∑
j=1

(λ
g
j + µ

g
j )xij ≤ (1− αi

o)xio, i = 1, 2, . . . , I,

Jg

∑
j=1

λ
g
j bkj = (1− αk

o)bko , k = 1, 2, . . . , K,

Jg

∑
j=1

λ
g
j yrj =

J
∑

j=1
(ω

g
j + δ

g
j )yrj , r = 1, 2, . . . , R ,

Jg

∑
j=1

(λ
g
j + µ

g
j ) = 1 , j = 1, 2, . . . , J,

Jg

∑
j=1

(ω
g
j + δ

g
j )cdj ≤ (1− βd

o)cdo , d = 1, 2, . . . , D,

Jg

∑
j=1

ω
g
j ptj = (1− βt

o)pto, t = 1, 2, . . . , T,

Jg

∑
j=1

ω
g
j vzj ≥ (1 + βz

o)vzo , z = 1, 2, . . . , Z,

Jg

∑
j=1

(ω
g
j + δ

g
j ) = 1,

λ
g
j , µ

g
j , ω

g
j , δ

g
j ≥ 0.

(6)
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After substituting 1

1+ 1
Z

Z
∑

z=1
βz

o

= t into model (5), a constraint is added to model (5). Thus

model (5) is equivalent to model (6). However, the objective function of model (6) contains
the multiplication of two variables, which is still non-linear and requires further conversion.

Step 2: Let αi
o = tαi

o, αk
o = tαk

o, β
d
o = tβd

o , β
t
o = tβt

o, β
z
o = tβz

o, λ
g
j = tλg

j , µ
g
j = tµg

j ,ωg
j = tωg

j ,

δ
g
j = tδg

j . By substituting these equations into model (6), model (6) was transformed
into model (7).

min GEo = t− 1
4I

I
∑

i=1
αi

o − 1
4K

K
∑

k=1
αk

o − 1
4D

D
∑

d=1
β

d
o − 1

4T

T
∑

t=1
β

t
o

s.t. t + 1
Z

Z
∑

z=1
β

z
o = 1,

Jg

∑
j=1

(λ
g
j + µ

g
j )xij ≤ (t− αi

o)xio, i = 1, 2, . . . , I,

Jg

∑
j=1

λ
g
j bkj = (t− αk
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(7)

Model (7) is linear and can be solved directly. Then, through step 3, the optimal
solution of model (5) is obtained.

Step 3: The optimal solutions (t∗, αi∗
o , αk∗

o , β
d∗
o , β

t∗
o , β

z∗
o , λ

g∗
j , µ

g∗
j , ω

g∗
j , δ

g∗
j ) were generated

by solving model (7). Then, the optimal solutions of model (5) were obtained

as follows:
αi

o = αi∗
o

t∗ , αk
o = αk∗

o
t∗ , βd

o =
β

d∗
o

t∗ , βt
o =

β
t∗
o

t∗ , βz
o =

β
z∗
o

t∗ ,

λ
g
j =

λ
g∗
j

t∗ , µ
g
j =

µ
g∗
j

t∗ , ω
g
j =

ω
g∗
j

t∗ , δ
g
j =

δ
g∗
j
t∗

.

Model (7) generates the efficiency of PSCSo in the gth group by referring to the group
frontier. If PSCSo is compared with all PSCSs, it may yield a different efficiency, referred to
as the meta-frontier efficiency (ME) in this study. Based on the meta-frontier, the ME of
PSCSo was obtained using model (8):
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(8)

Model (8) is a nonlinear model, which was converted into linear model (9) using the
three steps described above.
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(9)

The constraints of Models (5) and (9) differ; the number of PSCSs in the two models

satisfies
G
∑

g=1
Jg = J. This leads the two models to have different frontiers. Specifically,

the frontier of Model (5) was formed by the optimal performing PSCSs in the gth group;
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in contrast, the frontier of Model (8) was formed by all the optimally performing PSCSs.
Therefore, the Model (5) frontier represented the best technology level of the gth group,
and the Model (8) frontier represented the best technology level of all PSCSs.

To provide targeted improvement paths for inefficient PSCSs, this study deconstructed
the improvement potential of the PSCSs into management potential (MP) and technical
potential (TP).

Definition 1. For PSCSo, the MP is MPo = LICGo = 1− GEo.

