Using Bayesian Tobit Models to Understand the Impact of Mobile Automated Enforcement on Collision and Crime Rates
Abstract
:1. Introduction
2. Previous Work
2.1. Data Driven Approaches to Crime and Traffic Safety (DDACTS)
2.2. Automated Enforcement
3. Methodology
4. Data Description
4.1. Crime and Collision Data
4.2. Exposure Data
4.3. MAE Data
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, J. Varieties of Police Behavior: The Management of Law and Order in Eight Communities (A Harvard Paperback); Harvard University Press: London, UK, 1968. [Google Scholar]
- NHTSA. Data-Driven Approaches to Crime and Traffic Safety: An Historical Overview; NHTSA: Washington, DC, USA, 2013.
- Michalowski, R. Violence in the Road: The Crime of Vehicular Homicide. J. Res. Crime Delinq. 1975, 12, 30–43. [Google Scholar] [CrossRef]
- Takyi, E.A.; Oluwajana, S.D.; Park, P.Y. Development of Macro-Level Crime and Collision Prediction Models to Support Data-Driven Approach to Crime and Traffic Safety (DDACTS). Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 036119811877735. [Google Scholar] [CrossRef]
- Ibrahim, S.; Sayed, T. Does Automated Enforcement Presence Impact Collisions and Crime? Transp. Res. Record: J. Transp. Res. Board 2019, 2673, 036119811985045. [Google Scholar] [CrossRef]
- National Highway Traffic Safety Administration. Data-Driven Approaches to Crime and Traffic Safety: Operational Guidelines; NHTSA: Washington, DC, USA, 2014.
- Hardy, E. Data-Driven Policing: How Geographic Analysis Can Reduce Social Harm. Geogr. Public Saf. 2010, 2, 1–20. [Google Scholar]
- Kuo, P.; Lord, D.; Walden, T. Using geographical information systems to organize police patrol routes effectively by grouping hotspots of crash and crime data. J. Transp. Geogr. 2013, 30, 138–148. [Google Scholar] [CrossRef]
- Hauer, E. Observational Before-After Studies in Road Safety; Emerald Group Pub.: London, UK, 1997. [Google Scholar]
- Lord, D.; Kuo, P. Examining the effects of site selection criteria for evaluating the effectiveness of traffic safety countermeasures. Accid. Anal. Prev. 2012, 47, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Barnett, A. Regression to the mean: What it is and how to deal with it. Int. J. Epidemiol. 2004, 34, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Anacapa Sciences, Inc. Case Study of the LaFourche Parish, Louisiana, Sheriff’s Office; National Highway Traffic Safety Administration Enforcement and Justice Services Division: Santa Barbara, CA, USA, 2010.
- Anacapa Sciences, Inc. Case Study of the Vermont State Police/St Albans City Police Department; National Highway Traffic Safety Administration Enforcement and Justice Services Division: Santa Barbara, CA, USA, 2009.
- Anacapa Sciences, Inc. Case Study of the Metropolitan Nashville, Tennessee, Police Department’s DDACTS Program; National Highway Traffic Safety Administration Enforcement and Justice Services Division: Santa Barbara, CA, USA, 2010.
- World Health Organization. Managing Speed; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Elvik, R. Speed and Road Safety: Synthesis of Evidence from Evaluation Studies. Transp. Res. Rec. J. Transp. Res. Board 2005, 1908, 59–69. [Google Scholar] [CrossRef]
- Nilsson, G. Traffic Speed Dimensions and the Power Model to Describe the Effect of Speed on Safety; Lund Institute of Technology: Lund, Sweden, 2004. [Google Scholar]
- Li, R.; El-Basyouny, K.; Kim, A. Before-and-After Empirical Bayes Evaluation of Automated Mobile Speed Enforcement on Urban Arterial Roads. Transp. Res. Rec. J. Transp. Res. Board 2015, 2516, 44–52. [Google Scholar] [CrossRef]
- Cameron, M.; Cavallo, A.; Gilbert, A. Crash-Based Evaluation of the Speed Camera Program in Victoria 1990–91. Phase 1: General effects. Phase 2: Effects of Program Mechanisms; Monash University Accident Research Centre: Victoria, Australia, 1992. [Google Scholar]
- Chen, G.; Wilson, J.; Meckle, W.; Cooper, P. Evaluation of photo radar program in British Columbia. Accid. Anal. Prev. 2000, 32, 517–526. [Google Scholar] [CrossRef]
- Carnis, L.; Blais, E. An assessment of the safety effects of the French speed camera program. Accid. Anal. Prev. 2013, 51, 301–309. [Google Scholar] [CrossRef]
- Decina, L.; Thomas, L.; Srinivasan, R.; Staplin, L. Automated Enforcement: A Compendium of Worldwide Evaluations of Results; National Highway Traffic Safety Administration (NHTSA): Washington, DC, USA, 2007.
