Role of Urban Greening Strategies for Environmental Sustainability—A Review and Assessment in the Context of Saudi Arabian Megacities
Abstract
:1. Introduction
2. Material and Method
2.1. Spatial Focus of the Study Cities
2.2. Methods
2.2.1. Methodology for Literature Screening
2.2.2. Assessment of GSs Across Cities
2.2.3. Sample Selection, Data Collection and Questionnaire Survey
3. Results and Discussion
3.1. Per Capita Scenario of GSs in Saudi Cities
3.2. Strategies for Provisioning GSs for Urban Sustainability in the Context of Saudi Cities
3.2.1. Improving the Quality of GSs
3.2.2. Application of Standard Approaches
3.2.3. Ecological Landscape Approaches
3.2.4. Improvement and Enhancement of GS Planning
3.2.5. Public Participation in GS Management
3.2.6. Greening Strategies Related to Buildings and Private Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
Appendix A
Strategies | Questions | Response | |
---|---|---|---|
Yes | No | ||
Strategy I | Improving the quality of GSs | ||
Question 1 | Do you think GSs need to be improved? | ||
Question 2 | Do you think GSs are properly managed? | ||
Question 3 | Do you think GSs need to be improved for wellbeing? | ||
Strategy II | Standard approaches | ||
Question 1 | Are you satisfied with availability of PCGSs? | ||
Question 2 | Do you think availability of PCGSs must be improved? | ||
Question 3 | Do you think availability of PCGSs must be improved for urban sustainability? | ||
Strategy III | Ecological landscape (ELs) approaches | ||
Question 1 | Do you think GSs patches must be managed? | ||
Question 2 | Do you think GSs are crucial for climate regulation (such as temperature regulation, urban heat island reduction, etc.?) | ||
Question 3 | Do you think ELs are linked with your daily life? | ||
Strategy IV | Improvement and enhancement of GSs planning | ||
Question 1 | Do you think there is limited accessibility to GSs? | ||
Question 2 | Do you think there is limited availability at GSs on the city and neighborhood level? | ||
Question 3 | Do you think city need to become more greenery? | ||
Strategy VI | Public participation is GSs management | ||
Question 1 | Do you think people must participate in GSs management? | ||
Question 2 | Do you think people need to become aware of GSs importance | ||
Question 3 | Do you think people of the city conscious of GSs management? | ||
Strategy VII | Greening strategies related to buildings and private properties | ||
Question 1 | Would you like to make your house with GSs? | ||
Question 2 | Do you have enough spaces for landscaping at your house? | ||
Question 3 | Do you think GSs must promote at household level? |
References
- Niemelä, J.; Saarela, S.-R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the ecosystem services approach for better planning and conservation of UGS: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Leichenko, R. Climate change and urban resilience. Curr. Opin. Environ. Sustain. 2011, 3, 164–168. [Google Scholar] [CrossRef]
- Kabisch, N. Ecosystem service implementation and governance challenges in urban green space planning—The case of Berlin, Germany. Land Use Policy 2015, 42, 557–567. [Google Scholar] [CrossRef]
- Reis, C.; Lopes, A. Evaluating the Cooling Potential of UGS to Tackle Urban Climate Change in Lisbon. Sustainability 2019, 11, 2480. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xie, S.; Zhao, S. Valuing UGS in mitigating climate change: A city-wide estimate of aboveground carbon stored in UGS of China’s Capital. Glob Chang. Biol. 2019, 25, 1717–1732. [Google Scholar] [CrossRef]
- Mathey, J.; Rößler, S.; Lehmann, I.; Bräuer, A. UGS: Potentials and Constraints for Urban Adaptation to Climate Change. In Resilient Cities; Springer: Heidelberg, The Netherlands, 2011; pp. 479–485. [Google Scholar]
- Reyes-Paecke, S.; Gironás, J.; Melo, O.; Vicuña, S.; Herrera, J. Irrigation of green spaces and residential gardens in a Mediterranean metropolis: Gaps and opportunities for climate change adaptation. Landsc. Urban Plan. 2019, 182, 34–43. [Google Scholar] [CrossRef]
- Nowak, D.J. Institutionalizing urban forestry as a “biotechnology” to improve environmental quality. Urban For. Urban Green. 2006, 5, 93–100. [Google Scholar] [CrossRef]
- Sanesi, G.; Colangelo, G.; Lafortezza, R.; Calvo, E.; Davies, C. Urban green infrastructure and urban forests: A case study of the Metropolitan Area of Milan. Landsc. Res. 2016, 42, 164–175. [Google Scholar] [CrossRef]
- Donateo, A.; Rinaldi, M.; Paglione, M.; Villani, M.G.; Russo, F.; Carbone, C.; Decesari, S. An evaluation of the performance of a green panel in improving air quality, the case study in a street canyon in Modena, Italy. Atmos. Environ. 2021, 247, 118189. [Google Scholar] [CrossRef]