The PSCSs in the gth group have the same or similar production technology level.
Therefore, inadequate management leads to an inefficient PSCSo. The distance from PSCSo
to the group-frontier is defined as the management potential.

Definition 2. For PSCSo, its TP is TPo = (1−MEo)− (1− GEo) = GEo −MEo.

The group-frontier and meta-frontier represent different technology levels. After
improving management capabilities, PSCSo reaches the group-frontier. For PSCSo to reach
the meta-frontier, improvements are needed at the technical level. Therefore, the distance
between the two frontiers is defined as the technical potential.

4. Empirical Analysis
4.1. Data

In 2015, the State Council of China issued “Several Opinions on Further Deepening
the Reform of the Electric Power System”. The opinions proposed a series of requirements
for China’s PSCS. For example, China will deepen the reform of the power system, focusing
on the power generation, transmission, distribution, and sales links of the power industry
chain. Specifically, power electricity is produced by the power plant, and then transmitted
and distributed through the grid company, to finally reach consumers. Some studies on the
environmental efficiency of PSCSs take the power system as a whole [45,46]. According to
the role played by power plants and the grid company in PSCSs, this study divided the
regional PSCSs into two subsystems: PG and PGS.

The inputs and outputs of PG are as follows.
Input 1: The new production capacity of the power supply construction (10,000 kilo-

watts) represents the newly added capacity of the power plant to put into power production
in a specific period, reflecting the power supply capacity. Sun et al. [6] and Sun et al. [47]
used this indicator as one of the inputs to evaluate the performance of China’s power
supply chain system.

Input 2: The power generation equipment capacity at 6000 kilowatts and above
(10,000 kilowatts) represents the maximum production capacity of power generation equip-
ment. Generally, the greater the capacity, the greater the power generation capacity. Park
and Lesourd [48] used this indicator as one of the inputs to evaluate the efficiency of
Korean power plants. Sun et al. [49] used this indicator as one of the inputs to evaluate the
efficiency of thermal power plants in China.

Input 3: The utilization hours of power generation equipment (hours) represent the
average full-load operating time of power generation equipment in one year. To evaluate
the sustainable performance of the power system, Sun et al. [8] used this indicator as one
of the inputs.

Input 4: The coal consumption rate to generate power (g/kWh) represents the amount
of coal consumed by the power plant to produce 1 kilowatt-hour of electricity, and is an
indicator that reflects the energy utilization rate of power generation enterprises [50,51].

Output: The electricity generation (100 million kWh) represents the actual electric
energy produced by the power plant in a certain period, which is the desired output of the
power plant [52–54].
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Undesired output: Carbon dioxide emissions (10,000 tons) represent the undesirable
emissions produced by burning coal during the power generation process of a power plant
and are an indicator of the environmental efficiency of the power plant [51–53].

The inputs and outputs of PGS are as follows.
Input 1: The newly increased capacity of 220 kV and above of the transformer

equipment (ten thousand kVA) represents the increased capacity of power transforma-
tion equipment in a specific period, reflecting the power supply guarantee ability of the
power grid [55].

Input 2: The length of newly added transmission lines of 220 kV and above (km)
represents the length of transmission lines increased in a specific period, reflecting the
power transmission capacity of the power grid [55,56].

Output: The electricity sales output value (100 million yuan) represents the electric-
ity sales income of the power grid company, reflecting the profitability of that power
grid company [56,57].

Undesired output: The line loss rate represents the percentage of power lost during
transmission. It reflects the performance level of power transmission of the power grid
company. The higher the line loss rate, the worse the power transmission performance of
the power grid company [55,58].

In the two systems, power generation was the intermediate output. In other words, it
is the desired output of PG, and it is also the input of PGS. Carbon dioxide was calculated
based on raw coal consumption, and the electricity sales output value was obtained by mul-
tiplying the average sales price and electricity sales. All data are from the wind database.

To classify China’s regions, scholars have proposed different classification standards
(e.g., [30,59,60]). This study explored the impact of the disposable income of residents on
PSCS performance. Therefore, this study divided Chinese provinces into five regions based
on the average disposable income of residents. The five areas included the low-income
area, the lower-middle-income area, the middle-income area, the upper-middle-income
area, and the high-income area. Table 2 shows the specific regional divisions.