- Thomas, L.; Srinivasan, R.; Decina, L.; Staplin, L. Safety Effects of Automated Speed Enforcement Programs; Critical Review of International Literature. Transp. Res. Board Transp. Res. Rec. 2008, 2078, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Christie, S.; Lyons, R.; Dunstan, F.; Jones, S. Are mobile speed cameras effective? A controlled before and after study. Inj. Prev. 2003, 9, 302–306. [Google Scholar] [CrossRef]
- Goldenbeld, C.; van Schagen, I. The effects of speed enforcement with mobile radar on speed and accidents. Accid. Anal. Prev. 2005, 37, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; El-Basyouny, K.; Kim, A.; Gargoum, S. Relationship between road safety and mobile photo enforcement performance indicators: A case study of the city of Edmonton. J. Transp. Saf. Secur. 2016, 9, 195–215. [Google Scholar] [CrossRef]
- Ziółkowski, R. Effectiveness of Automatic Section Speed Control System Operating on National Roads in Poland. Promet-Traffic Transp. 2019, 31, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Hoye, A. Speed cameras, section control, and kangaroo jumps—A meta-analysis. Accid. Anal. Prev. 2014, 73, 200–208. [Google Scholar] [CrossRef]
- Ibrahim, S.; Sayed, T. Use of Objective Safety Evidence to Deploy Automated Enforcement Resources. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 036119811985144. [Google Scholar] [CrossRef]
- Anastasopoulos, P.C.; Tarko, A.P.; Mannering, F.L. Tobit analysis of vehicle accident rates on interstate highways. Accid. Anal. Prev. 2008, 40, 768–775. [Google Scholar] [CrossRef]
- Anastasopoulos, P.C.; Mannering, F.L.; Shankar, V.N.; Haddock, J.E. A study of factors affecting highway accident rates using the random-parameters tobit model. Accid. Anal. Prev. 2012, 45, 628–633. [Google Scholar] [CrossRef]
- Schultz, G.; Lewis, J.; Boschert, T. Safety Impacts of Access Management Techniques in Utah. Transp. Res. Rec. J. Transp. Res. Board 2007, 1994, 35–42. [Google Scholar] [CrossRef]
- Xu, X.; Wong, S.C.; Choi, K. A two-stage bivariate logistic-Tobit model for the safety analysis of signalized intersections. Anal. Methods Accid. Res. 2014, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Chen, F.; Chen, S. Modeling crash rates for a mountainous highway by using refined-scale panel data. Transp. Res. Rec. J. Transp. Res. Board 2015, 2515, 10–16. [Google Scholar] [CrossRef]
- Xu, X.; Kouhpanejade, A.; Šarić, Ž. Analysis on influencing factors identification of crash rates using tobit model with endogenous variable. Promet-Traffic Transp. 2013, 25, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Xiong, Y.; Abdel-Aty, M. A correlated random parameter approach to investigate the effects of weather conditions on crash risk for a mountainous freeway. Transp. Res. Part C Emerg. Technol. 2015, 50, 68–77. [Google Scholar] [CrossRef]
- Caliendo, C.; De Guglielmo, M.L.; Guida, M. Comparison and analysis of road tunnel traffic accident frequencies and rates using random-parameter models. J. Transp. Saf. Secur. 2016, 8, 177–195. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Z.; Sayed, T. Analysis of Crash Rates at Freeway Diverge Areas using Bayesian Tobit Modeling Framework. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 652–662. [Google Scholar] [CrossRef]
- Bin Islam, M.; Hernandez, S. Fatality rates for crashes involving heavy vehicles on highways: A random parameter tobit regression approach. J. Transp. Saf. Secur. 2016, 8, 247–265. [Google Scholar] [CrossRef]
- Zeng, Q.; Wen, H.; Huang, H.; Abdel-Aty, M. A Bayesian spatial random parameters Tobit model for analyzing crash rates on roadway segments. Accid. Anal. Prev. 2017, 100, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Hernandez, S. Heavy-Vehicle Crash Rate Analysis: Comparison of Heterogeneity Methods Using Idaho Crash Data. Transp. Res. Rec. J. Transp. Res. Board 2017, 2637, 56–66. [Google Scholar] [CrossRef]
- Anastasopoulos, P.C. Random parameters multivariate tobit and zero-inflated count data models: Addressing unobserved and zero-state heterogeneity in accident injury-severity rate and frequency analysis. Anal. Methods Accid. Res. 2016, 11, 17–32. [Google Scholar] [CrossRef]
- Zeng, Q.; Wen, H.; Huang, H.; Pei, X.; Wong, S. Incorporating temporal correlation into a multivariate random parameters Tobit model for modeling crash rate by injury severity. Transp. A Transp. Sci. 2018, 14, 177–191. [Google Scholar] [CrossRef]
- Ulak, M.; Ozguven, E.; Vanli, O.; Dulebenets, M.; Spainhour, L. Multivariate random parameter Tobit modeling of crashes involving aging drivers, passengers, bicyclists, and pedestrians: Spatiotemporal variations. Accid. Anal. Prev. 2018, 121, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Z.; Liu, P.; Wu, Y. Modeling correlation and heterogeneity in crash rates by collision types using full bayesian random parameters multivariate Tobit model. Accid. Anal. Prev. 2019, 128, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Emme, Version 2.0; INRO: Montreal, QC, Canada, 2015.