- Baycan-Levent, T.; Nijkamp, P. Planning and management of UGS in Europe: Comparative analysis. J. Urban Plan. Dev. 2009, 135, 1–12. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, S.S. Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing city, China. Landsc. Urban Plan. 2003, 65, 95–116. [Google Scholar] [CrossRef]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Wei, J.; Qian, J.; Tao, Y.; Hu, F.; Ou, W. Evaluating Spatial Priority of Urban Green Infrastructure for Urban Sustainability in Areas of Rapid Urbanization: A Case Study of Pukou in China. Sustainability 2018, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Dubbeling, M.; Campbell, M.C.; Hoekstra, F.; Van Veenhuizen, R. Building resilient cities. Urban Agric. Mag. 2009, 22, 3–11. [Google Scholar]
- Scott, M.; Collier, M.; Foley, K.; Lennon, M. Delivering ecosystems services via spatial planning-reviewing the possibilities and implications of a green infrastructure approach. UCD Univ. Coll. Dublin. 2014, 85, 563–587. [Google Scholar]
- Zeeuw, H.d.; Drechsel, P. Cities and Agriculture: Developing Resilient Urban Food Systems, 1st ed.; Routledge, Taylor & Francis Group: London, UK; New York, NY, USA, 2015. [Google Scholar]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Ranjha, S. Green infrastructure: Planning for sustainable and resilient urban environment. Brief GSDR. DLGS-IOERTU Dresd. Ger. 2016, 20. Available online: https://sustainabledevelopment.un.org/content/documents/95599_Ranjha_Green%20infrastructure_planning%20for%20sustainable%20and%20resilient%20urban%20environment.pdf (accessed on 22 March 2021).
- Setälä, H.; Viippola, V.; Rantalainen, A.L.; Pennanen, A.; Yli-Pelkonen, V. Does urban vegetation mitigate air pollution in northern conditions? Environ. Pollut. 2013, 183, 104–112. [Google Scholar] [CrossRef]
- Brantley, H.L.; Hagler, G.S.; Deshmukh, P.J.; Baldauf, R.W. Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. Total. Environ. 2014, 468, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Velasco, E.; Roth, M. Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geogr. Compass 2010, 4, 1238–1259. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, F.G.; Solecki, W.D.; Batalla, C.R. Climate change adaptation in Europe and the United States: A comparative approach to UGS in Bilbao and New York City. Land Use Policy 2018, 79, 164–173. [Google Scholar] [CrossRef]
- Zhou, X.; Rana, M.P. Social benefits of urban green space. Manag. Environ. Qual. Int. J. 2012, 23, 173–189. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green justice or just green? Provision of UGS in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, P.Y. Associations between UGS and health are dependent on the analytical scale and how UGS are measured. Int. J. Environ. Res. Public Health 2019, 16, 578. [Google Scholar] [CrossRef] [Green Version]
- Amano, T.; Butt, I.; Peh, K.S.H. The importance of green spaces to public health: A multi-continental analysis. Ecol. Appl. 2018, 28, 1473–1480. [Google Scholar] [CrossRef]
- Weber, T.; Sloan, A.; Wolf, J. Maryland’s Green Infrastructure Assessment: Development of a comprehensive approach to land conservation. Landsc. Urban Plan. 2006, 77, 94–110. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Addas, A.; Alserayhi, G. Quantitative evaluation of public open space per inhabitant in the Kingdom of Saudi Arabia: A case study of the city of Jeddah. Sage Open 2020, 10, 2158244020920608. [Google Scholar] [CrossRef]
- Addas, A.; Maghrabi, A.; Goldblatt, R. Public Open Spaces Evaluation Using Importance-Performance Analysis (IPA) in Saudi Universities: The Case of King Abdulaziz University, Jeddah. Sustainability 2021, 13, 915. [Google Scholar] [CrossRef]
- Addas, A.; Maghrabi, A. A Proposed Planning Concept for Public Open Space Provision in Saudi Arabia: A Study of Three Saudi Cities. Int. J. Environ. Res. Public Health 2020, 17, 5970. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R. Is physical activity in natural environments better for mental health than physical activity in other environments? Soc. Sci. Med. 2013, 91, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.; Horwitz, P. Beyond proximity: The importance of green space useability to self-reported health. EcoHealth 2014, 11, 322–332. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; Jacobs, M.H.; Van Hove, B. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Build. Environ. 2015, 83, 120–128. [Google Scholar] [CrossRef]
- Callaghan, A.; McCombe, G.; Harrold, A.; McMeel, C.; Mills, G.; Moore-Cherry, N.; Cullen, W. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 2020, 1–15. Available online: https://www.tandfonline.com/doi/full/10.1080/09638237.2020.1755027 (accessed on 22 March 2021).