Table 2. Regional divisions.

Areas Provinces

Low-income area Gansu, Guizhou, Yunnan, Qinghai
Lower-middle-income area Guangxi, Henan, Sichuan, Shaanxi, Shanxi

Middle-income area Hebei, Anhui, Heilongjiang, Jiangxi, Jilin, Hunan
Upper-middle-income area Hubei, Inner Mongolia, Shandong, Liaoning, Guangdong

High-income area Jiangsu, Tianjin, Zhejiang, Beijing

4.2. Performance Analysis

Models (5) and (8) were used to generate the GE and ME of the PSCSs of different
Chinese provinces from 2014 to 2017, as shown in Table 3.

Table 3 shows the following. The ME of some regions differed significantly over the
four years in the study period. For example, the ME of Beijing’s PSCS experienced an
increasing trend, while the ME of Hebei’s PSCS experienced a decreasing trend. These
values may have been affected by local policies and measures. For example, to reduce
greenhouse gas emissions, the Beijing government promulgated the “Administrative Mea-
sures on Beijing’s Carbon Emission Trading” in 2014. Implementing these “Administrative
Measures” effectively reduced pollutant emissions in the power industry, advancing the
efficiency of Beijing’s power system. To develop the economy, Hebei has accepted the
transfer of specific industries from Beijing, including enterprises with high pollution and
energy consumption. This has exacerbated the burden on Hebei’s PSCS, decreasing the
efficiency of its power system.
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Table 3. Efficiency of power supply chain systems of all provinces from 2014 to 2017.

Region
GE ME

2014 2015 2016 2017 Average 2014 2015 2016 2017 Average

Beijing 0.4910 0.7599 0.7187 1.0000 0.7424 0.4839 0.7596 0.7124 1.0000 0.7390
Tianjin 0.3478 0.4761 0.2831 0.4751 0.3955 0.3357 0.4460 0.2608 0.4476 0.3725
Jiangsu 1.0000 0.9388 1.0000 1.0000 0.9847 0.5491 0.5488 0.5593 0.6051 0.5656

Zhejiang 0.9522 0.9630 1.0000 1.0000 0.9788 0.5440 0.5393 0.5930 0.5425 0.5547
Hebei 1.0000 0.8346 0.7809 0.8116 0.8568 0.5757 0.3226 0.2877 0.2921 0.3695

Shandong 0.4292 0.3872 0.3046 0.3219 0.3607 0.3497 0.3416 0.2956 0.3096 0.3241
Guangdong 0.9085 0.9141 1.0000 1.0000 0.9557 0.8585 0.8800 0.8965 1.0000 0.9088

Liaoning 1.0000 1.0000 0.8559 1.0000 0.9640 0.3115 0.3110 0.2914 0.4076 0.3304
Jilin 0.7847 1.0000 0.7199 1.0000 0.8762 0.2689 0.2912 0.2446 0.5378 0.3357

Heilongjiang 0.8750 0.7499 0.6428 0.6741 0.7355 0.2413 0.2824 0.2315 0.2424 0.2494
Shanxi 0.5615 0.5126 0.4951 0.5476 0.5292 0.1606 0.1454 0.1338 0.1365 0.1441
Anhui 0.5866 0.6124 0.5523 0.7084 0.6149 0.2257 0.2145 0.1947 0.2216 0.2141
Jiangxi 1.0000 1.0000 0.9013 1.0000 0.9753 0.4191 0.2997 0.2811 0.3178 0.3294
Henan 1.0000 1.0000 1.0000 1.0000 1.0000 0.4200 0.2888 0.2918 0.2736 0.3186
Hubei 1.0000 1.0000 0.9887 0.4856 0.8686 0.3426 0.3409 0.2662 0.2706 0.3051
Hunan 1.0000 0.8935 1.0000 0.9780 0.9679 0.4215 0.3096 0.3225 0.3318 0.3464