- 3.71. SAS University Edition (SAS Studio); SAS Institute Inc.: Cary, NC, USA, 2018.
Variable | Symbol | MIN | MEAN | MAX | STDEV |
---|---|---|---|---|---|
# Criminal Incidences (3 yrs) | crime | 8 | 305 | 1371 | 177 |
Total # Collisions (3 yrs) | collisions | 17 | 314 | 1629 | 220 |
Variable | Symbol | MIN | MEAN | MAX | STDEV |
---|---|---|---|---|---|
Vehicle KM Traveled | VKT | 1152 | 6296 | 26,998 | 4196 |
Population | pop | 345 | 3263 | 15,038 | 1950 |
Variable | Symbol | MIN | MEAN | MAX | STDEV |
---|---|---|---|---|---|
Average # hours spent enforcing a site | hpersite | 13 | 44 | 495 | 71 |
Average # of visits for each enforcement site | Vpersite | 5 | 30 | 174 | 25 |
The ratio of hours of enforcement per site to the frequency of visits per site | ratio | 1 | 2.3 | 3.2 | 0.5 |
Variable | Estimate | STDEV | 95% Confidence Interval | ||
---|---|---|---|---|---|
Collisions | |||||
b0 [Cluster 1] | 29.3 | 6.5 | 23.0 | 45.3 | |
Intercept | b0 [Cluster 2] | 135.4 | 15.9 | 117.0 | 170.1 |
b0 [Cluster 3] | 36.3 | 4.5 | 32.1 | 50.1 | |
Ratio | b1 [Cluster 1] | 18.4 | 3.2 | 14.2 | 26.2 |
b1 [Cluster 2] | −43.5 | 4.8 | −38.2 | −54.1 | |
b1 [Cluster 3] | −26.2 | 2.6 | −33.8 | −23.5 | |
Crime | |||||
b0 [Cluster 1] | 15.8 | 4.0 | 6.6 | 20.5 | |
Intercept | b0 [Cluster 2] | 85.0 | 18.7 | 40.9 | 102.7 |
b0 [Cluster 3] | 20.5 | 6.6 | 7.1 | 28.8 | |
Ratio | b1 [Cluster 1] | 11.8 | 2.0 | 7.2 | 14.1 |
b1 [Cluster 2] | −28.1 | 5.7 | −14.8 | −33.6 | |
b1 [Cluster 3] | −17.0 | 4.0 | −22.2 | −8.9 | |
Correlation | |||||
0.86 | |||||
DIC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, S.; Sayed, T. Using Bayesian Tobit Models to Understand the Impact of Mobile Automated Enforcement on Collision and Crime Rates. Sustainability 2021, 13, 6422. https://doi.org/10.3390/su13116422
Ibrahim S, Sayed T. Using Bayesian Tobit Models to Understand the Impact of Mobile Automated Enforcement on Collision and Crime Rates. Sustainability. 2021; 13(11):6422. https://doi.org/10.3390/su13116422
Chicago/Turabian StyleIbrahim, Shewkar, and Tarek Sayed. 2021. "Using Bayesian Tobit Models to Understand the Impact of Mobile Automated Enforcement on Collision and Crime Rates" Sustainability 13, no. 11: 6422. https://doi.org/10.3390/su13116422
APA StyleIbrahim, S., & Sayed, T. (2021). Using Bayesian Tobit Models to Understand the Impact of Mobile Automated Enforcement on Collision and Crime Rates. Sustainability, 13(11), 6422. https://doi.org/10.3390/su13116422