- Ma, B.; Zhou, T.; Lei, S.; Wen, Y.; Htun, T.T. Effects of urban green spaces on residents’ well-being. Environ. Dev. Sustain. 2019, 21, 2793–2809. [Google Scholar] [CrossRef]
- Brook, I. The importance of nature, green spaces, and gardens in human well-being. Ethics Place Environ. (Ethics Place Environ. (Merged Philos. Geogr.)) 2010, 13, 295–312. [Google Scholar] [CrossRef]
- Villanueva, K.; Badland, H.; Hooper, P.; Koohsari, M.J.; Mavoa, S.; Davern, M.; Giles-Corti, B. Developing indicators of public open space to promote health and wellbeing in communities. Appl. Geogr. 2015, 57, 112–119. [Google Scholar] [CrossRef]
- Wood, L.; Hooper, P.; Foster, S.; Bull, F. Public green spaces and positive mental health–investigating the relationship between access, quantity and types of parks and mental wellbeing. Health Place 2017, 48, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, D.; Jana, A. Assessing urban recreational open spaces for the elderly: A case of three Indian cities. Urban For. Urban Green. 2018, 35, 115–128. [Google Scholar] [CrossRef]
- Qiao, Z.; Tian, G.; Xiao, L. Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data. ISPRS J. Photogramm. Remote Sens. 2013, 85, 93–101. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef] [Green Version]
- Vaz Monteiro, M.; Doick, K.J.; Handley, P.; Peace, A. The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban For. Urban Green. 2016, 16, 160–169. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Weng, Q.; Rajasekar, U.; Hu, X. Modeling Urban Heat Islands and Their Relationship With Impervious Surface and Vegetation Abundance by Using ASTER Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4080–4089. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Ormandy, D.; Ezratty, V. Thermal discomfort and health: Protecting the susceptible from excess cold and excess heat in housing. Adv. Build. Energy Res. 2015, 10, 84–98. [Google Scholar] [CrossRef]
- United Nations (UN), Department of Economic and Social Affairs, 2013. Sustainable Development Changes. World Economic and Social Survey 2013. United Nations Publication, 2013. Available online: http://www.un.org/en/development/desa/policy/wess/wess_current/wess2013/WESS2013.pdf (accessed on 22 March 2021).