Inner Mongolia 0.1457 0.2252 0.1253 0.2797 0.1940 0.1378 0.1431 0.1159 0.1605 0.1393
Guangxi 1.0000 1.0000 0.9363 1.0000 0.9841 0.3831 0.4079 0.7502 0.3954 0.4841
Sichuan 0.7492 0.7673 1.0000 1.0000 0.8791 0.1815 0.2252 0.3589 0.2363 0.2505
Guizhou 1.0000 1.0000 0.8106 1.0000 0.9526 0.2889 0.3050 0.2492 0.3022 0.2863
Yunnan 1.0000 0.9137 0.8458 1.0000 0.9399 0.2572 0.2825 0.4672 1.0000 0.5017
Shaanxi 0.6629 0.5069 0.5840 0.8978 0.6629 0.3294 0.1938 0.2394 0.1983 0.2402
Gansu 0.4456 0.3882 0.7279 0.4935 0.5138 0.1418 0.1390 0.3039 0.1605 0.1863

Qinghai 1.0000 1.0000 1.0000 0.7015 0.9254 0.4272 0.4031 1.0000 0.3149 0.5363

The average ME in all regions is 0.3788. The provinces with higher average MEs
included Beijing, Guangdong, Jiangsu, Zhejiang, Guangxi, Yunnan, and Qinghai. The
average ME in other regions was less than 0.4. Shanxi had the lowest average ME, at only
0.1441. These results indicate that the efficiency of China’s PSCSs was generally low overall.
In addition, highly efficient regions were from China’s most developed areas or the least
developed economic areas.

Table 4 shows the average GE of the five areas. The average GE of the PSCSs in the
middle-income area was the highest during the study period. In contrast, the average GE
of the PSCSs in the upper-middle-income area was the lowest. The frontier of the group
represents the best technical level of this group; the key contributor to group inefficiency
was insufficient management. Therefore, the PSCSs in the upper-middle-income area
appear to have the greatest management improvement potential.

Table 4. Statistical description of GE.

Areas Max Min Median Mean Std.

Low-income area 1.0000 0.3882 0.9568 0.8329 0.2124
Lower-middle income area 1.0000 0.4951 0.9171 0.8111 0.2046

Middle-income area 1.0000 0.5523 0.8548 0.8377 0.1506
Upper-middle-income area 1.0000 0.1253 0.8822 0.6686 0.3438

High-income area 1.0000 0.2831 0.9455 0.7754 0.2604

Table 5 shows the average ME results of the five areas. It indicates that the average ME
of the PSCSs in the middle-income area was the lowest during the study period. In contrast,
the average ME of the PSCSs of the high-income area was the highest. This result is similar
to the environmental Kuznets curve. This finding is consistent with the conclusion of
Wang [34], who analyzed the energy conservation and emission reduction performance
of 209 cities in China and found that the relationship between energy conservation and
emission reduction performance and income is U-shaped. Specifically, in low-income areas
(such as the low-income area and the lower-middle-income area), the level of economic
development was low, with slow industrial development. Therefore, this area consumed
less industrial power and had lower pollutant emissions from the PSCSs, resulting in a
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high ME from the PSCS. To develop the economy, middle-income areas have vigorously
pursued industrial development. This has led to high power consumption, and high
greenhouse gas emissions from the PSCS. This has, in turn, led to inefficient PSCSs in this
area. In economically developed regions (such as the high-income area), the rapid economic
development has increased the power demand in these areas [8,50], and has also promoted
the investment in PCSCs in these areas. This promotes the promotion and application
of power generation technology and low-carbon technology in these regions [50]. For
example, Jiangsu Province established a real-time online monitoring and evaluation system
for carbon emissions of thermal power companies in 2019, which effectively controls carbon
emissions. As such, the efficiency of the PSCSs of this area was high.

Table 5. Statistical description of ME.

Areas Max Min Median Mean Std.

Low-income area 1.0000 0.1390 0.3031 0.3777 0.2517
Lower-middle-income area 1.0000 0.1338 0.2918 0.3922 0.2578

Middle-income area 0.5757 0.1947 0.2895 0.3074 0.0934
Upper-middle-income area 1.0000 0.1159 0.3112 0.4015 0.2659

High-income area 1.0000 0.2608 0.5464 0.5579 0.1643

4.3. Comparison of GE and ME

Figure 2 shows the average ME and average GE of PSCSs in each area. It demonstrates
that the average ME of each area did not exceed its GE in the study period. The gap between
the GE and ME in the high-income area was the smallest. In contrast, there was a large
gap between the GE and ME in the middle-income area. There are two main reasons for
this result. First, the provinces in the high-income area are located in China’s economically
developed regions. Economic development has led these provinces to invest more in
the PSCS, resulting in a higher technology level in the PSCS. Second, the provinces in the
middle-income area are located in the northeast and central regions of China, which are rich
in coal resources. The unreasonable industrial structure in these areas has caused economic
development to be restricted. In addition, abundant coal resources mean that these areas
lack the capacity to upgrade power generation technology and equipment. The coal-fired
power generation enterprises have low resource utilization and emit large amounts of
carbon dioxide. These factors led to the low efficiency of the PSCSs in these areas.
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4.4. Performance Improvement Path

To propose improvements for regions with inefficient PSCS performance, the MP
and TP of each PSCS were calculated and analyzed to identify performance improvement
targets. Figure 3 and Table 6 show the specific results.



Sustainability 2021, 13, 5972 14 of 17Sustainability 2021, 13, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 3. The sources of performance improvement. 

Table 6. Classification of regional PSCSs. 

 Low-Income Area Lower-Middle-Income Area Middle-Income Area Upper-Middle-Income Area High-Income Area 
Type 1  Shaanxi Heilongjiang   

Type 2 Guizhou, Yunnan Guangxi, Henan, Sichuan 
Hebei, Jiangxi, Jilin, 

Hunan 
Hubei, Liaoning Jiangsu, Zhejiang 

Type 3 Qinghai   Guangdong  
Type 4 Gansu Shanxi Anhui Inner Mongolia, Shandong Tianjin, Beijing 

The regions of Type 1 include the provincial PSCSs in Shaanxi and Heilongjiang. 
They showed deficiencies in both management and technology, and their MP and TP were 
higher than the national average. These PSCSs should implement effective measures in 
both management and technology to improve their efficiency. This could include 
updating equipment, learning advanced management methods, and learning from other 
regions’ experiences. 

The regions of Type 2 contain 13 provincial PSCSs. The management capacity of these 
PSCSs was higher than the national average, but the technology was insufficient. To 
improve PSCS performance, these regions should increase their investment in technology 
and introduce advanced technology to improve their technical level. 

The regions of Type 3 include the PSCSs in Qinghai and Guangdong. The 
management capacity and technical level of these PSCSs were higher than the national 
average. Therefore, the PSCSs in these two areas should maintain their current 
advantages.  

The regions of Type 4 include 8 provincial PSCSs. The management capacity of these 
PSCSs was lower than the national average. To reduce the efficiency loss caused by 
insufficient management, these PSCSs should make long-term efforts to improve 
management capabilities, such as learning from the excellent management approaches 
used by the third category of PSCSs, formulating power policies, and strengthening power 
system oversight. 

5. Conclusions 
The power industry has made significant contributions to China’s economic 

development and industrialized production. However, thermal power generation 
comprises a large proportion of power production in China, with high energy 
consumption and emissions. In addition, there is a high line loss rate from the power grid. 
To analyze the performance of China’s regional PSCSs, this study proposed two non-
radial DEA models. The developed proposed models effectively measured PSCS 
performance in different regions of China, and deconstructed the sources of inefficiency 

Figure 3. The sources of performance improvement.

Table 6. Classification of regional PSCSs.

Low-Income Area Lower-Middle-Income Area Middle-Income Area Upper-Middle-Income Area High-Income Area

Type 1 Shaanxi Heilongjiang
Type 2 Guizhou, Yunnan Guangxi, Henan, Sichuan Hebei, Jiangxi, Jilin, Hunan Hubei, Liaoning Jiangsu, Zhejiang
Type 3 Qinghai Guangdong
Type 4 Gansu Shanxi Anhui Inner Mongolia, Shandong Tianjin, Beijing

The regions of Type 1 include the provincial PSCSs in Shaanxi and Heilongjiang.
They showed deficiencies in both management and technology, and their MP and TP
were higher than the national average. These PSCSs should implement effective measures
in both management and technology to improve their efficiency. This could include
updating equipment, learning advanced management methods, and learning from other
regions’ experiences.

The regions of Type 2 contain 13 provincial PSCSs. The management capacity of
these PSCSs was higher than the national average, but the technology was insufficient. To
improve PSCS performance, these regions should increase their investment in technology
and introduce advanced technology to improve their technical level.