- Haaland, C.; Van Den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Bank, T.W. Cities and Climate Change: An Urgent Agenda; (knowledge papers No. 10); Urban development series; The World Bank, World Bank Group: Washington, DC, USA, 2010. [Google Scholar]
- Barles, S. Society, energy and materials: The contribution of urban metabolism studies to sustainable urban development issues. J. Environ. Plan. Manag. 2010, 53, 439–455. [Google Scholar] [CrossRef]
- Caputo, A.; Marzi, G.; Pellegrini, M.M.; Al-Mashari, M.; Del Giudice, M. The internet of things in manufacturing innovation processes: Development and application of a conceptual framework. Bus. Process. Manag. J. 2016, 22, 1–31. [Google Scholar] [CrossRef]
- Rees, W.E. Indicadoresterritoriales de sustentabilidad. Ecologíapolítica 1996, 12, 27–41. [Google Scholar]
- Yang, Y.; Zhang, Y.; Huang, S. Urban Agriculture Oriented Community Planning and Spatial Modeling in Chinese Cities. Sustainability 2020, 12, 8735. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R.; Mastrandrea, M.D.; Mach, K.J.; Abdrabo, M.K.; Adger, N.; Yohe, G.W. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–32. [Google Scholar]
- Kumar, P.; Geneletti, D.; Nagendra, H. Spatial assessment of climate change vulnerability at city scale: A study in Bangalore, India. Land Use Policy 2016, 58, 514–532. [Google Scholar] [CrossRef]
- La Rosa, D. Accessibility to greenspaces: GIS based indicators for sustainable planning in a dense urban context. Ecol. Indic. 2014, 42, 122–134. [Google Scholar] [CrossRef]
- Al-Maamary, H.M.S.; Kazem, H.A.; Chaichan, M.T. The impact of oil price fluctuations on common renewable energies in GCC countries. Renew. Sustain. Energy Rev. 2017, 75, 989–1007. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Aina, Y.A. Achieving Sustainable Cities in Saudi Arabia. In Population Growth and Rapid Urbanization in the Developing World; IGI Global: Hershey, PA, USA, 2016; pp. 42–63. [Google Scholar]
- Abubakar, I.R.; Aina, Y.A. Achieving Sustainable Cities in Saudi Arabia: Juggling the Competing Urbanization Chal-lenges. Population Growth and Rapid Urbanization in the Developing World. Available online: https://www.researchgate.net/publication/298405258_Achieving_Sustainable_Cities_in_Saudi_Arabia_Juggling_the_Competing_Urbanization_Challenges (accessed on 12 April 2021).
- Darfaoui, E.M.; Al Assiri, A. Response to Climate Change in the Kingdom of Saudi Arabia. a Report Prepared for the Food and Agriculture Organization; United Nation, 2010. Available online: http://www.fao.org/forestry/29157-0d03d7abbb7f341972e8c6ebd2b25a181.pdf (accessed on 12 April 2021).
- Addas, A.; Goldblatt, R.; Rubinyi, S. Utilizing Remotely Sensed Observations to Estimate the Urban Heat Island Effect at a Local Scale: Case Study of a University Campus. Land 2020, 9, 191. [Google Scholar] [CrossRef]
- Russo, A.; Cirella, G.T. Modern compact cities: How much greenery do we need? Int. J. Environ. Res. public health 2018, 15, 2180. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Indicators of Sustainable Cities in the Context of the Rio+20 UN Conference on Sustainable Development; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Jim, C.Y. Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosyst. 2012, 16, 741–761. [Google Scholar] [CrossRef] [Green Version]
- Jennings, V.; Johnson Gaither, C.; Gragg, R.S. Promoting Environmental Justice Through Urban Green Space Access: A Synopsis. Environ. Justice 2012, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ward, C.D.; Parker, C.M.; Shackleton, C.M. The use and appreciation of botanical gardens as UGS in South Africa. Urban For. Urban Green. 2010, 9, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Conedera, M.; Del Biaggio, A.; Seeland, K.; Moretti, M.; Home, R. Residents’ preferences and use of urban and peri-UGS in a Swiss mountainous region of the Southern Alps. Urban For. Urban Green. 2015, 14, 139–147. [Google Scholar] [CrossRef]
- Jim, C.Y.; Shan, X. Socioeconomic effect on perception of UGS in Guangzhou, China. Cities 2013, 31, 123–131. [Google Scholar] [CrossRef]
- Olson, J.D.; Forman, R.T.T.; Dramstad, W.E. Landscape Ecology Principles in Landscape Architecture and Land-Use Planning; Island Press: Washington, DC, USA, 1996. [Google Scholar]
- Aspinall, R.; Pearson, D. Integrated geographical assessment of environmental condition in water catchments: Linking landscape ecology, environmental modelling and GIS. J. Environ. Manag. 2000, 59, 299–319. [Google Scholar] [CrossRef]
- Mortberg, U.M.; Balfors, B.; Knol, W.C. Landscape ecological assessment: A tool for integrating biodiversity issues in strategic environmental assessment and planning. J. Env. Manag. 2007, 82, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, R.M.; Hostetler, M.; Escobedo, F.J.; Jones, P. The influence of subdivision design and conservation of open space on carbon storage and sequestration. Landsc. Urban Plan. 2014, 131, 64–73. [Google Scholar] [CrossRef]
- Govindarajulu, D. Urban green space planning for climate adaptation in Indian cities. Urban Clim. 2014, 10, 35–41. [Google Scholar] [CrossRef]
- Bolleter, J.; Ramalho, C.E. The potential of ecologically enhanced urban parks to encourage and catalyze densification in greyfield suburbs. J. Landsc. Archit. 2014, 9, 54–65. [Google Scholar] [CrossRef]
- Byrne, J.; Sipe, N. Green and Open Space Planning for Urban Consolidation–A Review of the Literature and Best Practice; Griffith University: Queensland, Australia, 2010. [Google Scholar]
- Perini, K.; Ottelé, M.; Haas, E.M.; Raiteri, R. Greening the building envelope, facade greening and living wall systems. Open J. Ecol. 2011, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, B.; Said, I.; Reba, M.N.M.; Rasidi, M.H. Impact of Vertical Greenery System on Internal Building Corridors in the Tropic. Procedia-Soc. Behav. Sci. 2013, 105, 558–568. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, L.; Kouki, J.; Sverdrup-Thygeson, A. Tree retention as a conservation measure in clear-cut forests of northern Europe: A review of ecological consequences. Scand. J. For. Res. 2010, 25, 295–308. [Google Scholar] [CrossRef]
- Jim, C.Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 2004, 21, 311–320. [Google Scholar] [CrossRef]
- Bhalla, P.; Bhattacharya, P. Urban Biodiversity and Green Spaces in Delhi: A Case Study of New Settlement and Lutyens’ Delhi. J. Hum. Ecol. 2017, 52, 83–96. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Tan, P.Y.; Wang, J.; Sia, A. Perspectives on five decades of the urban greening of Singapore. Cities 2013, 32, 24–32. [Google Scholar] [CrossRef]
- Ståhle, A. More green space in a denser city: Critical relations between user experience and urban form. Urban Des. Int. 2010, 15, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, R.; Paulussen, J.; Liu, X. Comprehensive concept planning of urban greening based on ecological principles: A case study in Beijing, China. Landsc. Urban Plan. 2005, 72, 325–336. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y. Factors influencing the spatial pattern of sky gardens in the compact city of Hong Kong. Landsc. Urban Plan. 2011, 101, 299–309. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y. Development potential of sky gardens in the compact city of Hong Kong. Urban For. Urban Green. 2012, 11, 223–233. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y.; Wang, H. Assessing the landscape and ecological quality of UGS in a compact city. Landsc. Urban Plan. 2014, 121, 97–108. [Google Scholar] [CrossRef]
- Oh, K.; Lee, D.; Park, C. Urban Ecological Network Planning for Sustainable Landscape Management. J. Urban Technol. 2011, 18, 39–59. [Google Scholar] [CrossRef]
- Byrne, J.A.; Lo, A.Y.; Jianjun, Y. Residents’ understanding of the role of green infrastructure for climate change adaptation in Hangzhou, China. Landsc. Urban Plan. 2015, 138, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Pirnat, J. Conservation and management of forest patches and corridors in suburban landscapes. Landsc. Urban Plan. 2000, 52, 135–143. [Google Scholar] [CrossRef]
- Jie, L.; Jing, Y.; Wang, Y.; Shu-Xia, Y. Environmental Impact Assessment of Land Use Planning in Wuhan City Based on Ecological Suitability Analysis. Procedia Environ. Sci. 2010, 2, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Ong, B.L. Green plot ratio: An ecological measure for architecture and urban planning. Landsc. Urban Plan. 2003, 63, 197–211. [Google Scholar] [CrossRef]