The regions of Type 3 include the PSCSs in Qinghai and Guangdong. The management
capacity and technical level of these PSCSs were higher than the national average. Therefore,
the PSCSs in these two areas should maintain their current advantages.

The regions of Type 4 include 8 provincial PSCSs. The management capacity of these
PSCSs was lower than the national average. To reduce the efficiency loss caused by insuffi-
cient management, these PSCSs should make long-term efforts to improve management
capabilities, such as learning from the excellent management approaches used by the third
category of PSCSs, formulating power policies, and strengthening power system oversight.

5. Conclusions

The power industry has made significant contributions to China’s economic devel-
opment and industrialized production. However, thermal power generation comprises
a large proportion of power production in China, with high energy consumption and
emissions. In addition, there is a high line loss rate from the power grid. To analyze the
performance of China’s regional PSCSs, this study proposed two non-radial DEA models.
The developed proposed models effectively measured PSCS performance in different re-
gions of China, and deconstructed the sources of inefficiency into management potential
and technology potential. The study’s empirical analysis further analyzed the impact of
residents’ disposable income on PSCS performance.

Through the calculation of the models, the empirical analysis of this study generated
the following key research findings. First, based on model (5) and model (8), the efficiency
values of PSCSs of 24 regions from 2014 to 2017 were obtained, as shown in Table 3. This



Sustainability 2021, 13, 5972 15 of 17

study found that China had a low overall PSCS performance (0.3788), with significant
potential for improvement. Second, Table 3 also shows that PSCS performance varied
significantly over time in different regions. Third, the results in Table 6, calculated by
model (8), show that the PSCSs in high-income regions had the highest average ME, while
the PSCSs in middle-income regions had the lowest average ME. This result is consistent
with the environmental Kuznets curve hypothesis. Fourth, based on the definitions of MP
and TP, the MP and TP of each region were calculated. The results are shown in Table 6.
The results in Table 6 show that the management and technical levels of PSCSs in Qinghai
and Guangdong performed well. The PSCSs in other regions need to address management
inadequacies, technical insufficiencies, or both.

These findings highlight three key policy recommendations for China’s PSCSs. The
first policy recommendation is to determine the optimal benchmark PSCS for inefficient
PSCSs in the same group. For example, the results in Table 3 show that in the high-income
group, the PSCSs in Jiangsu and Zhejiang can be used as the benchmark for other PSCSs
in the same group. Inefficient PSCSs can refer to the experience of PSCSs in Jiangsu and
Zhejiang to improve performance. Similarly, in other groups, PSCSs in Liaoning, Jiangxi,
Guangxi, and Guizhou can be used as the optimal benchmarks.

The second recommendation is to improve the economic development model of
middle-income regions. Compared with other groups, the meta-frontier efficiency of PSCSs
in the middle-income group is lower. The PSCSs of the middle-income group mainly
come from the northeast and central regions of China. These areas are currently actively
introducing heavy industrial industries, which makes the demand for electricity huge.
Unsustainable economic development has led to high carbon emissions and low energy
efficiency. Therefore, the PSCSs in these areas are inefficient. The PSCSs of the middle-
income group need to implement a high-quality economic development mode and adhere
to the coordinated development of the economy and the ecological environment. This is an
effective way for the PSCSs of the middle-income area to improve efficiency.

The third policy recommendation is to determine approaches by which a PSCS can
improve its efficiency in a targeted manner. This study broke down the performance
improvement potential of PSCSs into MP and TP. The economic development level, scale
and energy resources are different across China’s regions, and each region should clarify
the direction of its performance improvement based on the actual situation. This study
divided the PSCSs of different provinces in China into four types, and proposed specific
efficiency improvement strategies for each PSCS type. For example, for the first type of
PSCS, technical deficiencies cannot be eliminated in the short term. As such, inefficient
PSCSs should focus on improving short-term management capabilities, such as improving
education on excellent management practices and formulating policies. Once the short-term
goal is achieved, the inefficient PSCSs should improve their technical level by updating
production equipment and introducing technology and technological innovations. In
addition, there is a significant positive correlation between the scale and efficiency of
the power system [17]. The larger the scale, the higher the efficiency. Therefore, the
scale of the first type of PSCS can be appropriately expanded to further improve its
environmental efficiency.
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