- Frischenbruder, M.T.M.; Pellegrino, P. Using greenways to reclaim nature in Brazilian cities. Landsc. Urban Plan. 2006, 76, 67–78. [Google Scholar] [CrossRef]
- Akmar, A.A.N.; Konijnendijk, C.C.; Sreetheran, M.; Nilsson, K. Greenspace Planning and Management in Klang Valley, Peninsular Malaysia. Arboric. Urban For. 2011, 37, 99–107. [Google Scholar]
- Schäffler, A.; Swilling, M. Valuing green infrastructure in an urban environment under pressure—The Johannesburg case. Ecol. Econ. 2013, 86, 246–257. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.-C. Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landsc. Urban Plan. 2011, 100, 268–277. [Google Scholar] [CrossRef]
- Rupprecht, C.D.D.; Byrne, J.A. Informal urban greenspace: A typology and trilingual systematic review of its role for urban residents and trends in the literature. Urban For. Urban Green. 2014, 13, 597–611. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, S.; Fang, F.; Che, X.; Chen, M. Evaluation of urban-rural difference and integration based on quality of life. Sustain. Cities Soc. 2020, 54. [Google Scholar] [CrossRef]
- Nath, T.K.; Han, S.S.Z.; Lechner, A.M. Urban green space and well-being in Kuala Lumpur, Malaysia. Urban For. Urban Green. 2018, 36, 34–41. [Google Scholar] [CrossRef]
- Ishimatsu, K.; Ito, K. Brown/biodiverse roofs: A conservation action for threatened brownfields to support urban biodiversity. Landsc. Ecol. Eng. 2011, 9, 299–304. [Google Scholar] [CrossRef]
- Caspersen, O.H.; Olafsson, A.S. Recreational mapping and planning for enlargement of the green structure in greater Copenhagen. Urban For. Urban Green. 2010, 9, 101–112. [Google Scholar] [CrossRef]
- Wai, A.T.P.; Nitivattananon, V.; Kim, S.M. Multi-stakeholder and multi-benefit approaches for enhanced utilization of public open spaces in Mandalay city, Myanmar. Sustain. Cities Soc. 2018, 37, 323–335. [Google Scholar] [CrossRef]
- Evangelista, P.; Santoro, L.; Thomas, A. Environmental sustainability in third-party logistics service providers: A systematic literature review from 2000–2016. Sustainability 2018, 10, 1627. [Google Scholar] [CrossRef] [Green Version]
Name of the City | Designation of the City | Area (km2) | Population (million) | Population Density (km2) |
---|---|---|---|---|
Riyadh | Capital city | 1798 | 7.506 | 4175 |
Jeddah | Major city | 1660 | 4.276 | 2672 |
Dammam | Provincial city | 810 | 1.116 | 1440 |
Dimension | Category | Riyadh (N = 404) | Jeddah (N = 520) | Dammam (N = 276) |
---|---|---|---|---|
Gender | Male | 220 | 360 | 120 |
Female | 184 | 160 | 156 | |
Educational qualification | High school | 68 | 106 | 92 |
Bachelor | 189 | 195 | 126 | |
Master | 64 | 146 | 29 | |
PhD | 29 | 31 | 16 | |
Illiterate | 54 | 42 | 13 | |
Age group | <20 | 56 | 88 | 61 |
21–40 | 203 | 251 | 144 | |
40–60 | 120 | 122 | 45 | |
>60 | 25 | 59 | 26 | |
Nationality | Saudi | 380 | 506 | 261 |
Non Saudi | 24 | 14 | 15 |
UGS | Proposed Places | Area Coverage |
---|---|---|
Street verges | Roadsides, trees, footpaths | About 100 m2 |
Structural | Walls, roofs, buildings, fences | Small (<100 m2) |
Brown fields | Landfill, industrial parks | >1 ha |
Gaps | Empty spaces between walls or fences | Small (<100 m2) |
Microsites | Plantation in cracks or holes | Very small (<1 m2) |
Power lines | Vegetation corridors under power lines | Medium to large (>1 ha) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addas, A.; Maghrabi, A. Role of Urban Greening Strategies for Environmental Sustainability—A Review and Assessment in the Context of Saudi Arabian Megacities. Sustainability 2021, 13, 6457. https://doi.org/10.3390/su13116457
Addas A, Maghrabi A. Role of Urban Greening Strategies for Environmental Sustainability—A Review and Assessment in the Context of Saudi Arabian Megacities. Sustainability. 2021; 13(11):6457. https://doi.org/10.3390/su13116457
Chicago/Turabian StyleAddas, Abdullah, and Ahmad Maghrabi. 2021. "Role of Urban Greening Strategies for Environmental Sustainability—A Review and Assessment in the Context of Saudi Arabian Megacities" Sustainability 13, no. 11: 6457. https://doi.org/10.3390/su13116457
APA StyleAddas, A., & Maghrabi, A. (2021). Role of Urban Greening Strategies for Environmental Sustainability—A Review and Assessment in the Context of Saudi Arabian Megacities. Sustainability, 13(11), 6457. https://doi.org/10.3390/su13116457